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GAUGE-INVARIANT RELATIVISTIC PERTURBATION THEORY APPROACH TO 
DETERMINATION OF ENERGY and SPECTRAL CHARACTERISTICS FOR HEAVY 

AND SUPERHEAVY ATOMS AND IONS: REVIEW

We reviewed an effective consistent ab initio approach to relativistic calculation of the spectra for multi-electron heavy 
and superheavy ions with an account of relativistic, correlation, nuclear, radiative effects is presented. The method is  based 
on the relativistic gauge-invariant (approximation to QED) perturbation theory (PT) and generalized effective field nuclear 
model with using the optimized one-quasiparticle  representation firstly in theory of the hyperfine structure for relativistic 
atom. The wave function zeroth basis is found from the Dirac equation with potential, which includes the core ab initio 
potential, the electric and polarization potentials of a nucleus. The correlation corrections of the high orders are taken into 
account within the Green functions method (with the use of the Feynman diagram’s technique). There have taken into ac-
count all correlation corrections of the second order and dominated classes of the higher orders diagrams (electrons screen-
ing, particle-hole interaction, mass operator iterations). The magnetic inter-electron interaction is accounted in the lowest 
on α parameter (α is the fine structure constant), approximation, the self-energy part of the Lamb shift is taken effectively 
into consideration within the Ivanov-Ivanova non-perturbative procedure, the Lamb shift polarization part - in the general-
ized Uehling-Serber approximation with accounting for the  Källen-Sabry α2 (αZ) and Wichmann-Kroll α(αZ)n corrections.

1.  Introduction

In last years a studying the spectra of heavy 
and superheavy elements atoms and ions is of a 
great interest for further development as atomic 
and nuclear theories (c.f.[1-8]). Theoretical meth-
ods used to calculate the spectroscopic character-
istics of heavy and superheavy ions may be di-
vided into three main groups: a) the multi-config-
uration Hartree-Fock method, in which relativis-
tic effects are taken into account in the Pauli ap-
proximation, gives a rather rough approximation, 
which  makes it possible to get only a qualitative 
idea on the spectra of heavy ions. b) The multi-
configuration Dirac-Fock (MCDF) approxima-
tion (the Desclaux program, Dirac package) [1,2] 
is, within the last few years, the most reliable ver-
sion of calculation for multielectron systems with 
a large nuclear charge; in these calculations one- 
and two-particle relativistic effects are taken into 
account practically precisely. The calculation pro-
gram of Desclaux is compiled with proper ac-
count of the finiteness of the nucleus size; how-
ever, a detailed description of the method of their 

investigation of the role of the nucleus size is 
lacking. In the region of small Z (Z is a charge of 
the nucleus)  the calculation error in the MCDF ap-
proximation is connected mainly with incomplete 
inclusion of the correlation and exchange effects 
which are only weakly dependent on Z; c) In the 
study of lower states for ions with Z ≤ 40 an expan-
sion into double series of the PT on the parameters 
1/Z, aZ (a is the fine structure constant) turned out 
to be quite useful. It permits evaluation of relative 
contributions of the different expansion terms: 
non-relativistic, relativistic, QED contributions as 
the functions of Z.  Nevertheless,  the serious prob-
lems in calculation of the heavy elements spectra 
are connected with developing new, high exact 
methods of account for the QED effects, in particu-
lar, the Lamb shift (LS), self-energy (SE) part of 
the Lamb shift, vacuum polarization (VP) contri-
bution, correction on the nuclear finite size for 
heavy elements and its account for different spec-
tral properties, including calculating the energies 
and constants of the hyperfine structure, derivia-
tives of the 1-electron characteristics on nuclear 
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radius, nuclear electric quadrupole, magnetic di-
pole moments etc  (c.f.[1-98]). 

In present paper we review an effective  initio 
approach to relativistic calculation of the spectra 
for multi-electron superheavy ions with an ac-
count of relativistic, correlation, nuclear, radia-
tive effects is presented. The method is  based on 
the relativistic gauge-invariant (approximation 
to QED) perturbation theory (PT) and general-
ized relativistic dynamical effective field nuclear 
model with using the optimized one-quasiparticle  
representation in theory of the hyperfine structure 
for relativistic systems [15-60]. 

The correlation corrections of the high orders 
are taken into account within the Green functions 
method (with the use of the Feynman diagram’s 
technique). There have taken into account all cor-
relation corrections of the second order and dom-
inated classes of the higher orders diagrams (elec-
trons screening, particle-hole interaction, mass 
operator iterations) [2,60-99]. The magnetic inter-
electron interaction is accounted in the lowest on 

2a  parameter, the LS polarization part - in the 
Uehling-Serber approximation, self-energy part 
of the LS is accounted effectively within the 
Ivanov-Ivanova non-perturbative procedure [5-
8]. The expressions for the energies and constants 
of the hyperfine structure, deriviatives of 1-elec-
tron characteristics on nuclear radius,  nuclear 
electric quadrupole, magnetic dipole moments Q 
etc are presented. As illustration some data for  
atom of  hydrogen 1H (test calculation) and super-
heavy H-like ion with nuclear charge Z=170,  Li-
like multicharged ions are listed. 

2.  Gauge-invariant relativistic many-body 
perturbation theory method for heavy ions

2.1. General Formalism
In atomic theory, a convenient field procedure 

is known for calculating the energy shifts DE of 
the degenerate states. Secular matrix M diagonali-
zation is used. In constructing M, the Gell-Mann 
and Low adiabatic formula for DE is used. A sim-
ilar approach, using this formula with the QED 
scattering matrix, is applicable in the relativistic 
theory. In contrast to the non-relativistic case, the 
secular matrix elements are already complex in 
the PT second order (first order of the inter-elec-
tron interaction). Their imaginary parts relate to 

radiation decay (transition) probability. The total 
energy shift of the state is usually presented as 
follows: 

             DE = ReDE + i ImDE,                      (1)

                  Im DE = -G/2,                              (2)

where G is interpreted as the level width, and the 
decay possibility P=G. The whole calculation of 
energies and decay probabilities of a non-degen-
erate excited state is reduced to calculation and 
diagonalization of the complex matrix M. To start 
with the Gell-Mann and Low formula it is neces-
sary to choose the PT zero-order approximation. 
Usually, the one-electron Hamiltonian is used, 
with a central potential that can be treated as a bare 
potential in the formally exact QED PT. There are 
many well-known attempts to find the fundamen-
tal optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom or 
atom in a field) or (what is the same) for the set of 
one-quasiparticle (QP) functions, which represent 
such a Hamiltonian [1-8]. As the bare potential, 
one usually includes the electric nuclear potential 
VN and some parameterized screening potential 
VC.  The parameters of the bare potential may be 
chosen to generate the accurate eigen-energies of 
all many-QP states. In the PT second order the 
energy shift is expressed in terms of the two-QP 
matrix elements [6-8]:    

(3)

Here  Qul
lQ  is corresponding to the Coulomb 

part of interaction ( BrQl  -Breit part) :  

                                                                      (4) 

where R(1,2;4,3) is the radial integral of the Cou-
lomb inter-QP interaction with large radial Dirac 
components; the tilde denotes a small Dirac com-
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are already complex in the PT second order 
(first order of the inter-electron interaction). 
Their imaginary parts relate to radiation 
decay (transition) probability. The total 
energy shift of the state is usually presented 
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Im ∆E = -Γ/2, (2)
where Γ is interpreted as the level width, and 
the decay possibility P=Γ. The whole 
calculation of energies and decay 
probabilities of a non-degenerate excited 
state is reduced to calculation and 
diagonalization of the complex matrix M. To 
start with the Gell-Mann and Low formula it 
is necessary to choose the PT zero-order 
approximation. Usually, the one-electron 
Hamiltonian is used, with a central potential 
that can be treated as a bare potential in the 
formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom 
or atom in a field) or (what is the same) for 
the set of one-quasiparticle (QP) functions, 
which represent such a Hamiltonian [1-8]. As 
the bare potential, one usually includes the 
electric nuclear potential VN and some 
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parameters of the bare potential may be 
chosen to generate the accurate eigen-
energies of all many-QP states. In the PT 
second order the energy shift is expressed in 
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where R(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large 
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ponent; Sα is the angular multiplier (see details in 
Refs.[2-12]). To calculate all necessary matrix ele-
ments one must have the 1QP relativistic functions. 

2.2 The Dirac-Kohn-Sham Relativistic Wave 
Functions

Usually, a multielectron atom is defined by a  
relativistic Dirac Hamiltonian( the a.u. used):

              ( ).i i j
i i j

H h(r ) V r r
>

= +∑ ∑               (5) 

Here, h(r) is one-particle Dirac Hamiltonian 
for electron in a field of the finite size nucleus and 
V is potential of the inter-electron interaction. The 
relativistic  inter electron potential is as follows 
[7,8]:

 
             (6)      

where αij is the transition frequency;αi , αj are the 
Dirac matrices. The Dirac equation potential in-
cludes the electric potential of a nucleus and ex-
change-correlation potential. One of the variants 
is the Kohn-Sham-like  (KS) exchange relativistic 
potential, which is obtained from a Hamiltonian 
having a transverse vector potential describing 
the photons, is as follows  [33]:
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X XV r r V r b br

b b
+ +
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                  2 1/3[3 ( )] /r cb p r=                          (8)

The corresponding correlation functional is 
[2,33]:

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rr r= − ⋅ ⋅ + ⋅ ,     (9)

where b is the optimization parameter (see details 
in Refs. [2-4,9,10]). 

 One-particle wave functions are found from 
solution of the Dirac equation, which is written in 
the known two-component form:
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Here we put the fine structure constant a =1, c 

- the Dirac number. At large c  the radial func-

tions F and G vary rapidly as:

                     
( ) ( )
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z
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≈ −g
               (11)

This involves difficulties in numerical integra-
tion of the equations for r → 0. To prevent it, it is 
convenient to turn to new functions isolating main 
power dependence: c−c− == 11 , GrgFrf . The 
Dirac equation for F and G components are trans-
formed as:

                                                                (12)

Here the Coulomb units (C.u.) are used. In 
Coulomb units the atomic characteristics vary 
weakly with Z; En is one-electron energy without 
the rest energy. The boundary values of the cor-
rect solution are as:

( )( ) ( ) 1;120 =+ca−= c fZrEVg n , 0<c  

( )( ) 1;20 22 =aa−−= c gZZEVf n , 0>c      (13)

The condition 0, →gf  at r → ∞  determines 
the quantified energies En. The asymptotics of  f,g 
at r ∞→  are:  f  ,g~ ( )∗− nrexp  with effective 
quantum number 

c
∗ = nEn 21 . 

2.3. Nuclear potential and charge density
Earlier there are calculated some character-

istics of hydrogen-like ions with the nucleus in 
the form of a uniformly charged sphere; analo-
gous calculations by means of an improved mod-
el were also made [2-8]. As in refs. [33-35] we 
use the relativistic mean-field (RMF) approach, 
which is an effective field theory for nuclei below 
an energy scale of 1GeV, separating the long- and 
intermediate-range nuclear physics from short-
distance physics, involving, i.e., short-range cor-
relations, nucleon form factors, vacuum polariza-
tion etc, which is absorbed into various terms and 
coupling constants.  Usually one starts with a La-
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terms describing the nucleon dynamics and the 
Klein-Gordon-type equations involving nucleon-
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ic currents and densities as source terms for me-
sons and the photon. In our approach we usually 
use the NL3-NLC (see details in refs. [33,38]), 
which is among the most successful parameteri-
zations available. The resulted charge density is 
defined as:

                                    
(14a)

with the proton density ρp constructed from 
the RMF (A,μ are the numerical coefficients) and 
normalized to the charge number Z: 

   
                                                                 (14b)

All corresponding model parameters are ex-
plained and given in refs. [33]. Another effective 
model approach to determine nuclear potential 
(the nuclear density distribution) is given by the 
known Fermi model. This model gives the fol-
lowing definition of the charge distribution ( )rr : 
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where the parameter a=0.523 fm; the param-
eter с is chosen by such a way that it is true the 
following condition for average-squared radius: 

        <r2>1/2=(0.836∙A1/3+0.5700)fm.    (16)

We assume it as some zeroth approximation. 
Further the derivatives of various characteristics 
on R are calculated. They describe the interaction 
of the nucleus with outer electron; this permits re-
calculation of results, when R varies within rea-
sonable limits. The Coulomb potential for the 
spherically symmetric density ( )Rrr  is:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of the 
Lamb shift and vacuum polarization correction

Procedure for an account of the radiative QED 
corrections is in details given in the refs. [2-
4,8,33-35]. Regarding the vacuum polarization 
effect let us note that this effect is usually taken 
into account in the first PT theory order by means 
of the Uehling-Serber potential.  This potential is 
usually written as follows (c.f.[2]):
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where Zrg a/= . In calculation [7-9] it has been 
used more exact approach. The  Uehling-Serber 
potential,  determined as a quadrature (19) may 
be approximated with high precision by a simple 
analytical function. The use of new approxima-
tion of the Uehling-Serber potential permits one 
to decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for the  
Källen-Sabry a2(aZ) and Wichmann-Kroll a(aZ)
n corrections [33-35]. Besides, using a  simple 
analytical function form for approximating the 
Uehling-Serber potential allows its easy  inclu-
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are, in. principle, determined by one and the same 
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self-energy (SE) correction and the relativistic 
energy. The SE correc tion for the states of a hy-
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The values of  F are given at  ,11010 −=Z  
.2,2,2,1 2321 ppssnlj = These results are modified 

here for the states 1s2 nlj of Li-like ions. It is sup-
posed that for any ion with nlj electron over the 
core of closed shells the sought value may be pre-
sented in the form:
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into various terms and coupling constants.  
Usually one starts with a Lagrangian density 
describing Dirac spinor nucleons interacting 
via meson and photon fields. This leads then 
to the Dirac equation with the potential terms 
describing the nucleon dynamics and the 
Klein-Gordon-type equations involving 
nucleonic currents and densities as source 
terms for mesons and the photon. In our 
approach we usually use the NL3-NLC (see 
details in refs. [33,38]), which is among the 
most successful parameterizations available. 
The resulted charge density is defined as:
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with the proton density ρp constructed from 
the RMF (A,µ are the numerical coefficients) 
and normalized to the charge number Z: 

∫ = ZrdR p )(ρ . (14b)

All corresponding model parameters are 
explained and given in refs. [33]. Another 
effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :
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where the parameter a=0.523 fm; the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius: 

<r2>1/2=(0.836⋅A1/3+0.5700)fm.  (16)

We assume it as some zeroth approximation. 
Further the derivatives of various 
characteristics on R are calculated. They 
describe the interaction of the nucleus with 
outer electron; this permits recalculation of 
results, when R varies within reasonable 
limits. The Coulomb potential for the 
spherically symmetric density ( )Rrρ is:
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It is determined by the following system of 

differential equations [7,8]:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general 
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effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :
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true the following condition for average-
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We assume it as some zeroth approximation. 
Further the derivatives of various 
characteristics on R are calculated. They 
describe the interaction of the nucleus with 
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results, when R varies within reasonable 
limits. The Coulomb potential for the 
spherically symmetric density ( )Rrρ is:
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general 
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the RMF (A,µ are the numerical coefficients) 
and normalized to the charge number Z: 
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All corresponding model parameters are 
explained and given in refs. [33]. Another 
effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :

)]}/)exp[(1/{)( 0 acrρrρ −+= , (15)

where the parameter a=0.523 fm; the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius: 
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We assume it as some zeroth approximation. 
Further the derivatives of various 
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describe the interaction of the nucleus with 
outer electron; this permits recalculation of 
results, when R varies within reasonable 
limits. The Coulomb potential for the 
spherically symmetric density ( )Rrρ is:
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with the corresponding boundary conditions.
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Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general 
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most successful parameterizations available. 
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the RMF (A,µ are the numerical coefficients) 
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effective model approach to determine 
nuclear potential (the nuclear density 
distribution) is given by the known Fermi 
model. This model gives the following 
definition of the charge distribution ( )rρ :
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parameter с is chosen by such a way that it is 
true the following condition for average-
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with the corresponding boundary conditions.

2.4. QED corrections: Self-energy part of 
the Lamb shift and vacuum polarization 

correction

Procedure for an account of the radiative 
QED corrections is in details given in the 
refs. [2-4,8,33-35]. Regarding the vacuum 
polarization effect let us note that this effect 
is usually taken into account in the first PT 
theory order by means of the Uehling-Serber
potential.  This potential is usually written as 
follows (c.f.[2]):
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where Zrg α/= . In calculation [7-9] it has 
been used more exact approach. The  
Uehling-Serber potential,  determined as a 
quadrature (19) may be approximated with 
high precision by a simple analytical 
function. The use of new approximation of 
the Uehling-Serber potential permits one to 
decrease the calculation errors for this term 
down to 0.5 – 1%. It allows accounting for 
the  Källen-Sabry α2(αZ) and Wichmann-
Kroll α(αZ)n corrections [33-35]. Besides, 
using a  simple analytical function form for 
approximating the Uehling-Serber potential 
allows its easy  inclusion into the general system of differential equations. This system   

includes also the Dirac equations and the 
equations for  matrix elements. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (c.f.[7,8]). In an atomic system the 
radiative shift and the relativistic part of the 
energy are, in. principle, determined by one 
and the same physical field. It may be 
supposed that there exists some universal 
function that connects the self-energy (SE) 
correction and the relativistic energy. The SE 
correction for the states of a hydrogen-like 
ion was presented by Mohr  as:

( ) ( )nljZHF
n
ZnljZHESE ,027148.0,

3

4
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(20)
The values of  F are given at  ,11010 −=Z

.2,2,2,1 2321 ppssnlj = These results are 
modified here for the states 1s2 nlj of Li-like 
ions. It is supposed that for any ion with nlj
electron over the core of closed shells the 
sought value may be presented in the form:
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,027148.0, −ξ

ξ
= cmnljf

n
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(21)
The parameter ( ) RR EE ,41=ξ is the 
relativistic part of the bounding energy of the 
outer electron; the universal function 
( )nljf ,ξ does not depend on the composition 

of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:
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For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).
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radiative shift and the relativistic part of the 
energy are, in. principle, determined by one 
and the same physical field. It may be 
supposed that there exists some universal 
function that connects the self-energy (SE) 
correction and the relativistic energy. The SE 
correction for the states of a hydrogen-like 
ion was presented by Mohr  as:

( ) ( )nljZHF
n
ZnljZHESE ,027148.0,

3

4
=

(20)
The values of  F are given at  ,11010 −=Z

.2,2,2,1 2321 ppssnlj = These results are 
modified here for the states 1s2 nlj of Li-like 
ions. It is supposed that for any ion with nlj
electron over the core of closed shells the 
sought value may be presented in the form:

( ) ( ) ( )1
3

4
,027148.0, −ξ

ξ
= cmnljf

n
nljZESE

(21)
The parameter ( ) RR EE ,41=ξ is the 
relativistic part of the bounding energy of the 
outer electron; the universal function 
( )nljf ,ξ does not depend on the composition 

of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:

∫
∞

=
0

22
2- ),,/1()()()( RrUrGrFdrrRA

∫
∞

+=
0

3222
3- ),/1()]()([)( RrUrGrFdrrRA .

(24)
For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).
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The parameter ( ) RR EE ,41=x  is the relativis-
tic part of the bounding energy of the outer elec-
tron; the univer sal function ( )nljf ,x  does not de-
pend on the composition of the closed shells and 
the actual potential of the nucle us. The procedure 
of generalization for a case of Li-like ions with 
finite nucleus consists of the following steps 
[2,8,35]: 

1). Calculation of the values ER and x for the 
states nlj of H-like ions with the point nucleus (in 
accordance with the Zommerfeld formula); 

2). Construction of approximating function 
f by the found reference Z and the appropriate 
F(H|Z, nlj); 

3). Calculation of ER and x  for the states nlj of 
Li-like ions with the finite nucleus; 

4). Calculation of ESE for the sought states.  
The energies of the states of Li-like ions are cal-
culated twice: with a conventional constant of the 
fine structure  a=1/137and a’=a/103. The results 
of latter calculation are considered as non-relativ-
istic. This permitted isolation of ER,x. The above 
extrapolation method is more justified than using 
the known expansion on aZ  parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic di-

pole (Wμ) interactions to define a hyperfine struc-
ture (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B,  Wμ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],
 

          C=F(F+1)-J(J+1)-I(I+1).              (22)

Here I is a spin of nucleus, F is a full momen-
tum of system, J is a full electron momentum. 
HFS constants are expressed through the standard 
radial integrals [2,8,35]: 

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial integrals 
are defined as follows:

                                                                  (24)

For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following dif-
ferential equations [7,8]: U(1/rn,R)=-ny(r,R)/rn+1. 
The functions dU(1/rn,R)/dR are can be found by 
similar way. To obtain the corresponding value 
of Q one must combine the HFS constants data 
with the electric field gradient calculated in our 
approach too. The details of calculation are pre-
sented in [11,14, 17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation 

The problem of the searching for the optimal 
one-electron representation is one of the oldest in 
the theory of multielectron atoms.   One of the 
simplified recipes  represents, for example, the 
DFT method  (see [2,3]).  Unfortunately,  this  
method   doesn’t provide  a  regular  refinement  
procedure  in  the  case  of  the complicated atom 
with few quasiparticles (electrons  or  vacancies  
above a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us con-
sider now the one-quasiparticle atomic system. 
The multi-quasiparticle case doesn’t contain prin-
cipally new moments. In the lowest, second order, 
of the QED PT for the DE there is the only one- 
quasiparticle Feynman  diagram a (fig.1), contrib-
uting the ImDE (the radiation decay width). 

                                                                                     

Figure 1. a: second other PT diagram contribut-
ing the imaginary energy part related to the radia-
tion transitions; b and c: fourth order QED polar-

ization  diagrams.

In  the  next, the fourth order there appear dia-
grams,  whose  contribution  into the  ImDE  ac-
count  for  the  core  polarization   effects. This 

system of differential equations. This system   
includes also the Dirac equations and the 
equations for  matrix elements. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (c.f.[7,8]). In an atomic system the 
radiative shift and the relativistic part of the 
energy are, in. principle, determined by one 
and the same physical field. It may be 
supposed that there exists some universal 
function that connects the self-energy (SE) 
correction and the relativistic energy. The SE 
correction for the states of a hydrogen-like 
ion was presented by Mohr  as:

( ) ( )nljZHF
n
ZnljZHESE ,027148.0,

3

4
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(20)
The values of  F are given at  ,11010 −=Z

.2,2,2,1 2321 ppssnlj = These results are 
modified here for the states 1s2 nlj of Li-like 
ions. It is supposed that for any ion with nlj
electron over the core of closed shells the 
sought value may be presented in the form:
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(21)
The parameter ( ) RR EE ,41=ξ is the 
relativistic part of the bounding energy of the 
outer electron; the universal function 
( )nljf ,ξ does not depend on the composition 

of the closed shells and the actual potential of 
the nucleus. The procedure of generalization 
for a case of Li-like ions with finite nucleus 
consists of the following steps [2,8,35]: 
1). Calculation of the values ER and ξ for the 
states nlj of H-like ions with the point 
nucleus (in accordance with the Zommerfeld 
formula); 2). Construction of approximating 
function f by the found reference Z and the 
appropriate F(H|Z, nlj); 3). Calculation of ER
and ξ for the states nlj of Li-like ions with 
the finite nucleus; 4). Calculation of ESE for 
the sought states.  The energies of the states 
of Li-like ions are calculated twice: with a 
conventional constant of the fine structure  
α=1/137and α’=α/103. The results of latter 
calculation are considered as non-relativistic. 
This permitted isolation of ER,ξ. The above 
extrapolation method is more justified than 

using the known expansion on αZ
parameter. 

2.5. The hyperfine structure parameters
Energies of quadruple (Wq) and magnetic 
dipole (Wµ) interactions to define a hyperfine 
structure (HFS) are calculated as [32,35]:

Wq=[∆+C(C+1)]B, Wµ=0,5 AC,

∆=-(4/3)(4χ-1)(I+1)/[i(I-1)(2I-1)],

C=F(F+1)-J(J+1)-I(I+1).    (22)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. HFS constants are expressed 
through the standard radial integrals [2,8,35]:

A={[(4,32587)10-4Z2χgI]/(4χ2-1)}(RA)-2,

B={7.2878 10-7 Z3Q/[(4χ2-1)I(I-1)} (RA)-3,
(23)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial 
integrals are defined as follows:
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For calculation of potentials of the hyperfine 
interaction U(1/rn,R), we solve the following 
differential equations [7,8]: U(1/rn,R)=-
ny(r,R)/rn+1. The functions dU(1/rn,R)/dR are 
can be found by similar way. To obtain the 
corresponding value of Q one must combine 
the HFS constants data with the electric field 
gradient calculated in our approach too. The 
details of calculation are presented in [11,14, 
17,18].

2.6. Correlation effects and construction of 
optimal 1-quasiparticle representation

The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.   
One of the simplified recipes  represents, for 
example, the DFT method  (see [2,3]).

Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 

a                       b                         c
Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 

- e2

8π ∫∫ dr1dr2ψα
+ (r1) ψs

+ (r2)
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contribution describes collective effects and it is 
dependent upon the electromagnetic potentials 
gauge (the gauge non-invariant contribution). We 
examine  the  multielectron  atom  with  one qua-
siparticle in the  first  excited  state,  connected  
with  the ground state  by  the  radiation  transi-
tion.  In the PT zeroth approximation one can use 
the  one-electron bare potential:                

 
                          VN(r)+VC(r),                      (25)

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction of the  
with the  core of  closed  shells. The perturbation 
in terms of the  second quantization representa-
tion reads as

                                                                  (26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The lat-
ter fully defines the one electron representation. 
Moreover, all  the  results  of  the approximate cal-
culations are the functionals of the density ρC(r). 
Here, the lowest order multielectron effects, in 
particular, the gauge dependent radiative contri-
bution for the certain class of the photon propaga-
tor gauge is  treating.  This  value  is considered 
to  be  the  typical  representative  of  the  electron 
correlation effects, whose minimization is a  rea-
sonable  criteria in the searching for the optimal 
one-electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities cal-
culated with the alternative  forms  of the transi-
tion operator is commonly used as  a  criterion  of  
the multielectron calculations quality. The imagi-
nary part of the diagram a (fig.1)  contribution has 
been presented  previously as a sum of the partial 
contributions of α-s transitions from the initial 
state α to the final state s [10]:

                                                                   (27)

Two  fourth  order  polarization  diagrams  b,c  
(fig.1)  should be considered further.  The  contri-
butions   being   under consideration, are gauge- 
dependent, though  the  results  of  the exact  cal-
culation  of  any  physical  quantity  must  be    
gauge  independent . All the non-invariant terms 
are multielectron by their nature.  Let us take the 

photon propagator calibration as usually:

(28)     

Here C is the gauge constant; DT represents the  
exchange  of  electrons  by  transverse photons, 
DL that by longitudinal ones. One could calculate 
the contribution of the a,b,c diagrams (fig.1) into 
the Im DE taking into account  both the  DT  and 
DL parts. The a diagram (fig.1) contribution into 
the Im DE related to the α-s transition reads as 

   (30)

for D=DL , where ωαs is the α -s transition energy. 
According to the Grant theorem, the Dμυ,L contri-
bution vanishes, if  the  one-quasiparticle  func-
tions  ψα, ψs satisfy the same Dirac equation. 
Nevertheless this term is to be retained when us-
ing the distorted waves approximation, for exam-
ple. Another very important example  represents  
the  formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum without 
specifying its analytic form  [2,3].  Here the non-
invariant contribution appears already in the low-
est order. When calculating the forth order con-
tributions some approximations are inevitable. 
These approximations have been formulated in 
Refs.[10], where the polarization corrections to 
the state energies have been considered. 

Let us consider the direct polarization diagram 
b (fig.1) as an  example.  The  final  expression for 
the sought value looks as  

                                                                   (31)

Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 

a                       b                         c
Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 

- e2

8π ∫∫ dr1dr2ψα
+ (r1) ψs

+ (r2)
Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 

a                       b                         c
Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 
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8π ∫∫ dr1dr2ψα
+ (r1) ψs

+ (r2)

Unfortunately,  this method   doesn't provide  
a  regular  refinement  procedure  in  the  
case  of  the complicated atom with few 
quasiparticles (electrons  or  vacancies  above 
a core  of the closed electronic shells).  We 
use the method [9,10]. For simplicity, let us 
consider now the one-quasiparticle atomic 
system. The multi-quasiparticle case doesn’t 
contain principally new moments. In the 
lowest, second order, of the QED PT for the 
∆E there is the only one- quasiparticle 
Feynman  diagram a (fig.1), contributing the 
Im∆E (the radiation decay width). 

a                       b                         c
Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order QED polarization  diagrams.

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
Im∆E  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). We examine  the  
multielectron  atom with  one quasiparticle 
in the  first  excited  state,  connected  with  
the ground state  by  the  radiation  transition.  
In the PT zeroth approximation one can use 
the  one-electron bare potential:                

VN(r)+VC(r),                   (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction 
of the  with the  core of  closed  shells. The 
perturbation in terms of the  second 
quantization representation reads as

-VC(r) ψ+(r) ψ(r) - jµ(x) Aµ(x).                                    
(26)

The core potential VC(r) is  related to the core 
electron density ρC(r) in a standard way. The 
latter fully defines the one electron 
representation. Moreover, all  the  results  of  
the approximate calculations are the 

functionals of the density ρC(r). Here, the 
lowest order multielectron effects, in 
particular, the gauge dependent radiative 
contribution for the certain class of the 
photon propagator gauge is  treating.  This  
value  is considered to  be  the  typical  
representative  of  the  electron correlation 
effects, whose minimization is a  reasonable
criteria in the searching for the optimal one-
electron  basis  of  the  PT. Remember  that  
the  closeness  of  the radiation probabilities 
calculated with the alternative  forms  of the 
transition operator is commonly used as  a  
criterion  of  the multielectron calculations 
quality. The imaginary part of the diagram a 
(fig.1)  contribution has been presented  
previously as a sum of the partial 
contributions of α-s transitions from the 
initial state α to the final state s [10]:

Im∆Eα (a) = ∑
S

Im ∆E (α-s; a).                       

(27)
Two  fourth  order  polarization  diagrams  
b,c  (fig.1)  should be considered further.  
The  contributions   being   under 
consideration, are gauge- dependent, though  
the  results  of  the exact  calculation  of  any  
physical  quantity  must  be    gauge  
independent . All the non-invariant terms are 
multielectron by their nature.  Let us take the 
photon propagator calibration as usually:

D = DT + CDL ,

DT = δµν / ( k 0
2 - k 2 ), (28)

DL = - kµkν / ( k 0
2 - k2 ).                                      

(28)     
Here C is the gauge constant; DT represents 
the  exchange  of  electrons  by  transverse 
photons, DL that by longitudinal ones. One 
could calculate the contribution of the a,b,c 
diagrams (fig.1) into the Im ∆E taking into 
account  both the  DT and DL parts. The a 
diagram (fig.1) contribution into the Im ∆E
related to the  α -s transition reads as 

- e2

8π ∫∫ dr1dr2ψα
+ (r1) ψs

+ (r2)

1 1 2

12

− α α
r

sin (ωαs r12 ) ψα (r2) ψs (r1),                

(29)
for   D = DT, and      
- e2

8π ∫∫ dr1 dr2  ψα
+ (r1) ψs

+ (r2) {[(1- α1 n12⋅

⋅α2 n12 )/ r12 ] sin (ωαs r12 )+ωαs ⋅

(1+ α1 n12α2n12)×cos(ωαsr12)}ψα(r2)ψs(r1),                           

(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  
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(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 

1 1 2

12

− α α
r

sin (ωαs r12 ) ψα (r2) ψs (r1),                

(29)
for   D = DT, and      
- e2

8π ∫∫ dr1 dr2  ψα
+ (r1) ψs

+ (r2) {[(1- α1 n12⋅

⋅α2 n12 )/ r12 ] sin (ωαs r12 )+ωαs ⋅

(1+ α1 n12α2n12)×cos(ωαsr12)}ψα(r2)ψs(r1),                           

(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  
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(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 
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Expression (31) can be represented in the form 
of sum of the following terms: 

                                        
              (32)

With four different combinations of operators  
W1 and W2 (see [7-10]).  In (31) it should be per-
formed summation over the bound and upper con-
tinuum atomic states. To evaluate this  sum,  one 
can use the analytic relation  between the atom-
ic electron Fermi level  and  the  core  electron  
density ρc (r), appropriate  to the homogeneous   
nonrelativistic  electron gas. Now the sum Σn>f, m<f 
can be calculated analytically, its value becomes 
a functional of the core electron density.  The  re-
sulting  expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the active 
quasiparticle with  the  closed  shells.  Neverthe-
less,  its calculation is reducible to the  solving  of  
the  system  of  the ordinary differential equations 
(1-D procedure) [10]. The most important refine-
ments can be introduced by accounting for the 
relativistic and the density gradient corrections to 
the Tomas- Fermi formula (see  Refs. [2,3]).  The  
same  program  is realized  for other polarization 
diagrams. The minimization of the functional 
Im dEninv (b+c) leads to the integro-differential 
equation for the ρc (the  Dirac-like equations for 
electron density). In result we obtain the optimal 
one-quasiparticle representation. In concrete cal-
culation it is sufficient to use the simplified proce-
dure, which is reduced to functional minimization 
using the variation of the parameter b in Eq.(9) 
[2,10]. Let us further to come back to the complex  
secular matrix M in the form:  

                                          
            ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +       (33)                                  

Here ( )0M  is the contribution of the vacuum di-
agrams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three- quasiparticle 
diagrams respectively. ( )0M  is a real matrix, pro-
portional to the unit matrix. It determines only the 

general level shift. It is usually assumed ( )0 0.M =  
The diagonal matrix ( )1M  can be presented as a 
sum of the independent one-quasiparticle contri-
butions. For simple systems (such as alkali atoms 
and ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have summarized  
all the contributions of the one -quasiparticle  dia-
grams of all orders of the formally exact relativis-
tic PT. The first two order corrections to ( )2Re M  
have been analyzed previously [2,5-9] using the 
Feynman diagrams technique. The contributions 
of the first-order diagrams have been completely 
calculated. In the second order, there are two 
kinds of diagrams: polarization and ladder ones.
The polarization diagrams take into account the 
quasiparticle interaction through the polarizable 
core, and the ladder diagrams account for the im-
mediate quasiparticle interaction. An effective 
form for the two-particle polarizable operator has 
been presented in Ref. [2]; it looks as:

(34)

where 0
cr  is the core electron density (without ac-

count for the quasiparticle), X is numerical coef-
ficient, c is the light velocity. The similar approx-
imate potential representation has been received 
for the exchange polarization interaction of quasi-
particles. Some of the ladder diagram contribu-
tions as well as some of the three-quasiparticle 
diagram contributions in all PT orders have the 
same angular symmetry as the two-quasiparticle 
diagram contributions of the first order. These 
contributions have been summarized by a modifi-
cation of the central  potential, which  must now 
include the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all the 
radial integrals reduces to solving a system of dif-
ferential equations with known boundary condi-
tions at 0=r . Consider the master integral: 

1 1 2

12

− α α
r

sin (ωαs r12 ) ψα (r2) ψs (r1),                

(29)
for   D = DT, and      
- e2

8π ∫∫ dr1 dr2  ψα
+ (r1) ψs

+ (r2) {[(1- α1 n12⋅

⋅α2 n12 )/ r12 ] sin (ωαs r12 )+ωαs ⋅

(1+ α1 n12α2n12)×cos(ωαsr12)}ψα(r2)ψs(r1),                           

(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  
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(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 

1 1 2

12

− α α
r

sin (ωαs r12 ) ψα (r2) ψs (r1),                

(29)
for   D = DT, and      
- e2

8π ∫∫ dr1 dr2  ψα
+ (r1) ψs

+ (r2) {[(1- α1 n12⋅

⋅α2 n12 )/ r12 ] sin (ωαs r12 )+ωαs ⋅

(1+ α1 n12α2n12)×cos(ωαsr12)}ψα(r2)ψs(r1),                           

(30)
for D=DL , where ωαs is the α -s transition 
energy. According to the Grant theorem, the 
Dµν,L contribution vanishes, if  the  one-
quasiparticle  functions  ψα , ψs satisfy the 
same Dirac equation. Nevertheless this term 
is to be retained when using the distorted 
waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [2,3].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable. These 
approximations have been formulated in 
Refs.[10], where the polarization corrections 
to the state energies have been considered. 
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  The final 
expression for the sought value looks as  
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(31)       
Expression (31) can be represented in the 
form of sum of the following terms: 

( )smnmWsnnsWm αωωαα ±∑ 21
(32)

With four different combinations of operators 
W1 and W2 (see [7-10]).  In (31) it should be 
performed summation over the bound and 
upper continuum atomic states. To evaluate 
this  sum,  one can use the analytic relation  
between the atomic electron Fermi level  and  
the  core  electron  density ρ c (r), appropriate  
to the homogeneous   nonrelativistic  electron 
gas. Now the sum ∑n>f, m<f can be calculated 
analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [10]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [2,3]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im δEninv (b+c) leads to the 
integro-differential equation for the ρ c (the  
Dirac-like equations for electron density). In 
result we obtain the optimal one-quasiparticle 
representation. In concrete calculation it is 
sufficient to use the simplified procedure, 
which is reduced to functional minimization 
using the variation of the parameter b in 
Eq.(9) [2,10]. Let us further to come back to 
the complex  secular matrix M in the form:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + + (33)                                  

Here ( )0M is the contribution of the vacuum 
diagrams of all order of PT, and ( )1M ,

( )2M , ( )3M those of the one-, two- and three-
quasiparticle diagrams respectively. ( )0M is a 
real matrix, proportional to the unit matrix. It 
determines only the general level shift. It is 
usually assumed ( )0 0.M = The diagonal 
matrix ( )1M can be presented as a sum of the 
independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be 
taken from the experiment. Substituting these 
quantities into (33) one could have 
summarized  all the contributions of the one -
quasiparticle  diagrams of all orders of the 
formally exact relativistic PT. The first two 

order corrections to ( )2Re M have been 
analyzed previously [2,5-9] using the 
Feynman diagrams technique. The 
contributions of the first-order diagrams have 
been completely calculated. In the second 
order, there are two kinds of diagrams: 
polarization and ladder ones.The polarization 
diagrams take into account the quasiparticle 
interaction through the polarizable core, and 
the ladder diagrams account for the 
immediate quasiparticle interaction. An 
effective form for the two-particle 
polarizable operator has been presented in 
Ref. [2]; it looks as:
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(34)
where 0

cρ is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The similar approximate potential 
representation has been received for the 
exchange polarization interaction of 
quasiparticles. Some of the ladder diagram 
contributions as well as some of the three-
quasiparticle diagram contributions in all PT 
orders have the same angular symmetry as 
the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central  potential, which  must now include 
the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all 
the radial integrals reduces to solving a 
system of differential equations with known 
boundary conditions at 0=r . Consider the 
master integral:
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which enter the polarization contribution.
This is the most complicated integral of a 
task. Let us note: )(lim rYR
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to [9], function )(rY can be found from
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A complete system of equations also includes 
equations for the modified Bessel functions
Z(i) and for 1QP radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) 
results for hyperfine splitting energies  for 1s, 
2s levels of hydrogen atom. There is 
physically reasonable agreement between 
theory and experiment. 

Table 1. Experimental and theoretical data 
for HFS energies for 1s, 2s H-atom levels

Electron 
term 

Quantum 
numbers of 

total 
moment

Experiment
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

Theory [13]
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

1s 2S1/2
(1,0)

1420,406
47, 379

1419,685
47, 355

2s 2S1/2
(1,0)

177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  
calculation for the hyperfine structure 
parameters (plus derivatives of the energy 
contribution on nuclear radius) for the 
superheavy H-like ion with nuclear charge 
Z=170. We have used the denotations [7,8]:
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equations for the modified Bessel functions Z(i) 
and for 1QP  radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) results for 
hyperfine splitting energies  for 1s, 2s levels of 
hydrogen atom. There is physically reasonable 
agreement between theory and experiment. 

Table 1 
Experimental and theoretical data  for 

HFS energies for 1s, 2s H-atom levels
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Theory 
[13]

Dn(F,F’), 
MHz
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1s 2S1/2  (1,0) 1420,406
47, 379

1419,685
47, 355

2s 2S1/2  (1,0) 177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  calcu-
lation for the hyperfine structure parameters (plus 
derivatives of the energy contribution on nuclear 
radius) for the superheavy H-like ion with nuclear 
charge Z=170. We have used the denotations [7,8]:   

Table 2
Parameters of one-electron states for H-like 

ion with Z=170 (data from [8,35])

1s1/2 2s1/2 2p1/2 2p3/2

A 4337 831 3867 1,59
DA 1039 228 941 0,0001
B 9091 1897 8067 0,07

DB 7245 1557 6405 0,0008
DV 1255 273 1108 0,0011
U 1453 282 1301 1,31

DU 2343 503 2071 0,0015
1s1/2 3s 1/2 3p1/2 3p3/2

A 4337 207 322 0,615
DA 1039 56,8 84,0 0,0001
B 9091 475 707 0,04

DB 7245 395 574 0,0003
DV 1255 67,7 98,3 0,0005
U 1453 69,3 109 0,62

DU 2343 127 185 0,0007

In table 3 there are listed the nuclear corrections 
into energy of the low transitions for Li-like ions. 

order corrections to ( )2Re M have been 
analyzed previously [2,5-9] using the 
Feynman diagrams technique. The 
contributions of the first-order diagrams have 
been completely calculated. In the second 
order, there are two kinds of diagrams: 
polarization and ladder ones.The polarization 
diagrams take into account the quasiparticle 
interaction through the polarizable core, and 
the ladder diagrams account for the 
immediate quasiparticle interaction. An 
effective form for the two-particle 
polarizable operator has been presented in 
Ref. [2]; it looks as:
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where 0

cρ is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The similar approximate potential 
representation has been received for the 
exchange polarization interaction of 
quasiparticles. Some of the ladder diagram 
contributions as well as some of the three-
quasiparticle diagram contributions in all PT 
orders have the same angular symmetry as 
the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central  potential, which  must now include 
the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all 
the radial integrals reduces to solving a 
system of differential equations with known 
boundary conditions at 0=r . Consider the 
master integral:
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A complete system of equations also includes 
equations for the modified Bessel functions
Z(i) and for 1QP radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) 
results for hyperfine splitting energies  for 1s, 
2s levels of hydrogen atom. There is 
physically reasonable agreement between 
theory and experiment. 

Table 1. Experimental and theoretical data 
for HFS energies for 1s, 2s H-atom levels

Electron 
term 
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numbers of 

total 
moment

Experiment
∆ν(F,F’), 
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∆E(F,F’), 
10-3 cm-1

Theory [13]
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

1s 2S1/2
(1,0)

1420,406
47, 379

1419,685
47, 355

2s 2S1/2
(1,0)

177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  
calculation for the hyperfine structure 
parameters (plus derivatives of the energy 
contribution on nuclear radius) for the 
superheavy H-like ion with nuclear charge 
Z=170. We have used the denotations [7,8]:
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where 0

cρ is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The similar approximate potential 
representation has been received for the 
exchange polarization interaction of 
quasiparticles. Some of the ladder diagram 
contributions as well as some of the three-
quasiparticle diagram contributions in all PT 
orders have the same angular symmetry as 
the two-quasiparticle diagram contributions 
of the first order. These contributions have 
been summarized by a modification of the 
central  potential, which  must now include 
the  screening (anti-screening) of the core 
potential  of each particle by the others (look 
Refs. [2,3,7-10,33-35]). The calculation of all 
the radial integrals reduces to solving a 
system of differential equations with known 
boundary conditions at 0=r . Consider the 
master integral:
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which enter the polarization contribution.
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A complete system of equations also includes 
equations for the modified Bessel functions
Z(i) and for 1QP radial functions (see [2-8]).

3 Some illustration results and conclusion

In table 1 we present the experimental [8,32-
25] an theoretical (our test calculation) 
results for hyperfine splitting energies  for 1s, 
2s levels of hydrogen atom. There is 
physically reasonable agreement between 
theory and experiment. 

Table 1. Experimental and theoretical data 
for HFS energies for 1s, 2s H-atom levels

Electron 
term 

Quantum 
numbers of 

total 
moment

Experiment
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

Theory [13]
∆ν(F,F’), 

MHz
∆E(F,F’), 
10-3 cm-1

1s 2S1/2
(1,0)

1420,406
47, 379

1419,685
47, 355

2s 2S1/2
(1,0)

177,557
5, 923

177,480
5, 920

In table 2 there are listed the results of  
calculation for the hyperfine structure 
parameters (plus derivatives of the energy 
contribution on nuclear radius) for the 
superheavy H-like ion with nuclear charge 
Z=170. We have used the denotations [7,8]:

A=108A/Z3gI,(eV);

DA=(10-2/Z4gI)(∂A/∂R), (eV/cm);

B=(107BI(2I-1))/Z3Q, (eV/Barn);

DB=[(10-3I(2I-1))/Z4Q](∂B/∂R), (eV/Barn cm);                          

U=-(104/Z4)<U(r,R)>, (eV);

DU=(10-1/Z5)(∂<U(r,R)>/∂R), (eV/cm);.

DV=[10-8/Z3](∂<V>/∂R), (eV/cm);

Table 2. Parameters of one-electron states for 
H-like ion with Z=170 (data from [8,35])

1s1/2 2s1/2 2p1/2 2p3/2
A 4337 831 3867 1,59

DA 1039 228 941 0,0001
B 9091 1897 8067 0,07

DB 7245 1557 6405 0,0008
DV 1255 273 1108 0,0011
U 1453 282 1301 1,31

DU 2343 503 2071 0,0015
1s1/2 3s 1/2 3p1/2 3p3/2

A 4337 207 322 0,615
DA 1039 56,8 84,0 0,0001
B 9091 475 707 0,04

DB 7245 395 574 0,0003
DV 1255 67,7 98,3 0,0005
U 1453 69,3 109 0,62

DU 2343 127 185 0,0007

In table 3 there are listed the nuclear 
corrections into energy of the low transitions 
for Li-like ions. 
Table 3. Nuclear finite size corrections into 

energy  (сm –1)  for Li-like ions and values of 
the effective radius of nucleus (10 –13 cm)

Z 2s1/2-2p1/2 2s1/2-2p3/2 R
20 - 15,1 - 15,5 3,26
41 - 659,0 - 670,0 4,14
69 - 20 690,0 - 21 712,0 4,93
79 - 62 315,0 - 66 931,0 5,15
92 - 267 325,0 - 288 312,0 5,42

The calculation showed also that a variation 
of the nuclear radius on several persents 
could lead to changing the transition energies 

on dozens of thousands 103cm-1 . In [8,32,35]
there are listed the results of  calculating the 
constants of the hyperfine interaction: the 
electric quadruple constant B, the magnetic 
dipole constant A with inclusion of nuclear 
finiteness and the Uehling-Serber potential 
for some Li-like ions. In table 4 data on the 
HFS constants for lowest excited states of  
Li-like ions are listed. Similar data for other 
states were listed earlier (see ref. [8,32,34]),
but there another model for a charge 
distribution in a nucleus and method of 
treating the QED corrections were used.
Table 4. Constants of the hyperfine electron-

nuclear interaction: A=Z3gI A cm-1,
B= B

II
QZ

)12(

3

−
cm-1 

nlj Z 20 79 92
2s A 93 –03 215 -02 314 -02
3s A 26 –03 63 –03 90 –03

2p1/2 A 25 –03 71 –03 105 –02
3p1/2 A 81 –04 20 –03 31 –03
2p3/2 A 50 –04 71 –04 72 –04

B 9 –04 15 –04 17 –04
3p3/2 A 13 –04 21 –04 22 –04

B 31 –05 55–05 62 –05
3d3/2 A 88 –05 11 –04 12 –04

B 51 –06 10 –05 11 –05
3d5/2 A 36 –05 50 –05 52 –05

B 21 –06 39 –06 40 –06
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A. V. Glushkov, V. B. Ternovsky, A. V. Smirnov, A. A. Svinarenko

GAUGE-INVARIANT RELATIVISTIC PERTURBATION THEORY APPROACH TO 
DETERMINATION OF ENERGY and SPECTRAL CHARACTERISTICS FOR HEAVY 

AND SUPERHEAVY ATOMS AND IONS: REVIEW

Summary
We reviewed an effective consistent ab initio approach to relativistic calculation of the spectra for 

multi-electron heavy and superheavy ions with an account of relativistic, correlation, nuclear, radia-
tive effects is presented. The method is  based on the relativistic gauge-invariant (approximation to 
QED) perturbation theory (PT) and generalized effective field nuclear model with using the optimized 
one-quasiparticle  representation firstly in theory of the hyperfine structure for relativistic atom. The 
wave function zeroth basis is found from the Dirac equation with potential, which includes the core ab 
initio potential, the electric and polarization potentials of a nucleus. The correlation corrections of the 
high orders are taken into account within the Green functions method (with the use of the Feynman 
diagram’s technique). There have taken into account all correlation corrections of the second order 
and dominated classes of the higher orders diagrams (electrons screening, particle-hole interaction, 
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mass operator iterations). The magnetic inter-electron interaction is accounted in the lowest on a pa-
rameter (a is the fine structure constant), approximation, the self-energy part of the Lamb shift is taken 
effectively into consideration within the Ivanov-Ivanova non-perturbative procedure, the Lamb shift 
polarization part - in the generalized Uehling-Serber approximation with accounting for the  Källen-
Sabry  a2(aZ) and Wichmann-Kroll a(aZ)n corrections.

Keywords: Relativistic perturbation theory, Heavy ions, Relativistic energy formalism
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МЕТОД КАЛИБРОВОЧНО-ИНВАРИАНТНОЙ РЕЛЯТИВИСТСКОЙ ТЕОРИИ 
ВОЗМУЩЕНИЙ  К ОПРЕДЕЛЕНИЮ ЭНЕРГЕТИЧЕСКИХ И СПЕКТРАЛЬНЫХ 

ХАРАКТЕРИСТИК ТЯЖЕЛЫХ И СВЕРХТЯЖЕЛЫХ АТОМОВ И ИОНОВ: ОБЗОР

Резюме
В работе обзорно изложены основы эффективного, последовательного ab initio подхода к 

релятивистскому вычислению спектров многоэлектронных тяжелых и сверхтяжелых ионов 
с учетом релятивистских, корреляционных, ядерных, радиационных эффектов. Метод осно-
ван на релятивистской калибровочно-инвариантной (КЭД) теории возмущений, обобщенной 
эффективной полевой модели  ядра с использованием оптимизированного одноквазичастич-
ного представления впервые в теории сверхтонкой структуры cпектра релятивистского атома. 
Базис волновых функций нулевого приближения определяется решениями Dirac уравнения с 
потенциалом, который включает в   себя самосогласованный ab initio электронный потенциал, 
электрический и поляризационный потенциалы ядра. Корреляционные поправки высших по-
рядков учитываются в рамках метода функций Грина (с использованием техники диаграмм 
Feynman). Учтены все корреляционные поправки второго порядка и доминирующие классы 
диаграмм высших порядков (экранирование электронов, взаимодействие частицы с дыркой, 
итерации массового оператора). Магнитное межэлектронное взаимодействие учитывается в 
низшем по параметру a (a - постоянная тонкой структуры)приближении, собственно-энерге-
тическая часть лэмбовского сдвига эффективно учитывается в рамках обобщенной непертур-
бативной процедуры Ivanov-Ivanova,  эффект поляризации вакуума лэмбовского сдвига  - в 
приближении Uehling-Serber с учетом поправок Källen-Sabry a2(aZ) и  Wichmann-Kroll a(aZ)n 

(Z – заряд ядра).
Ключевые слова: Калибровочно-инвариантная релятивистская теория возмущений, Тяже-

лые ионы, Релятивистский энергетический формализм
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МЕТОД КАЛІБРУВАЛЬНО-ІНВАРІАНТНОЇ РЕЛЯТИВІСТСЬКОЇ ТЕОРІЇ ЗБУРЕНЬ 
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ВАЖКИХ І НАДВАЖКИХ АТОМІВ ТА ИОНОВ: ОГЛЯД

Резюме
В роботі оглядово викладені основи ефективного, послідовного ab initio підходу до реля-

тивістського обчислення спектрів багатоелектронних важких і надважких іонів з урахуванням 
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релятивістських, кореляційних, ядерних, радіаційних ефектів. Метод заснований на реляти-
вістської калібрувально-інваріантної (КЕД) теорії збурень, узагальненої ефективної польової 
моделі ядра з використанням оптимізованого одноквазічастинкового представлення  вперше 
в теорії надтонкої структури спектру релятивістського атома. Базис хвильових функцій нульо-
вого наближення визначається рішеннями Dirac рівняння з потенціалом, який включає в себе 
самоузгоджений ab initio електронний потенціал, електричний і поляризаційний потенціали 
ядра. Кореляційні поправки вищих порядків враховуються в рамках методу функцій Гріна (з 
використанням техніки діаграм Feynman). Враховано всі кореляційні поправки другого поряд-
ку і домінуючі класи діаграм вищих порядків (екранування електронів, взаємодія частинки з 
діркою, ітерації масового оператора). Магнітна міжелектронна взаємодія враховується в ниж-
чому за параметром a (a - стала тонкої структури) наближенні, власне-енергетична частина 
лембовського зсуву ефективно враховується в рамках узагальненої непертурбативної проце-
дури Ivanov-Ivanova, ефект поляризації вакууму лембовського зсуву - в наближенні Uehling-
Serber з урахуванням поправок Källen-Sabry a2(aZ) та  Wichmann-Kroll a(aZ)n (Z – заряд ядра).

Ключові слова: Калібрувально-інваріантна релятивістська теорія збурень, Важкі іони, Ре-
лятивістський енергетичний формалізм


