CHAOTIC DYNAMICS OF DIATOMIC MOLECULES
IN AN ELECTROMAGNETIC FIELD

Nonlinear chaotic dynamics of the diatomic molecules interacting with a resonant linearly polarized electromagnetic field is computationally modelled. It is presented an effective quantum-mechanical model for diatomic molecule in an electromagnetic field, based on the Schrödinger equation and model potential method. To detect the elements of a chaotic dynamics, we used the known chaos theory and non-linear analysis methods such as a correlation integral algorithm, the Lyapunov’s exponents and Kolmogorov entropy analysis, prediction model etc. There are listed the data of computing dynamical and topological invariants such as the correlation, embedding and Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc, for polarization time series of the ZrO molecule interacting with a linearly polarized electromagnetic field. The results obtained are in a physically reasonable agreement with the conclusions by Berman, Kolovskii, Zaslavsky, Zganh et al, Glushkov et al.

Introduction

In this paper we present the results of computing chaotic dynamics of the concrete molecular systems (diatomic molecules) interacting with a linearly polarized resonant electromagnetic field. The quantum-dynamic approach to diatomic molecule in an electromagnetic field
is used and based on the solution of the time-dependent Schrödinger equation, optimized operator perturbation theory and realistic model potential method.

2. Quantum-dynamical and chaos-geometric modeling dynamics of diatomic molecule in a field

Below we briefly consider a quantum dynamical approach to studying a regular and chaotic dynamics of diatomic molecules in a resonant electromagnetic field [11]. It is based on the numerical solution of the time-dependent Schrödinger equation and realistic Simons-Parr-Finlan model for the diatomic molecule potential \(U(x) \). The Simons-Parr-Finlan formulae for the molecular potential is:

\[
\begin{align*}
\text{(1a)} & \quad \phi|E_r(x)\rangle \int \sum \{ \text{ () } \ o| () | \}^2 \| \sum \{ \text{ () } \ o| () | \} \ \\
\text{(1b)} & \quad \text{or introducing } x= r - r_0 : \ \\
\end{align*}
\]

where the coefficients \(b_j \) are linked with corresponding molecular constants.

The problem of dynamics of diatomic molecules in an infrared field is reduced to solving the Schrödinger equation:

\[
i\hbar \Psi / \partial t = [H_0 + U(x) - d(x)E_M \epsilon(t) \cos(\omega t)] \Psi \quad (2)
\]

where \(E_M \) - the maximum field strength, \(\epsilon(t) = E_0 \cos(\omega t) \) corresponds the pulse envelope (chosen equal to one at the maximum value of electric field). A molecule in the field gets the induced polarization and its high-frequency component can be defined as:

\[
\begin{align*}
P_x(t) &= p_x^{(x)}(t) \cos \omega t + p_x^{(y)}(t) \sin \omega t, \quad (3a) \\
P_y(t) &= p_y^{(x)}(t) \cos \omega t + p_y^{(y)}(t) \sin \omega t, \quad (3b)
\end{align*}
\]

\[
p_x^{(x)}(t) = \left(\frac{1}{2} \right) \hat{\phi}(\epsilon(t) \hat{d}_{x,y} \hat{\rho}(t) \cos \omega t dt, \quad (3c)
\]

where \(T \) — period of the external field, \(d \) — dipole moment. As usually, the power spectrum can be further determined as follows:

\[
S(\omega) = |F[p(t)]|^2. \quad (4)
\]

To avoid the numerical noise during the Fourier transformation, the attenuation technique used, i.e. at \(t > t_p \), \(p(t) \) is replaced by

\[
p(t) \cos^2 \{\pi(t - t_p)/[2(T - t_p)]\}, \quad (t_p < t < T) \quad (5)
\]

with \(T = 1.5 t_p \).

It is understood that in the regular case of molecular dynamics, a spectrum will consist of a small number of the well resolved lines. In the case of chaotic dynamics of molecule in a field situation changes essentially. The corresponding energy of interaction with the field is much higher than anharmonicity constant \(\omega > x \hbar Q \). It is obvious that a spectrum in this case become more complicated [7-12].

The theoretical foundations of the universal approach to analysis of chaotic dynamics of the quantum systems in an electromagnetic field have been presented earlier (see, c.g., [11,17-33]). Here we are limited only by the key moments. Generally speaking, the approach includes a set of such non-linear analysis and a chaos theory methods as the correlation integral approach, multi-fractal and wavelet analysis, average mutual information, surrogate data, Lyapunov’s exponents and Kolmogorov entropy approach, spectral methods, nonlinear prediction (predicted trajectories, neural network etc) algorithms.

The goal of the embedding dimension determination is to reconstruct a Euclidean space \(R^d \) large enough so that the set of points \(d_x \) can be unfolded without ambiguity. In accordance with the embedding theorem, the embedding dimension, \(d_x \), must be greater, or at least equal, than a dimension of attractor, \(d_u \), i.e. \(d_x \geq d_u \). There are several standard approaches to reconstruction of the attractor dimension (see, e.g., [17-33]). The correlation integral analysis is one of the widely used techniques to investigate the signatures of
chaos in a time series. The analysis uses the correlation integral, \(C(r) \), to distinguish between chaotic and stochastic systems.

To compute the correlation integral, the algorithm of Grassberger and Procaccia [24] is the most commonly used approach. According to this algorithm, the correlation integral is

\[
C(r) = \lim_{N \to \infty} \frac{2}{N(n-1)} \sum_{i \neq j} \mathbb{H}(r - |y_i - y_j|)
\]

where \(\mathbb{H} \) is the Heaviside step function with \(\mathbb{H}(u) = 1 \) for \(u > 0 \) and \(\mathbb{H}(u) = 0 \) for \(u \leq 0 \), \(r \) is the radius of sphere centered on \(y_i \) or \(y_j \), and \(N \) is the number of data measurements. To verify the results obtained by the correlation integral analysis, one could use the surrogate data method. This approach makes use of the substitute data generated in accordance to the probabilistic structure underlying the original data.

The important dynamical invariants of a chaotic system are the Lyapunov’s exponents (see, c.g., [11,25-30]). They are usually defined as asymptotic average rates, they are independent of the initial conditions, and therefore they do comprise an invariant measure of attractor. Saying simply, the Lyapunov’s exponents are a parameter to detect whether the system is chaotic or not.

The Kolmogorov entropy \(K_{ent} \) measures the average rate at which information about the state is lost with time. An estimate of this measure is the sum of the positive Lyapunov’s exponents. The estimate of the dimension of the attractor is provided by the Kaplan and York conjecture:

\[
d_{L} = j + \frac{\sum \lambda_1}{|\lambda_{j+1}|},
\]

where \(j \) is such that \(\sum \lambda_i \neq 0 \), and \(\sum \lambda_i \), and the Lyapunov’s exponents \(\lambda_i \) are taken in descending order.

There are a few approaches to computing the Lyapunov’s exponents. One of them computes the whole spectrum and is based on the Jacobi matrix of system. In our work we use the method with the linear fitted map proposed by Sano and Sawada [58], although the maps with higher order polynomials can be also used.

3. Some results and conclusions

Here we present the results of numerical simulation of the time dynamics for diatomic molecule ZrO in the electromagnetic field. An electromagnetic field is characterized by the parameter: \(S = \frac{cE}{8\pi} \), where \(c \) is the velocity of light and \(E \) is a field strength. The parameter \(W \) of interaction of an electromagnetic radiation with a molecule is as follows:

\[
W[cm^{-1}] = 120.3(d_0 / r_0)(S / M \omega_e)^{1/2}
\]

where an interatomic distance \(r_0 \) in Å, dipole moment \(d_0 \) in D, \(\omega_e \) in cm\(^{-1} \), \(M \) in a.u.m., and the field parameter \(S \) in GW/cm\(^2\). In Table 1 we list a set of the ZrO molecules and field parameters [68-70].

The corresponding Chirikov parameter [10] in this case is as: \(\delta n = 2(Ed/B) \gg 1 \). The typical theoretical time dependence of polarization for ZrO molecule in the field in a chaotic regime is presented in Ref. [11]. The concrete step is an analysis of the corresponding time series with the \(n = 7.6 \times 10^3 \) and \(\Delta t = 5 \times 10^{-14} \) s.

In Table 3 we list the computed values of the correlation dimension \(d_{L} \), the Kaplan-York attractor dimension \(d_{L} \), the Lyapunov’s exponents \(\lambda_i \), the Kolmogorov entropy \(K_{ent} \), and the Gottwald-Melbourne parameter

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ZrO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega_e) (cm(^{-1}))</td>
<td>969.7</td>
</tr>
<tr>
<td>(\omega_e x) (cm(^{-1}))</td>
<td>4.90</td>
</tr>
<tr>
<td>(B_e) (cm(^{-1}))</td>
<td>0.423</td>
</tr>
<tr>
<td>(D_e) (cm(^{-1}))</td>
<td>3.19 \times 10^7</td>
</tr>
<tr>
<td>(d_0) (D)</td>
<td>2.55</td>
</tr>
<tr>
<td>(r_0) (Å)</td>
<td>1.72</td>
</tr>
<tr>
<td>(M) (a.u.m)</td>
<td>13.58</td>
</tr>
<tr>
<td>(W) (cm(^{-1}))</td>
<td>15.5-49.1</td>
</tr>
</tbody>
</table>
Table 2.
The correlation dimension \(d_2 \), Lyapunov's exponents \(\lambda_i \), i=1,2), Kaplan-York attractor dimension (\(d_L \)), Kolmogorov entropy (\(K_{\text{entr}} \)), the Gottwald-Melbourne parameter \(K_{\text{GW}} \).

<table>
<thead>
<tr>
<th>(d_2)</th>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
<th>(d_L)</th>
<th>(K_{\text{entr}})</th>
<th>(K_{\text{GW}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.76</td>
<td>0.147</td>
<td>0.018</td>
<td>2.53</td>
<td>0.165</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Analysis of the presented data allows to make conclusions that the dynamics of the ZrO molecule in a resonant linearly polarized electromagnetic field has the elements of a deterministic chaos (the strange attractor) and this conclusion is entirely agreed with the results of modelling for other diatomic molecules [3,7-11].

References
1. Lichtenberg, A. J.; Lieberman, M. A. Regular and Stochastic Motion; Springer-Verlag: City, 1983.
4. Aurich, R.; Steiner, F. Statistical properties of highly excited quantum eigenstates of a strongly chaotic system. Physica D. 1993, 64, 185

31. Khetselius, O.Yu.; Brusentseva, S.; Tkach, T.B. Studying interaction dynamics of chaotic systems within non-linear prediction method: Application to neurophysiology *In Dynamical Systems Applications;* Awrejce-

47. Glushkov, A.V. Spectroscopy of coop-

69. Glushkov, A.V.; Khetselius,O.Yu.; Svinarenko,A.A.; Buyadzhi, V.V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions (Odessa: TEC) -2015.

CHAOTIC DYNAMICS OF DIATOMIC MOLECULES IN AN ELECTROMAGNETIC FIELD

Summary
Nonlinear chaotic dynamics of the diatomic molecules interacting with a resonant linearly polarized electromagnetic field is computationally modelled. It is presented an effective quantum-mechanical model for diatomic molecule in an electromagnetic field, based on the Schrödinger equation and model potential method. To detect the elements of a chaotic dynamics, we used the known chaos theory and non-linear analysis methods such as a correlation integral algorithm, the Lyapunov’s exponents and Kolmogorov entropy analysis, prediction model etc. There are listed the data of computing dynamical and topological invariants such as the correlation, embedding and Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc, for polarization time series of the ZrO molecule interacting with a linearly polarized electromagnetic field. The results obtained are in a physically reasonable agreement with the conclusions by Berman, Kolovskii, Zaslavsky, Zganh et al, Glushkov et al.

Key words: Nonlinear chaotic dynamics, diatomic molecules, electromagnetic field

A. A. Mashkantsev, A. V. Ignatenko, S. V. Kirianov, E. V. Pavlov

CHAOTIC DYNAMICS OF DIATOMIC MOLECULES IN AN ELECTROMAGNETIC FIELD

Резюме
Моделируется нелинейная хаотическая динамика двухатомных молекул, взаимодействующих с резонансным линейно-поляризованным электромагнитным полем. Представлена эффективная квантово-механическая модель для двухатомной молекулы в электромагнитном поле, базирующаяся на использовании уравнения Шредингера и метода модельного потенциала. Для детектирования элементов хаотической динамики использованы методы теории хаоса и нелинейного анализа, такие как алгоритм корреляционного интеграла, анализ на основе показателей Ляпунова и энтропии Колмогорова, траекторная модель прогноза и др. Представлены данные вычисления динамических и топологических инвариантов таких как корреляционная размерность, размерности вложения и Каплана-Йорка, показатели Ляпунова, энтропия Колмогорова и т. д. для временной зависимости поляризации молекулы ZrO, взаимодействующей с линейно-поляризованным электромагнитным полем. Полученные результаты находятся в физически разумном согласии с качественными выводами Бермана, Коловского, Заславского, Згана, Глушкова и др.

Ключевые слова: нелинейная хаотическая динамика, двухатомная молекула, электромагнитное поле
Резюме
Моделируется нелинейная хаотичная динамика двоатомных молекул, взаимодействующих с резонансным линейно-поляризованным электромагнитным полем. Представлена эффективная кванто-механическая модель для двоатомных молекул в электромагнитном поле, что базируется на використаннии рационального уравнения Шредингера и метода моделированного потенциала. Для детектирования элементов хаотической динамики используются методы теории хаоса и нелинейного анализа, такие как алгоритм корреляционного интеграла, анализ на основе показателей Ляпунова и энтропии Колмогорова, траекторная модель прогноза и т.д. Представлены данные обсуждения динамических и топологических инвариантных, таких как корреляционная розмежеванность, розмежеванность вкладения и Каплана-Йорка, показатели Ляпунова, энтропия Колмогорова и т.д. для временной зависимости поляризации молекулы ZrO, которая взаимодействует с линейно-поляризованным электромагнитным полем. Отримані результати знаходяться в фізично розумній згоді з якісними висновками Бермана, Колюського, Заславского, Згань, Глушкова та ін.

Ключевые слова: нелинейная хаотичная динамика, двоатомная молекула, электромагнитное поле