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RELATIVISTIC THEORY OF THE NEGATIVE MUON CAPTURE BY AN ATOM

We reviewed an effective consistent approach to determination of the  cross-section for the negative muon 
capture by an atomic system. The approach is based on the relativistic many-body perturbation (PT) theory 
with using the Feynman diagram technique and a generalized relativistic energy approach in a gauge-invariant 
formulation. The corresponding capture cross-section is connected with an imaginary (scattering) part of the 
electron subsystem energy shift ImδE  (till the QED perturbation theory order). The some calculation results 
for cross-section of the negative muon μ - capture by He atom are listed and reviewed. The theoretical and 
experimental studying the muon-γ-nuclear interaction effects opens prospects for nuclear quantum optics, 
probing the structural features of a nucleus and muon spectroscopy in atomic and molecular photophysics.

1.  Introduction
Muonic atoms have always been useful tools for 

nuclear (atomic) spectroscopy employing atomic-
physics techniques. Electrons, muons (other 
particles such as kaons, pions etc) originally in 
the ground state of the target atom can be excited 
reversibly either to the bound or continuum 
states. With appearance of the intensive neutron 
pencils, laser sources studying the g-m-nuclear 
interactions is of a great importance [1-20]. The 
rapid progress in laser technology even opens 
prospects for nuclear quantum optics via direct 
laser-nucleus coupling [19-26]. It is known that 
a negative muon m- captured by a metastable 
nucleus may accelerate a discharge of the latter by 
many orders of magnitude [18-22]. The m-atom 
system differs advantageously of the usual atom; 
the relation rn/ra  (rn is a radius of a nucleus and 
ra is a radius of an atom) can vary in the wide 
limits in dependence upon the nuclear charge. 
The estimates of probabilities for discharge of a 
nucleus with emission of g quantum and further 
muon or electron conversion are presented in ref. 
[2-4,19,20,22]. Despite the relatively long history, 
studying  processes of the muon-atom and muon-
nucleus interactions hitherto remains very actual 
and complicated problem. Theoretical estimates 
in different models differ significantly [1-4,22]. 
According to Mann & Rose, the m capture occurs 

mainly at the energies of Е~10кeV, but according 
to Bayer, muons survive till thermal energies 
[2,20]. In many papers different authors predicted 
the m capture energies in the range from a few 
dozens to thousands eV. The standard theoretical 
approach to problem bases on the known Born 
approximation with the plane or disturbed wave 
functions and the hydrogen-like functions for the 
discrete states. In papers by Vogel etal and Leon-
Miller the well-known Fermi-Teller model is used 
(the atomic electrons are treated as an electron 
gas and a muon is classically described) [2-4]. 
In paper by Cherepkov and Chernysheva [2] the 
Hartree-Fock (HF) method is used to calculate the 
cross-sections of the capture, elastic and inelastic 
scattering of the negative m on the He atom. In 
recent years more advanced approaches using the 
fermion molecular dynamics method are used to 
solve the scattering and capture problem [4,5]. 
The Kravtsov-Mikhailov model [4] describes 
transition of a muon from the excited muonic 
H to He based on quasimolecular concept. The 
series of papers by Ponomarev et al on treating 
the muonic nuclear catalysis use ideas of Alvarets 
et al [5]. More sophisticated methods of the 
relativistic (QED) PT should be used for correct 
treating the muon capture effects by multielectron 
atoms (nuclei). In Refs. [20] it has been presented 
the theoretical basis of a new relativistic energy 
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formalism. Here we reviewed some aspects of 
this approach to calculation of the cross-section 
of the negative muon capture by atoms, using 
relativistic many-body PT [20,24-27] and listed 
some computing results for the cross-section of 
m- capture by the He atom.

2.  Relativistic energy approach to the muon-
atom interaction

2.1. General Formalism

In atomic theory, a convenient field procedure 
is known for calculating the energy shifts DE 
of the degenerate states. Secular matrix M 
diagonalization is used. In constructing M, the 
Gell-Mann and Low adiabatic formula for DE 
is used. A similar approach, using this formula 
with the QED scattering matrix, is applicable 
in the relativistic theory [20,24-27]). In contrast 
to the non-relativistic case, the secular matrix 
elements are already complex in the PT second 
order (first order of the inter-electron interaction). 
Their imaginary parts relate to radiation decay 
(transition) probability. The total energy shift of 
the state is usually presented as follows: 

                  DE = ReDE + i ImDE,                                   (1a)

                                    Im DE = -G/2,                             (1b)

where G is interpreted as the level width, 
and the decay possibility P=G. The whole 
calculation of energies and decay probabilities 
of a non-degenerate excited state is reduced to 
calculation and diagonalization of the complex 
matrix M. To start with the Gell-Mann and 
Low formula it is necessary to choose the PT 
zero-order approximation. Usually, the one-
electron Hamiltonian is used, with a central 
potential that can be treated as a bare potential 
in the formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom or 
atom in a field) or (what is the same) for the set 
of the one-quasiparticle (QP) functions, which 
represent such a Hamiltonian [24-27]. Here we 
consider closed electron shell atoms (ions). For 

example, the ground state 1s2 of the He atom or 
He-like ion. As the bare potential, one usually 
includes the electric nuclear potential VN and 
some parameterized screening potential VC.  The 
parameters of the bare potential may be chosen 
to generate the accurate eigen-energies of all 
two-QP states. In the PT second order the energy 
shift is expressed in terms of the two-QP matrix 
elements [20,24-27]:    
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where Rλ(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large radial 
Dirac components; the tilde denotes a small Dirac 
component; Sλ is the angular multiplier (see details 
in Refs.[20,24-30]). To calculate all necessary 
matrix elements one must have the 1QP relativistic 
functions. Further we briefly outline the main 
idea using, as an example, the negative muon 
capture by He atom: ((ls)2[JiMi], εin

μ)→(lsεl,εnl
μ). 

Here Ji is the total angular moment of the initial 
target state; indices εin

μ
 and εfk

μ
 are the incident and 

discrete state energies, respectively to the incident 
and captured muons. Further it is convenient to 
use the second quantization representation. In 
particular, the initial state of the system “atom 

plus free muon” can be written as 0Φm+ina   state. 
The final state is that of an atom with the discrete 
state electron, removed electron and captured 
muon; in further |I> represents one-particle (1QP) 
state, and |F> represents the three-quasiparticle 
(3QP) state.  The imaginary (scattering) part of 
the energy shift Im ∆E in the atomic PT second 
order (fourth order of the QED PT) is as follows 
[20,24,25]:     

theoretical basis of a new relativistic energy 
formalism. Here we reviewed some aspects 
of this approach to calculation of the cross-
section of the negative muon capture by 
atoms, using relativistic many-body PT 
[20,24-27] and listed some computing results 
for the cross-section of - capture by the He 
atom. 

2.  Relativistic energy approach to the 
muon-atom interaction 

2.1 General Formalism 

In atomic theory, a convenient field 
procedure is known for calculating the 
energy shifts E of the degenerate states. 
Secular matrix M diagonalization is used. In 
constructing M, the Gell-Mann and Low 
adiabatic formula for E is used. A similar 
approach, using this formula with the QED 
scattering matrix, is applicable in the 
relativistic theory [20,24-27]). In contrast to 
the non-relativistic case, the secular matrix 
elements are already complex in the PT 
second order (first order of the inter-electron 
interaction). Their imaginary parts relate to 
radiation decay (transition) probability. The 
total energy shift of the state is usually 
presented as follows:  
 
         E = ReE + i ImE,                                   (1a) 
 
           Im E = -/2,                               (1b) 
 
where  is interpreted as the level width, and 
the decay possibility P=. The whole 
calculation of energies and decay 
probabilities of a non-degenerate excited 
state is reduced to calculation and 
diagonalization of the complex matrix M. To 
start with the Gell-Mann and Low formula it 
is necessary to choose the PT zero-order 
approximation. Usually, the one-electron 
Hamiltonian is used, with a central potential 
that can be treated as a bare potential in the 
formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom 
or atom in a field) or (what is the same) for 

the set of the one-quasiparticle (QP) 
functions, which represent such a 
Hamiltonian [24-27]. Here we consider 
closed electron shell atoms (ions). For 
example, the ground state 1s2 of the He atom 
or He-like ion. As the bare potential, one 
usually includes the electric nuclear potential 
VN and some parameterized screening 
potential VC.  The parameters of the bare 
potential may be chosen to generate the 
accurate eigen-energies of all two-QP states. 
In the PT second order the energy shift is 
expressed in terms of the two-QP matrix 
elements [20,24-27]:     
 

Qul

j

Q
mm
jj

mm
jj

m+m+j+j+j+)(

)+)(+)(+)(+(=);V(





































 ...
........

...
........

)1(

1

12j12j12j12j4,31,2

42

42

31

31

,

214321

4321

                                                                                                                       

                                                                    (2)  
Here  Qul

Q  is corresponding to the Coulomb 
inter-particle interaction:   

 

)},3~4~2~1~()3~4~2~1~()34~2~1()34~2~1(
)3~241~()3~241~()1243()1243({





SRSR
SRSRQQul




                                                                   (3)  
where R(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large 
radial Dirac components; the tilde denotes a 
small Dirac component; S is the angular 
multiplier (see details in Refs.[20,24-30]). To 
calculate all necessary matrix elements one 
must have the 1QP relativistic functions. 
Further we briefly outline the main idea 
using, as an example, the negative muon 
capture by He atom: ((1s)2[JiMi], 
in

)(1sl,nl
). Here Ji is the total angular 

moment of the initial target state; indices in


 

and fk


 are the incident and discrete state 
energies, respectively to the incident and 
captured muons. Further it is convenient to 
use the second quantization representation. In 
particular, the initial state of the system 
“atom plus free muon” can be written as 

0


ina   state. The final state is that of an 

theoretical basis of a new relativistic energy 
formalism. Here we reviewed some aspects 
of this approach to calculation of the cross-
section of the negative muon capture by 
atoms, using relativistic many-body PT 
[20,24-27] and listed some computing results 
for the cross-section of - capture by the He 
atom. 

2.  Relativistic energy approach to the 
muon-atom interaction 

2.1 General Formalism 

In atomic theory, a convenient field 
procedure is known for calculating the 
energy shifts E of the degenerate states. 
Secular matrix M diagonalization is used. In 
constructing M, the Gell-Mann and Low 
adiabatic formula for E is used. A similar 
approach, using this formula with the QED 
scattering matrix, is applicable in the 
relativistic theory [20,24-27]). In contrast to 
the non-relativistic case, the secular matrix 
elements are already complex in the PT 
second order (first order of the inter-electron 
interaction). Their imaginary parts relate to 
radiation decay (transition) probability. The 
total energy shift of the state is usually 
presented as follows:  
 
         E = ReE + i ImE,                                   (1a) 
 
           Im E = -/2,                               (1b) 
 
where  is interpreted as the level width, and 
the decay possibility P=. The whole 
calculation of energies and decay 
probabilities of a non-degenerate excited 
state is reduced to calculation and 
diagonalization of the complex matrix M. To 
start with the Gell-Mann and Low formula it 
is necessary to choose the PT zero-order 
approximation. Usually, the one-electron 
Hamiltonian is used, with a central potential 
that can be treated as a bare potential in the 
formally exact QED PT. There are many 
well-known attempts to find the fundamental 
optimization principle for construction of the 
bare one-electron Hamiltonian (for free atom 
or atom in a field) or (what is the same) for 

the set of the one-quasiparticle (QP) 
functions, which represent such a 
Hamiltonian [24-27]. Here we consider 
closed electron shell atoms (ions). For 
example, the ground state 1s2 of the He atom 
or He-like ion. As the bare potential, one 
usually includes the electric nuclear potential 
VN and some parameterized screening 
potential VC.  The parameters of the bare 
potential may be chosen to generate the 
accurate eigen-energies of all two-QP states. 
In the PT second order the energy shift is 
expressed in terms of the two-QP matrix 
elements [20,24-27]:     
 

Qul

j

Q
mm
jj

mm
jj

m+m+j+j+j+)(

)+)(+)(+)(+(=);V(





































 ...
........

...
........

)1(

1

12j12j12j12j4,31,2

42

42

31

31

,

214321

4321

                                                                                                                       

                                                                    (2)  
Here  Qul

Q  is corresponding to the Coulomb 
inter-particle interaction:   

 

)},3~4~2~1~()3~4~2~1~()34~2~1()34~2~1(
)3~241~()3~241~()1243()1243({





SRSR
SRSRQQul




                                                                   (3)  
where R(1,2;4,3) is the radial integral of the 
Coulomb inter-QP interaction with large 
radial Dirac components; the tilde denotes a 
small Dirac component; S is the angular 
multiplier (see details in Refs.[20,24-30]). To 
calculate all necessary matrix elements one 
must have the 1QP relativistic functions. 
Further we briefly outline the main idea 
using, as an example, the negative muon 
capture by He atom: ((1s)2[JiMi], 
in

)(1sl,nl
). Here Ji is the total angular 

moment of the initial target state; indices in


 

and fk


 are the incident and discrete state 
energies, respectively to the incident and 
captured muons. Further it is convenient to 
use the second quantization representation. In 
particular, the initial state of the system 
“atom plus free muon” can be written as 

0


ina   state. The final state is that of an 



14

      
)å,å,å,ðG(å=ÄE ì

fk
ì
inieivIm ,               (4)

where indices e,v are corresponding to atomic 
electrons and G is a definite squired combination 
of the two-QP matrix elements (2). The value σ=-2 
Im∆E  represents the capture cross-section if the 
incident muon eigen-function is normalized by the 
unit flow condition. The different normalization 
conditions are used for the incident and captured 
state QP wave functions. The details of the whole 
numerical procedure of calculation of the cross-
sections can be found in Refs. [20,24-27]. 

2.2 The Dirac-Kohn-Sham Relativistic Wave 
Functions

Usually, a multielectron atom is defined by a  
relativistic Dirac Hamiltonian( the a.u. used):
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= +∑ ∑                           (5) 

Here, h(r) is one-particle Dirac Hamiltonian 
for electron in a field of the finite size nucleus and 
V is potential of the inter-electron interaction. The 
relativistic  inter electron potential is as follows 
[20,24,25]: 
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where ωij is the transition frequency; αi ,αj are 
the Dirac matrices. The Dirac equation potential 
includes the electric potential of a nucleus and 
exchange-correlation potential. One of the 
variants is the Kohn-Sham-like  (KS) exchange 
relativistic potential, which is obtained from a 
Hamiltonian having a transverse vector potential 
describing the photons, is as follows  [31]:
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The corresponding correlation functional is 
[20,31]:
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where b is the optimization parameter (see details 
in Refs. [20,27,32]). Earlier it has been shown 
[27-32] that an adequate description of the atomic 
characteristics requires using an optimized base 
of the wave functions. In Ref. [24b] a new ab 
initio optimization procedure is proposed. It is 
reduced to minimization of the gauge dependent 
multielectron contribution Im∆Eninv of the lowest 
QED PT corrections to the radiation widths of 
atomic levels. In the fourth order of QED PT 
(the second order of the atomic PT) there appear 
the diagrams, whose contribution to the Im∆Eninv 
accounts for correlation effects. This contribution 
is determined by the electromagnetic potential 
gauge (the gauge dependent contribution). All the 
gauge dependent terms are multielectron by their 
nature. The dependent contribution to imaginary 
part of the electron energy is obtained after 
involved calculation, as [24b]: 
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Here, C is the gauge constant, f is the boundary of 
the closed shells; n ≥ f  indicating the vacant band 
and the upper continuum electron states;  m ≤ f 
indicates the finite number of states in the atomic 
core). The minimization of the Im∆Eninv leads to 
the Dirac-like equations. In concrete calculation 
it is sufficient to use the simplified procedure, 
which is reduced to the functional minimization 
using the variation of the parameter b in Eq.(9) 
[20,25]. 

2.3 Capture of negative muons by helium atom

The results of calculation of the cross-section 
for the negative muon capture by atom of He are 
shown in Figures 1-3. The scheme includes 2×103 
points till distance 25aB (aB is the Bohr radius). 
The main contribution to the capture cross-section 
is provided by transitions with the moment l=0-3. 
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are the Dirac matrices. The Dirac equation 
potential includes the electric potential of a 
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One of the variants is the Kohn-Sham-like 
(KS) exchange relativistic potential, which is 
obtained from a Hamiltonian having a 
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requires using an optimized base of the wave 
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optimization procedure is proposed. It is 
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All the gauge dependent terms are 
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number (l>10). The states with large l for the muon 
energies (lower or higher in comparison with the 
atomic ionization potential value) are populated 
less probably than in a case of the m- energy of the 
ionization potential order. In figure 1we present 
the calculated dependences of the Auger capture 
cross-section on the orbital number l for different 
n values for the incident m energies of 20 and 50 
eV.  In figure 2 we present the calculated capture 
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In figure 3 we present the total capture cross-
section in terms of energy (with summation on 
all n,l): data on the Auger capture cross-section  
– curve 7 (elastic and inelastic scattering cross-
sections) – curves 2,3 [20]. We also present the 
results by Copenman and Rogova in the Born 
approximation with using the hydrogen-like wave 
functions  (curve 5) and the HF data [2]  (curve 1), 
the inelastic scattering cross-section by Rosenberg  
(curve 4), the  transport cross-section (х symbol) 
[2,3,20].  The analysis of the results shows that 
the   data [2-4, 20] are in physically reasonable 
agreement. But, there is an essential difference of 
the Mann-Rose and Bayer data [1-3].
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Dirac-like equations. In concrete calculation 
it is sufficient to use the simplified 
procedure, which is reduced to the functional 
minimization using the variation of the 
parameter b in Eq.(9) [20,25].  
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The relativistic corrections were to found to be 
small here, but computing heavy atoms (nuclei) 
requires a proper treatment for both relativistic 
and correlation effects.

3 Concluding Remarks and Future Per-
spectives

We have presented a new relativistic approach 
to calculation of the cross-section of the negative 
m capture by atoms. The approaches are based 
upon the relativistic many-body PT theory, energy 
approach. Note that further development of 
electron-m-nuclear spectroscopy of atoms (nuclei) 
is of a great theoretical and practical interest. The 
development of new approaches [2-6,21-23] to 
studying the cooperative e-,m-g-nuclear processes 
promises the rapid progress in our understanding 
of the nuclear decay. Such an approach is 
useful, providing perspective for search for  new 
cooperative effects on the boundary of atomic 
and nuclear physics, carrying out new methods 
for treating (the muonic chemistry tools) the 
spatial structure of molecular orbitals, studying 
the chemical bond nature and checking different 
models in quantum chemistry and atomic physics 
[3-8,18-23,49]. 
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RELATIVISTIC ENERGY APPROACH TO THE NEGATIVE MUON CAPTURE 
BY AN ATOM

Abstract   
We reviewed a new effective consistent approach to determination of the  cross-section for the 

negative muon capture by an atomic system. The approach is based on the relativistic many-body per-
turbation (PT) theory with using the Feynman diagram technique and a generalized relativistic energy 
approach in a gauge-invariant formulation. The corresponding capture cross-section is connected with 
an imaginary (scattering) part of the electron subsystem energy shift ImdE  (till the QED perturbation 
theory order). The some calculation results for cross-section of the negative muon m- capture by He 
atom are listed and reviewed. The theoretical and experimental studying the muon-g-nuclear interac-
tion effects opens prospects for nuclear quantum optics, probing the structural features of a nucleus 
and muon spectroscopy in atomic and molecular photophysics.

Key words: Cooperative muon-g-nuclear processes,  muon capture by an atom, Relativistic energy 
formalism
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РЕЛЯТИВИСТСКИЙ ЭНЕРГЕТИЧЕСКИЙ ПОДХОД К ОПИСАНИЮ ПРОЦЕССA 
ЗАХВАТА ОТРИЦАТЕЛЬНОГО МЮОНА АТОМОМ

Резюме
В работе обзорно изложены основы нового эффективного подхода к определению сечений 

захвата отрицательного мюона атомной системой, основанного на  релятивистской многоча-
стичной теории возмущения с использованием фейнмановской диаграммной техники и обоб-
щенном релятивистском энергетическом формализме в калибровочно-инвариантной формули-
ровке.  Соответствующее сечение захвата отрицательного мюона атомом определяется мнимой 
частью энергетического сдвига ImdE  электронной подсистемы. Обзорно представлены резуль-
таты некоторых расчетов сечения захвата отрицательного мюона атомом Не. Теоретическое и 
экспериментальное изучение эффектов мюон-гамма-ядерных взаимодействий открывает пер-
спективы развития новой области квантовой оптики, а именно,  ядерной квантовой оптики,  
возможности зондирования структурных особенностей ядра (атома) и дальнейшего развития 
направления мюонной спектроскопии в атомной и молекулярной физике.

Ключевые слова: кооперативные мюон-гамма-ядерные процессы, захват мюона атомом, 
релятивистский энергетический формализм

УДК 539.182
О. В. Глушков 

PЕЛЯТИВІСТСЬКИЙ ЕНЕРГЕТИЧНИЙ ПІДХІД ДО ОПИСУ ПРОЦЕСА 
ЗАХОПЛЕННЯ  НЕГАТИВНОГО МЮОНА АТОМОМ

Резюме
У роботі оглядово викладені основи нового ефективного підходу до визначення перетинів 

захоплення негативного мюона атомної системою, заснованого на релятивістській багаточас-
тинковій  теорії збурень з використанням фейнманівськох діаграмної техніки і узагальненому 
релятивістському енергетичному формалізмі у калібрувально-інваріантному формулюванні. 
Відповідний перетин захоплення негативного мюона атомом визначається уявною частиною 
енергетичного зсуву ImdE  електронної підсистеми. Оглядово представлені результати деяких 
розрахунків перетину захоплення негативного мюона атомом гелія. Теоретичне і експеримен-
тальне вивчення ефектів мюон-гамма-ядерних взаємодій відкриває перспективи розвитку нової 
галузі квантової оптики, а саме, ядерної квантової оптики, нові можливості зондування струк-
турних особливостей ядра (атома) і подальшого розвитку напрямку мюонної спектроскопії в 
атомній і молекулярної фотофізиці.

Ключові слова: кооперативні мюон-гамма-ядерні процеси, захоплення мюона атомом, ре-
лятивістський енергетичний формалізм


