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SPECTROSCOPY OF AUTOIONIZATION RESONANCES FOR THE 
LANTHANIDES ATOMS: THULLIUM SPECTRUM, NEW DATA AND 
EFFECTS 

We applied a generalized energy approach (Gell-Mann and Low S-
matrix formalism) combined with the relativistic multi-quasiparticle 
(QP) perturbation theory (PT) with the Dirac-Kohn-Sham zeroth ap-
proximation to studying  autoionization resonances (AR) in heavy at-
oms, in particular, energies and widths for the Tm AR with accounting 
for exchange-correlation and relativistic effects.

Traditionally an investigation of spectra, spec-
tral, radiative and autoionization characteristics 
for  heavy and superheavy elements atoms and 
multicharged ions is of a great interest for further 
development atomic and nuclear theories and dif-
ferent applications in the plasma chemistry, astro-
physics, laser physics, etc. (look Refs. [1–10]). 
Theoretical methods of calculation of the spec-
troscopic characteristics for heavy atoms and ions 
may be divided into a few main groups [1-6]. 
First, the well known, classical multi-configu-
ration Hartree-Fock method (as a rule, the rela-
tivistic effects are taken into account in the Pauli 
approximation or Breit hamiltonian etc.) allowed 
to get a great number of the useful spectral infor-
mation about light and not heavy atomic systems, 
but in fact it provides only qualitative description 
of spectra of the heavy and superheavy ions. Sec-
ond, the multi-configuration Dirac-Fock (MCDF) 
method is the most reliable version of calculation 
for multielectron systems with a large nuclear 
charge. In these calculations the one- and two-
particle relativistic effects are taken into account 
practically precisely. In this essence it should be 
given special attention to two very general and 
important computer systems for relativistic and 
QED calculations of atomic and molecular prop-
erties developed in the Oxford group and known 
as GRASP («GRASP», «Dirac»; «BERTHA», 
«QED») (look [1-5] and refs. therein). In par-
ticular, the BERTHA program embodies a new 
formulation of relativistic molecular structure 

theory within the framework of relativistic QED. 
This leads to a simple and transparent formula-
tion of Dirac-Hartree-Fock-Breit (DHFB) self-
consistent field equations along with algorithms 
for molecular properties, electron correlation, and 
higher order QED effects. The DHFB equations 
are solved by a direct method based on a relativ-
istic generalization of the McMurchie-Davidson 
algorithm [4].

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the Tm atom. New 
approach in optics and spectroscopy of heavy 
atomic systems is the combined the generalized 
energy approach and the gauge-invariant QED 
many-QP PT with the Dirac-Kohn-Sham (DKS) 
«0» approximation (optimized 1QP  representa-
tion) and an accurate accounting for relativistic, 
correlation, nuclear, radiative effects. [17-20]. 
The generalized gauge-invariant version of the 
energy approach has been further developed in 
Refs. [12,13]. In relativistic case the Gell-Mann 
and Low formula expressed an energy shift DE 
through the QED scattering matrix including the 
interaction with as the photon vacuum field as 
the laser field. The first case is corresponding to 
definition of the traditional radiative and autoion-
ization characteristics of multielectron atom. The 
wave function zeroth basis is found from the Di-
rac-Kohn-Sham equation with a potential, which 
includes the ab initio (the optimized model poten-
tial or DF potentials, electric and polarization po-
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tentials of a nucleus; the Gaussian or Fermi forms 
of the charge distribution in a nucleus are usu-
ally used) [5]. Generally speaking, the majority of 
complex atomic systems possess a dense energy 
spectrum of interacting states with essentially 
relativistic properties. Further one should realize 
a field procedure for calculating the energy shifts 
DE of degenerate states, which is connected with 
the secular matrix M diagonalization [8-12]. The 
secular matrix elements are already complex in 
the second order of the PT. Their imaginary parts 
are connected with a decay possibility. A total en- A total en-A total en-
ergy shift of the state is presented in the standard 
form:

                                                                     ,  (1)

where Γ is interpreted as the level width, and the 
decay possibility Ρ = Γ . The whole calculation 
of the energies and decay probabilities of a non-
degenerate excited state is reduced to the calcula-
tion and diagonalization of the M. The jj-coupling 
scheme is usually used. The complex  secular ma-
trix M is represented in the form [9,10]:  

          ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +                                    (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. ( )0M  is a real matrix, proportional 
to the unit matrix. It determines only the general 
level shift. We have assumed ( )0 0.M =  The di-
agonal matrix ( )1M  can be presented as a sum of 
the independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. Sub-
stituting these quantities into (2) one could have 
summarized  all the contributions of the 1QP di-
agrams of all orders of the formally exact QED 
PT. However, the necessary experimental quan-
tities are not often available. So, the optimized 
1-QP representation is the best one to determine 
the zeroth approximation. The correlation cor-
rections of the PT high orders are taken into ac-
count within the Green functions method (with 
the use of the Feynman diagram’s technique). All 
correlation corrections of the second order and 
dominated classes of the higher orders diagrams 

(electrons screening, polarization, particle-hole 
interaction, mass operator iterations) are taken 
into account [10-14].  In the second order, there 
are two important kinds of diagrams: polariza-
tion and ladder ones. Some of the ladder diagram 
contributions  as well as some of the 3QP dia-
gram contributions in all PT orders have  the same 
angular symmetry as the 2QP diagram contribu-
tions of the first order [10-12]. These contribu-
tions have been summarized by a modification of 
the central potential, which must now include the 
screening (anti-screening) of the core potential of 
each particle by two others. The additional poten-
tial modifies the 1QP orbitals and energies. Then 
the secular matrix is : ( ) ( )1 2M M M+ � , where ( )1M  
is the modified 1QP matrix (diagonal), and ( )2M  
the modified 2QP one. ( )1M  is calculated by sub-
stituting the modified 1QP energies), and ( )2M  by 
means of the first PT order formulae for ( )2M , 
putting the modified radial functions of the 1QP 
states in the interaction radial  integrals. Let us 
remind that in the QED theory, the photon prop-
agator D(12) plays the role of this interaction. 
Naturally, an analytical form of D depends on 
the gauge, in which the electrodynamic potentials 
are written. In general, the results of all approxi-
mate calculations depended on the gauge. Natu-
rally the correct result must be gauge invariant. 
The gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations is 
a well known fact and is in details investigated 
by Grant, Armstrong, Aymar-Luc-Koenig, Glush-
kov-Ivanov [1,2,5,9]. Grant has investigated the 
gauge connection with the limiting non-relativ-
istic form of the transition operator and has for-
mulated the conditions for approximate functions 
of the states, in which the amplitudes are gauge 
invariant. These results remain true in an energy 
approach as the final formulae for the probabili-
ties coincide in both approaches. In ref. [16] it has 
been developed a new version of the approach to 
conserve gauge invariance. Here we applied it to 
get the gauge-invariant procedure for generating 
the relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width is 
defined by the square of interaction matrix ele-
ment [9]: 

Re Im Im 2E i E EDΕ= D + D D =−Γ
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(3)

The real part of the interaction matrix element can 
be expanded in terms of Bessel functions [5,8]:

                                                                                                                   (4)

The Coulomb part Qul
lQ  is expressed in the radial 

integrals Rl , angular coefficients Sl  as follows:

                                                

 (5)
where ReQl(1243) is as follows:  

                                                                                                                 (6)

where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :         
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial inte-
grals ReRl(1243) is reduced to the solution of a 
system of  differential equations:  
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In addition, у3(∞)=ReRl(1243), у1(∞)=Xl(13). 
The system of differential equations includes also 

equations for functions f/r|æ|-1, g/r|æ|-1, ( )1
lZ , ( )2

lZ . 

The formulas for the autoionization (Auger) decay 
probability include the radial integrals Ra(akgb), 
where one of the functions describes electron in 
the continuum state. When calculating this inte-
gral, the correct normalization of the function ψk 
is a problem. The correctly normalized function 
should have the following asymptotic at  r→0:

                                           Re Im Im 2E i E E      ,                                     (1) 
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The Coulomb part Qul
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 SRSRSRSRQ l                                                   

                                                                                                                                                          (5) 
where ReQ(1243) is as follows:   

                                           Re Im Im 2E i E E      ,                                     (1) 

where  is interpreted as the level width, and the decay possibility    . The whole calculation of 
the energies and decay probabilities of a non-degenerate excited state is reduced to the calculation 
and diagonalization of the M. The jj-coupling scheme is usually used. The complex  secular matrix 
M is represented in the form [9,10]:   
                                                                0 1 2 3 .M M M M M                                                   (2) 
where  0M  is the contribution of the vacuum diagrams of all order of PT, and  1M ,  2M ,  3M  
those of the one-, two- and three-QP diagrams respectively.  0M  is a real matrix, proportional to 
the unit matrix. It determines only the general level shift. We have assumed  0 0.M   The diagonal 
matrix  1M  can be presented as a sum of the independent 1QP contributions. For simple systems 
(such as alkali atoms and ions) the 1QP energies can be taken from the experiment. Substituting 
these quantities into (2) one could have summarized  all the contributions of the 1QP diagrams of 
all orders of the formally exact QED PT. However, the necessary experimental quantities are not 
often available. So, the optimized 1-QP representation is the best one to determine the zeroth 
approximation. The correlation corrections of the PT high orders are taken into account within the 
Green functions method (with the use of the Feynman diagram’s technique). All correlation 
corrections of the second order and dominated classes of the higher orders diagrams (electrons 
screening, polarization, particle-hole interaction, mass operator iterations) are taken into account 
[10-14].  In the second order, there are two important kinds of diagrams: polarization and ladder 
ones. Some of the ladder diagram contributions  as well as some of the 3QP diagram contributions 
in all PT orders have  the same angular symmetry as the 2QP diagram contributions of the first 
order [10-12]. These contributions have been summarized by a modification of the central potential, 
which must now include the screening (anti-screening) of the core potential of each particle by two 
others. The additional potential modifies the 1QP orbitals and energies. Then the secular matrix is : 

   1 2M M M , where  1M  is the modified 1QP matrix (diagonal), and  2M  the modified 2QP one. 
 1M  is calculated by substituting the modified 1QP energies), and  2M  by means of the first PT 

order formulae for  2M , putting the modified radial functions of the 1QP states in the interaction 
radial  integrals. Let us remind that in the QED theory, the photon propagator D(12) plays the role 
of this interaction. Naturally, an analytical form of D depends on the gauge, in which the 
electrodynamic potentials are written. In general, the results of all approximate calculations 
depended on the gauge. Naturally the correct result must be gauge invariant. The gauge dependence 
of the amplitudes of the photoprocesses in the approximate calculations is a well known fact and is 
in details investigated by Grant, Armstrong, Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. Grant 
has investigated the gauge connection with the limiting non-relativistic form of the transition 
operator and has formulated the conditions for approximate functions of the states, in which the 
amplitudes are gauge invariant. These results remain true in an energy approach as the final 
formulae for the probabilities coincide in both approaches. In ref. [16] it has been developed a new 
version of the approach to conserve gauge invariance. Here we applied it to get the gauge-invariant 
procedure for generating the relativistic DKS orbital bases (abbreviator of our method: GIRPT). 
The autoionization width is defined by the square of interaction matrix element [9]:  

                                  













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV                     (3) 

The real part of the interaction matrix element can be expanded in terms of Bessel functions [5,8]: 

                                      


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r .                         (4) 

The Coulomb part Qul
Q  is expressed in the radial integrals R , angular coefficients S  as follows: 

               3~4~2~1~3~4~2~1~34~2~134~2~13~241~3~241~12431243Re~Re Qul
 SRSRSRSRQ l                                                   

                                                                                                                                                          (5) 
where ReQ(1243) is as follows:   

                                           Re Im Im 2E i E E      ,                                     (1) 

where  is interpreted as the level width, and the decay possibility    . The whole calculation of 
the energies and decay probabilities of a non-degenerate excited state is reduced to the calculation 
and diagonalization of the M. The jj-coupling scheme is usually used. The complex  secular matrix 
M is represented in the form [9,10]:   
                                                                0 1 2 3 .M M M M M                                                   (2) 
where  0M  is the contribution of the vacuum diagrams of all order of PT, and  1M ,  2M ,  3M  
those of the one-, two- and three-QP diagrams respectively.  0M  is a real matrix, proportional to 
the unit matrix. It determines only the general level shift. We have assumed  0 0.M   The diagonal 
matrix  1M  can be presented as a sum of the independent 1QP contributions. For simple systems 
(such as alkali atoms and ions) the 1QP energies can be taken from the experiment. Substituting 
these quantities into (2) one could have summarized  all the contributions of the 1QP diagrams of 
all orders of the formally exact QED PT. However, the necessary experimental quantities are not 
often available. So, the optimized 1-QP representation is the best one to determine the zeroth 
approximation. The correlation corrections of the PT high orders are taken into account within the 
Green functions method (with the use of the Feynman diagram’s technique). All correlation 
corrections of the second order and dominated classes of the higher orders diagrams (electrons 
screening, polarization, particle-hole interaction, mass operator iterations) are taken into account 
[10-14].  In the second order, there are two important kinds of diagrams: polarization and ladder 
ones. Some of the ladder diagram contributions  as well as some of the 3QP diagram contributions 
in all PT orders have  the same angular symmetry as the 2QP diagram contributions of the first 
order [10-12]. These contributions have been summarized by a modification of the central potential, 
which must now include the screening (anti-screening) of the core potential of each particle by two 
others. The additional potential modifies the 1QP orbitals and energies. Then the secular matrix is : 

   1 2M M M , where  1M  is the modified 1QP matrix (diagonal), and  2M  the modified 2QP one. 
 1M  is calculated by substituting the modified 1QP energies), and  2M  by means of the first PT 

order formulae for  2M , putting the modified radial functions of the 1QP states in the interaction 
radial  integrals. Let us remind that in the QED theory, the photon propagator D(12) plays the role 
of this interaction. Naturally, an analytical form of D depends on the gauge, in which the 
electrodynamic potentials are written. In general, the results of all approximate calculations 
depended on the gauge. Naturally the correct result must be gauge invariant. The gauge dependence 
of the amplitudes of the photoprocesses in the approximate calculations is a well known fact and is 
in details investigated by Grant, Armstrong, Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. Grant 
has investigated the gauge connection with the limiting non-relativistic form of the transition 
operator and has formulated the conditions for approximate functions of the states, in which the 
amplitudes are gauge invariant. These results remain true in an energy approach as the final 
formulae for the probabilities coincide in both approaches. In ref. [16] it has been developed a new 
version of the approach to conserve gauge invariance. Here we applied it to get the gauge-invariant 
procedure for generating the relativistic DKS orbital bases (abbreviator of our method: GIRPT). 
The autoionization width is defined by the square of interaction matrix element [9]:  

                                  













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV                     (3) 

The real part of the interaction matrix element can be expanded in terms of Bessel functions [5,8]: 

                                      


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r .                         (4) 

The Coulomb part Qul
Q  is expressed in the radial integrals R , angular coefficients S  as follows: 

               3~4~2~1~3~4~2~1~34~2~134~2~13~241~3~241~12431243Re~Re Qul
 SRSRSRSRQ l                                                   

                                                                                                                                                          (5) 
where ReQ(1243) is as follows:   

                                           Re Im Im 2E i E E      ,                                     (1) 

where  is interpreted as the level width, and the decay possibility    . The whole calculation of 
the energies and decay probabilities of a non-degenerate excited state is reduced to the calculation 
and diagonalization of the M. The jj-coupling scheme is usually used. The complex  secular matrix 
M is represented in the form [9,10]:   
                                                                0 1 2 3 .M M M M M                                                   (2) 
where  0M  is the contribution of the vacuum diagrams of all order of PT, and  1M ,  2M ,  3M  
those of the one-, two- and three-QP diagrams respectively.  0M  is a real matrix, proportional to 
the unit matrix. It determines only the general level shift. We have assumed  0 0.M   The diagonal 
matrix  1M  can be presented as a sum of the independent 1QP contributions. For simple systems 
(such as alkali atoms and ions) the 1QP energies can be taken from the experiment. Substituting 
these quantities into (2) one could have summarized  all the contributions of the 1QP diagrams of 
all orders of the formally exact QED PT. However, the necessary experimental quantities are not 
often available. So, the optimized 1-QP representation is the best one to determine the zeroth 
approximation. The correlation corrections of the PT high orders are taken into account within the 
Green functions method (with the use of the Feynman diagram’s technique). All correlation 
corrections of the second order and dominated classes of the higher orders diagrams (electrons 
screening, polarization, particle-hole interaction, mass operator iterations) are taken into account 
[10-14].  In the second order, there are two important kinds of diagrams: polarization and ladder 
ones. Some of the ladder diagram contributions  as well as some of the 3QP diagram contributions 
in all PT orders have  the same angular symmetry as the 2QP diagram contributions of the first 
order [10-12]. These contributions have been summarized by a modification of the central potential, 
which must now include the screening (anti-screening) of the core potential of each particle by two 
others. The additional potential modifies the 1QP orbitals and energies. Then the secular matrix is : 

   1 2M M M , where  1M  is the modified 1QP matrix (diagonal), and  2M  the modified 2QP one. 
 1M  is calculated by substituting the modified 1QP energies), and  2M  by means of the first PT 

order formulae for  2M , putting the modified radial functions of the 1QP states in the interaction 
radial  integrals. Let us remind that in the QED theory, the photon propagator D(12) plays the role 
of this interaction. Naturally, an analytical form of D depends on the gauge, in which the 
electrodynamic potentials are written. In general, the results of all approximate calculations 
depended on the gauge. Naturally the correct result must be gauge invariant. The gauge dependence 
of the amplitudes of the photoprocesses in the approximate calculations is a well known fact and is 
in details investigated by Grant, Armstrong, Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. Grant 
has investigated the gauge connection with the limiting non-relativistic form of the transition 
operator and has formulated the conditions for approximate functions of the states, in which the 
amplitudes are gauge invariant. These results remain true in an energy approach as the final 
formulae for the probabilities coincide in both approaches. In ref. [16] it has been developed a new 
version of the approach to conserve gauge invariance. Here we applied it to get the gauge-invariant 
procedure for generating the relativistic DKS orbital bases (abbreviator of our method: GIRPT). 
The autoionization width is defined by the square of interaction matrix element [9]:  

                                  













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV                     (3) 

The real part of the interaction matrix element can be expanded in terms of Bessel functions [5,8]: 

                                      


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r .                         (4) 

The Coulomb part Qul
Q  is expressed in the radial integrals R , angular coefficients S  as follows: 

               3~4~2~1~3~4~2~1~34~2~134~2~13~241~3~241~12431243Re~Re Qul
 SRSRSRSRQ l                                                   

                                                                                                                                                          (5) 
where ReQ(1243) is as follows:   

                                           Re Im Im 2E i E E      ,                                     (1) 

where  is interpreted as the level width, and the decay possibility    . The whole calculation of 
the energies and decay probabilities of a non-degenerate excited state is reduced to the calculation 
and diagonalization of the M. The jj-coupling scheme is usually used. The complex  secular matrix 
M is represented in the form [9,10]:   
                                                                0 1 2 3 .M M M M M                                                   (2) 
where  0M  is the contribution of the vacuum diagrams of all order of PT, and  1M ,  2M ,  3M  
those of the one-, two- and three-QP diagrams respectively.  0M  is a real matrix, proportional to 
the unit matrix. It determines only the general level shift. We have assumed  0 0.M   The diagonal 
matrix  1M  can be presented as a sum of the independent 1QP contributions. For simple systems 
(such as alkali atoms and ions) the 1QP energies can be taken from the experiment. Substituting 
these quantities into (2) one could have summarized  all the contributions of the 1QP diagrams of 
all orders of the formally exact QED PT. However, the necessary experimental quantities are not 
often available. So, the optimized 1-QP representation is the best one to determine the zeroth 
approximation. The correlation corrections of the PT high orders are taken into account within the 
Green functions method (with the use of the Feynman diagram’s technique). All correlation 
corrections of the second order and dominated classes of the higher orders diagrams (electrons 
screening, polarization, particle-hole interaction, mass operator iterations) are taken into account 
[10-14].  In the second order, there are two important kinds of diagrams: polarization and ladder 
ones. Some of the ladder diagram contributions  as well as some of the 3QP diagram contributions 
in all PT orders have  the same angular symmetry as the 2QP diagram contributions of the first 
order [10-12]. These contributions have been summarized by a modification of the central potential, 
which must now include the screening (anti-screening) of the core potential of each particle by two 
others. The additional potential modifies the 1QP orbitals and energies. Then the secular matrix is : 

   1 2M M M , where  1M  is the modified 1QP matrix (diagonal), and  2M  the modified 2QP one. 
 1M  is calculated by substituting the modified 1QP energies), and  2M  by means of the first PT 

order formulae for  2M , putting the modified radial functions of the 1QP states in the interaction 
radial  integrals. Let us remind that in the QED theory, the photon propagator D(12) plays the role 
of this interaction. Naturally, an analytical form of D depends on the gauge, in which the 
electrodynamic potentials are written. In general, the results of all approximate calculations 
depended on the gauge. Naturally the correct result must be gauge invariant. The gauge dependence 
of the amplitudes of the photoprocesses in the approximate calculations is a well known fact and is 
in details investigated by Grant, Armstrong, Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. Grant 
has investigated the gauge connection with the limiting non-relativistic form of the transition 
operator and has formulated the conditions for approximate functions of the states, in which the 
amplitudes are gauge invariant. These results remain true in an energy approach as the final 
formulae for the probabilities coincide in both approaches. In ref. [16] it has been developed a new 
version of the approach to conserve gauge invariance. Here we applied it to get the gauge-invariant 
procedure for generating the relativistic DKS orbital bases (abbreviator of our method: GIRPT). 
The autoionization width is defined by the square of interaction matrix element [9]:  

                                  













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV                     (3) 

The real part of the interaction matrix element can be expanded in terms of Bessel functions [5,8]: 

                                      


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r .                         (4) 

The Coulomb part Qul
Q  is expressed in the radial integrals R , angular coefficients S  as follows: 
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where ReQ(1243) is as follows:   

                                           Re Im Im 2E i E E      ,                                     (1) 

where  is interpreted as the level width, and the decay possibility    . The whole calculation of 
the energies and decay probabilities of a non-degenerate excited state is reduced to the calculation 
and diagonalization of the M. The jj-coupling scheme is usually used. The complex  secular matrix 
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                                                                0 1 2 3 .M M M M M                                                   (2) 
where  0M  is the contribution of the vacuum diagrams of all order of PT, and  1M ,  2M ,  3M  
those of the one-, two- and three-QP diagrams respectively.  0M  is a real matrix, proportional to 
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amplitudes are gauge invariant. These results remain true in an energy approach as the final 
formulae for the probabilities coincide in both approaches. In ref. [16] it has been developed a new 
version of the approach to conserve gauge invariance. Here we applied it to get the gauge-invariant 
procedure for generating the relativistic DKS orbital bases (abbreviator of our method: GIRPT). 
The autoionization width is defined by the square of interaction matrix element [9]:  
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where ReQ(1243) is as follows:   
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When integrating the master system, the function 
is calculated simultaneously:      
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                                                                         (10)
It can be shown that at r→∞, N(r)→Nk, where Nk 
is the normalization of functions  fk, gk of continu-
ous spectrum satisfying the condition (9). Other 
details can be found in refs.[10-13,16-20].

Further we present the results on the Tm AR 
spectrum. Let us note that the positions of 2 near-
ly lying ionization limits 4f136snl  (with states of 

the QP vacancy in the 4f14 core: 1
2/5

1
2/7 4|4 −− ff ) pro-

vide two main type of the AR decay [10,11]: i).the 
Beutler-Fano decay (BFD) channel: 
4f-1

5/2 6s1/2 (J12) nl - 4f-1
7/2 6s1/2 [J12’] Tm+ + 

leje,             
n>7, J12=2;3,   J12’=3;4
ii). the Letokhov-Ivanov reorientation decay 
(ROD) channel:

4f-1j 6s1/2 (J12) nl - 4f-1j 6s1/2 [J12’] Tm+ + 
leje)

n>25  J12=3,  J12’=2;4   j=5/2,7/2,
In table 1 we list the theoretical (the experimen- table 1 we list the theoretical (the experimen-table 1 we list the theoretical (the experimen- 1 we list the theoretical (the experimen-we list the theoretical (the experimen- list the theoretical (the experimen-the theoretical (the experimen- theoretical (the experimen-theoretical (the experimen-

tal data are absent) results for energies and widths 
(in cm-1) of different Tm 134 6 Rf sn s , 134 6 Rf sn p
states: E1, Г1 — data by Ivanov etal (RPTMP) 
[10,11];  E2,Г2 — our data (GIRPT). An analysis 
shows quite physically reasonable agreement be- quite physically reasonable agreement be-quite physically reasonable agreement be- physically reasonable agreement be-physically reasonable agreement be- reasonable agreement be-reasonable agreement be- agreement be-agreement be- be-be-
tween the values of energies E1 and E2. However, 
the widths Г1,Г2 differ more significantly. In our 
opinion, this fact is explained by different accu-
racy of estimates of the radial integrals, using the 
different type basises (gauge invariance conserva-
tion or a degree of accounting for the exchange-
correlation effects) and some other additional 
calculation approximations. In the GIRPT there 
are used more optimized basises of the orbitals. In 
table 2 we list similar (as in table 1) our data for 
the AR widths of the Tm 134 6 Rf sn s  and 134 6 Rf sn p
(1/2,5/2), (3/2,5/2) states.
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where f is the large component of radial part of the 1QP state Dirac function and function Z is :                                                             
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The angular coefficient is defined by standard way as above [3]. The calculation of radial integrals 
ReR(1243) is reduced to the solution of a system of  differential equations:   
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In addition,  у3()=ReR(1243), у1()=X(13). The system of differential equations includes also 
equations for functions f/ræ-1, g/ræ-1,  1

Z ,  2
Z . The formulas for the autoionization (Auger) decay 

probability include the radial integrals R(k), where one of the functions describes electron in 
the continuum state. When calculating this integral, the correct normalization of the function k is a 
problem. The correctly normalized function should have the following asymptotic at  r0: 
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When integrating the master system, the function is calculated simultaneously:       
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It can be shown that at r, N(r)Nk, where Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition (9). Other details can be found in refs.[10-13,16-20]. 

Further we present the results on the Tm AR spectrum. Let us note that the positions of 2 
nearly lying ionization limits 4f136snl  (with states of the QP vacancy in the 4f14 core: 1

2/5
1
2/7 4|4  ff ) 

provide two main type of the AR decay [10,11]: i).the Beutler-Fano decay (BFD) channel:  
                                 4f-1

5/2 6s1/2 (J12) nl - 4f-1
7/2 6s1/2 [J12'] Tm+ + leje,              

                                   n>7,                                     J12=2;3,   J12'=3;4 
ii). the Letokhov-Ivanov reorientation decay (ROD) channel: 

4f-1j 6s1/2 (J12) nl - 4f-1j 6s1/2 [J12'] Tm+ + leje) 
n>25                       J12=3,  J12'=2;4   j=5/2,7/2, 

In table 1 we list the theoretical (the experimental data are absent) results for energies and 
widths (in cm-1) of different Tm 134 6 Rf sn s , 134 6 Rf sn p states: E1,1- data by Ivanov etal (RPTMP) 
[10,11];  E2,2- our data (GIRPT). An analysis shows quite physically reasonable agreement 
between the values of energies E1 and E2. However, the widths 1,2 differ more significantly. In 
our opinion, this fact is explained by different accuracy of estimates of the radial integrals, using the 
different type basises (gauge invariance conservation or a degree of accounting for the exchange-
correlation effects) and some other additional calculation approximations. In the GIRPT there are 
used more optimized basises of the orbitals. In table 2 we list similar (as in table 1) our data for the 
AR widths of the Tm 134 6 Rf sn s  and 134 6 Rf sn p (1/2,5/2), (3/2,5/2) states. 

Table 1. The energies and widths of the Tm ][64 2/1
13

2/5 Jnpsf j  states (j=3/2, J=3/2, n=10-50). 
n 1 (ROD) 1 (BFD) E1 2 (ROD) 2 (BFD) E2 
 RPTMP RPTMP RPTMP GIRPT GIRPT GIRPT 

10 - 3.69E-3 56163 - 3.79E-3 56184 
20 - 5.23E-4 58429 - 5.32E-4 58438 
25 4.72E-1 2.45E-4 58597 4.86E-1 2.54E-4 58609 
30 2.94E-1 1.32E-4 58678 3.05E-1 1.41E-4 58690 
40 1.35E-1 5.01E-5 58753 1.46E-1 5.20E-5 58764 
45 9.73E-2 3.38E-5 58772 9.89E-2 3.49E-5 58781 
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Z . The formulas for the autoionization (Auger) decay 

probability include the radial integrals R(k), where one of the functions describes electron in 
the continuum state. When calculating this integral, the correct normalization of the function k is a 
problem. The correctly normalized function should have the following asymptotic at  r0: 
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It can be shown that at r, N(r)Nk, where Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition (9). Other details can be found in refs.[10-13,16-20]. 

Further we present the results on the Tm AR spectrum. Let us note that the positions of 2 
nearly lying ionization limits 4f136snl  (with states of the QP vacancy in the 4f14 core: 1
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provide two main type of the AR decay [10,11]: i).the Beutler-Fano decay (BFD) channel:  
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5/2 6s1/2 (J12) nl - 4f-1
7/2 6s1/2 [J12'] Tm+ + leje,              

                                   n>7,                                     J12=2;3,   J12'=3;4 
ii). the Letokhov-Ivanov reorientation decay (ROD) channel: 

4f-1j 6s1/2 (J12) nl - 4f-1j 6s1/2 [J12'] Tm+ + leje) 
n>25                       J12=3,  J12'=2;4   j=5/2,7/2, 

In table 1 we list the theoretical (the experimental data are absent) results for energies and 
widths (in cm-1) of different Tm 134 6 Rf sn s , 134 6 Rf sn p states: E1,1- data by Ivanov etal (RPTMP) 
[10,11];  E2,2- our data (GIRPT). An analysis shows quite physically reasonable agreement 
between the values of energies E1 and E2. However, the widths 1,2 differ more significantly. In 
our opinion, this fact is explained by different accuracy of estimates of the radial integrals, using the 
different type basises (gauge invariance conservation or a degree of accounting for the exchange-
correlation effects) and some other additional calculation approximations. In the GIRPT there are 
used more optimized basises of the orbitals. In table 2 we list similar (as in table 1) our data for the 
AR widths of the Tm 134 6 Rf sn s  and 134 6 Rf sn p (1/2,5/2), (3/2,5/2) states. 

Table 1. The energies and widths of the Tm ][64 2/1
13

2/5 Jnpsf j  states (j=3/2, J=3/2, n=10-50). 
n 1 (ROD) 1 (BFD) E1 2 (ROD) 2 (BFD) E2 
 RPTMP RPTMP RPTMP GIRPT GIRPT GIRPT 

10 - 3.69E-3 56163 - 3.79E-3 56184 
20 - 5.23E-4 58429 - 5.32E-4 58438 
25 4.72E-1 2.45E-4 58597 4.86E-1 2.54E-4 58609 
30 2.94E-1 1.32E-4 58678 3.05E-1 1.41E-4 58690 
40 1.35E-1 5.01E-5 58753 1.46E-1 5.20E-5 58764 
45 9.73E-2 3.38E-5 58772 9.89E-2 3.49E-5 58781 
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Table 1. The energies and widths of the Tm         
states (j=3/2, J=3/2, n=10-50).

n Г1 (rod) Г1 (bfd) E1 Г2 (rod) Г2 (bfd) E2

RPTMP RPTMP RPTMP GIRPT GIRPT GIRPT

10 - 3.69E-3 56163 - 3.79E-3 56184

20 - 5.23E-4 58429 - 5.32E-4 58438

25 4.72E-1 2.45E-4 58597 4.86E-1 2.54E-4 58609

30 2.94E-1 1.32E-4 58678 3.05E-1 1.41E-4 58690

40 1.35E-1 5.01E-5 58753 1.46E-1 5.20E-5 58764

45 9.73E-2 3.38E-5 58772 9.89E-2 3.49E-5 58781

50 7.24 E-2 2.39E-5 58785 7.40E-2 2.48E-5 58794

Table 2. The AR widths (in cm-1; our data) of the 
Tm                             states (n=10-50).

j,J (1/2,5/2) (3/2,5/2)

n rod bfd rod bfd

10 - 6.72E-3 - 2.36E-3

20 - 5.61E-4 - 3.25E-4

25 4.01E-2 2.57E-4 4.42E-1 1.62E-4

30 3.61E-2 1.39E-4 2.65E-1 8.51E-5

40 3.16E-2 5.04E-5 9.47E-2 3.49E-5

45 4.84E -2 2.55E-5 5.02E-2 3.28E-5

50 1.93E-2 1.98E-5 5.45E-2 2.16E-5

In ref. [14] (see also [5,12]) it has been pre-
dicted a new spectral effect of the giant chang-
ing of the AS ROD width in a sufficiently weak 
electric field (for two pairs of the Tm, Gd AR). 
Following to [5], let us remind that any two states 
of different parity can be mixed by the external 
electric field. The mixing leads to redistribution 
of the autoionization widths. In the case of de-
generate or near-degenerate resonances this effect 
becomes observable even at a moderately weak 
field. In the Tm one could deal with ROD ns and 
np series, converging to the same ionization limit, 
i.e. they are nearly degenerate states of different 

parity. Among them one can find some pairs of ns 
and np states with widths Г, differing by several 
orders. We have quantitatively estimated a value 
of the changing  the studied AR (n>25) width at 
the weak electric field with strength up to 150 
V/cm and found that the corresponding effect is 
about one order of the AR width for the maximal 
field strength considered.  
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The angular coefficient is defined by standard way as above [3]. The calculation of radial integrals 
ReR(1243) is reduced to the solution of a system of  differential equations:   
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In addition,  у3()=ReR(1243), у1()=X(13). The system of differential equations includes also 
equations for functions f/ræ-1, g/ræ-1,  1

Z ,  2
Z . The formulas for the autoionization (Auger) decay 

probability include the radial integrals R(k), where one of the functions describes electron in 
the continuum state. When calculating this integral, the correct normalization of the function k is a 
problem. The correctly normalized function should have the following asymptotic at  r0: 
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When integrating the master system, the function is calculated simultaneously:       
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In ref. [14] (see also [5,12]) it has been predicted a new spectral effect of the giant changing 

of the AS ROD width in a sufficiently weak electric field (for two pairs of the Tm, Gd AR). 
Following to [5], let us remind that any two states of different parity can be mixed by the external 
electric field. The mixing leads to redistribution of the autoionization widths. In the case of 
degenerate or near-degenerate resonances this effect becomes observable even at a moderately 
weak field. In the Tm one could deal with ROD ns and np series, converging to the same ionization 
limit, i.e. they are nearly degenerate states of different parity. Among them one can find some pairs 
of ns and np states with widths Г, differing by several orders. We have quantitatively  estimated a 
value of the changing  the studied AR (n>25) width at the weak electric field with strength up to 
150 V/cm and found that the corresponding effect is about one order of the AR width for the 
maximal field strength considered.   
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ЛАНТАНИДОВ: СПЕКТР ТУЛЛИЯ, НОВЫЕ ДАННЫЕ И ЭФФЕКТЫ

Резюме. 
Обобщенный энергетический подход (S-матричный формализм Гелл-Мана и Лоу) и реляти-S-матричный формализм Гелл-Мана и Лоу) и реляти--матричный формализм Гелл-Мана и Лоу) и реляти-

вистская теория возмущений с дирак-кон-шэмовским нулевым приближением применены к из-
учению автоионизационных резонансов в тяжелых атомах, в частности, на его основе с учетом 
обменно-корреляционных и релятивистских эффектов оценены энергии и ширины автоиониза-
ционных резонансов в туллии.
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Резюме.  
Узагальнений енергетичний підхід (S-матричний формалізм Гелл-Мана та Лоу) и реля-

тивістська теорія збурень з дірак-кон-шемівським нульовим наближенням застосовані до ви-
вчення автоіонізаційних резонансів у важких атомах, зокрема, на його основі з урахуванням   
обмінно-кореляційних і релятивістських ефектів оцінені енергії та ширини автоіонізаційних 
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