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OPTICS AND SPECTROSCOPY OF COOPERATIVE ELECTRON-GAMMA-NUCLEAR 
PROCESSES IN HEAVY ATOMS

It is presented an estimate of probability of the cooperative elec-
tron-g-nuclear processes in some heavy atoms within of earlier de-
veloped consistent relativistic approach. The approach is based on 
S-matrix Gell-Mann and Low formalism combined with relativistic 
many-body perturbation theory and provides opening new field of 
cooperative atomic-nuclear quantum optics.  

1. Introduction
This paper goes on our work on studying the 

cooperative electron-gamma-nuclear processes 
[1-4]. The important example of the cooperative 
e-g-N process is so called NEET (nuclear excita-
tion by electron transition) one [5-7]. The similar 
NEEC (nuclear excitation by electron capture) 
process should be reminded too. In both NEEC 
and NEET, which are at the borderline between 
atomic and nuclear physics, electronic orbital 
energy is converted directly into nuclear energy. 
These effects offer therefore the possibility to 
explore the spectral properties of heavy nuclei 
through the typical atomic physics experiments. 
In fact, the NEET is a fundamental but rare mode 
of decay of an excited atomic state in which the 
energy of atomic excitation is transferred to the 
nucleus via a virtual photon. This process is natu-
rally possible if within the electron shell there ex-
ists an electronic transition close in energy and 
coinciding in type with nuclear one. In fact the 
resonance condition between the energy of nu-
clear transition wN and the energy of the atomic 
transition wA should be fulfilled. Obviously, the 
NEET process corresponds to time-reversed 
bound-state internal conversion. Let us remind 
that firstly the NEET and NEEC effects have been 
postulated in 1973 by Morita and Goldanskii–
Letokhov-Namiot (see also review [1] and Refs.
[5-20]). Unlike the NEEC effect, the NEET pro-
cess has been observed experimentally in           by 
Kishimoto et al (Institute of Material Structure 

Science, KEK, and Japan Synchrotron Radiation 
Research Centre, Japan) and in       by Ahmad et 
al (Argonne National Laboratory, USA) [10-14]. 
Below in table 1 we present a summary of the ex-
perimental works on the NEET in      . It should 
be noted that each of the experimental techniques 
has certain inherent difficulties. Analysis of this 
problem has been presented in Refs. [1,13,14]. It 
explains quite large difference between the results 
of different experiments. Saying briefly, the cited 
difficulties are reduced to the problem of reveal-
ing a NEET signal among the surrounding other 
effects. Really, using electron beam can cause di-
rect Coulomb excitation of a nucleus. In this case 
it is hardly possible to distinguish this component 
from that due to the NEET process. Using a broad 
continuous spectral distribution of synchrotron or 
bremsstrahlung X-rays leads to contribution into 
the nuclear state from direct nuclear photoab-
sorption or into a range of nuclear levels that can 
feed that state or the lower-lying metastable state. 
Theoretical NEET effect models were developed 
in Refs. [1,5-17] (see more [1]). Many of early 
estimates involved using simple approximations 
that led to results at considerable variance. More 
lately Tkalya [17] proposed a model for descrip-
tion of the NEET process near the K-shell ion-
ization threshold of an atom. The QED PT with 
empirical estimating the nuclear and electron ma-
trix elements and the Dirac-Fock code by Band-
Fomichev (with account for finite nuclear size) 
were used.
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Table 1. Experimental data on the NEET probabili-
ties PNEET (M1) for the isotope of         .

Exp.group year Experimental 
techniques

РNEET

Otozai et al 1973 e- bombardment 
75-85 keV

1×10-6

Otozai et al 1978 e- bombardment 
72-100 keV

(1.7±0.2)×10-7

Saito et al 1981 200 keV 
bremsstrahlung

(4.3±0.2)×10-8

Shinohara 
etal

1987 „white« 
synchrotron 
radiation 

(5.7±1.7)×10-9

Lakosi et al 1995 300 keV 
bremsstrahlung

(2.0±1.4) ×10-8

Ahmad et al 2000 monochromatic 
100-keV X rays

<9.5×10-10

New theoretical approach by Ahmad et al [13] 
is based on using the time-dependent amplitude 
coupled equations. These authors calculated elec-
tron wave functions using the GRASP code and 
tabulated values of the nuclear transition matrix 
elements. Thus,  the theoretical models involved 
the use of different consistency level approxima-
tions led to results at quite considerable variance. 
It is obvious that more sophisticated relativistic 
many-body methods should be used for correct 
treating the NEET effect. Really, the nuclear wave 
functions have the many-body character. The cor-
rect treating the electron subsystem processes 
requires an account of the relativistic, exchange-
correlation and nuclear effects. Really, the nuclear 
excitation occurs by electron transition from the 
M shell to the K shell. So, there is the electron-
hole interaction and it is of a great importance a 
correct account for the many-body correlation ef-
fects, including inter-shell correlations, the post-
act interaction of the removing electron and hole, 
possibly the continuum pressure etc [1,17-20]. In 
this paper we have used earlier developed gen-
eralized relativistic energy approach [1-5] to cal-
culation of probabilities of the electron-gamma-
nuclear process in some heavy atoms 

   

2. Relativistic energy approach to cooperative 
electron-gamma-nuclear process

The relativistic energy approach is based on 
the S-matrix Gell-Mann and Low formalism 
combined with the relativistic many-body PT 
[1,19-24]. Let us remind that in atomic theory, a 
convenient field procedure is known for calcu-
lating the energy shifts ∆E of  degenerate states 
[20,24]. Secular matrix M diagonalization is used. 
In constructing M, the Gell-Mann and Low adia-
batic formula for ∆E is used. A similar approach 
with the electro-dynamical scattering matrix, is 
applicable in the relativistic theory [1-5,19-24]. 
In contrast to the non-relativistic case, the secu-
lar matrix elements are already complex in the 
PT second order. Their imaginary parts relate to 
radiation decay probability. The total energy shift 
is as: 

                    ∆E = Re∆E + i Im∆E,                   (1)
                             Im ∆E = -G/2,                      (2)

where G is interpreted as the level width, 
and the decay possibility P=G. The whole 
calculation of energies and decay probabilities 
of a non-degenerate excited state is reduced to 
calculation and diagonalization of the complex 
matrix M. To start with the Gell-Mann and Low 
formula it is necessary to choose the PT zero-
order approximation. Usually, the one-electron 
Hamiltonian is used, with a central potential that 
can be treated as a bare potential in the formally 
exact PT [21]. The total probability of radiative 
decay (excitation, de-excitation) is connected 
with imaginary part of ∆E of the system «atom 
plus field» [9,18-21]. The corresponding 
corrections of the PT for Im∆E can be represented 
as a sum on the virtual states. In the lowest PT 
the separated terms of these sums correspond to 
the additive contributions of different physical 
channels into the total decay probability.  The 
fundamental parameter of the cooperative NEET 
process is a probability PNEET (cross-section) of 
the nuclear excitation by electron transition. In 
fact it can be defined as the probability that the 
decay of the initial excited atomic state will result 
to the excitation of and subsequent decay from 
the nuclear state. Within the energy approach a 
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Table 1. Experimental data on the NEET probabilities PNEET (M1) for the isotope of Os189
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Exp.group year Experimental techniques РNEET 
Otozai et al 1973 e- bombardment 75-85 keV 110-6 
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New theoretical approach by Ahmad et al [13] is based on using the time-dependent 
amplitude coupled equations. These authors calculated electron wave functions using the 
GRASP code and tabulated values of the nuclear transition matrix elements. Thus,  the 
theoretical models involved the use of different consistency level approximations led to 
results at quite considerable variance. It is obvious that more sophisticated relativistic many-
body methods should be used for correct treating the NEET effect. Really, the nuclear wave 
functions have the many-body character. The correct treating the electron subsystem processes 
requires an account of the relativistic, exchange-correlation and nuclear effects. Really, the 
nuclear excitation occurs by electron transition from the M shell to the K shell. So, there is the 
electron-hole interaction and it is of a great importance a correct account for the many-body 
correlation effects, including inter-shell correlations, the post-act interaction of the removing 
electron and hole, possibly the continuum pressure etc [1,17-20].  In this paper we have used 
earlier developed generalized relativistic energy approach [1-5] to calculation of probabilities 
of the electron-gamma-nuclear process in some heavy atoms ( Os189

76 , Ir193
77 ).    

 

2. Relativistic energy approach to cooperative electron-gamma-nuclear process 
The relativistic energy approach is based on the S-matrix Gell-Mann and Low 

formalism combined with the relativistic many-body PT [1,19-24]. Let us remind that in 
atomic theory, a convenient field procedure is known for calculating the energy shifts E of  
degenerate states [20,24]. Secular matrix M diagonalization is used. In constructing M, the 
Gell-Mann and Low adiabatic formula for E is used. A similar approach with the electro-
dynamical scattering matrix, is applicable in the relativistic theory [1-5,19-24]. In contrast to 
the non-relativistic case, the secular matrix elements are already complex in the PT second 
order. Their imaginary parts relate to radiation decay probability. The total energy shift is as:  
 
                                                                 E = ReE + i ImE,                                            (1) 
                                                                       Im E = -G/2,                                      (2) 
where G is interpreted as the level width, and the decay possibility P=G. The whole 
calculation of energies and decay probabilities of a non-degenerate excited state is reduced to 
calculation and diagonalization of the complex matrix M. To start with the Gell-Mann and 
Low formula it is necessary to choose the PT zero-order approximation. Usually, the one-
electron Hamiltonian is used, with a central potential that can be treated as a bare potential in 
the formally exact PT [21]. The total probability of radiative decay (excitation, de-excitation) 
is connected with imaginary part of E of the system “atom plus field” [9,18-21]. The 
corresponding corrections of the PT for ImE can be represented as a sum on the virtual 
states. In the lowest PT the separated terms of these sums correspond to the additive 
contributions of different physical channels into the total decay probability.  The fundamental 
parameter of the cooperative NEET process is a probability PNEET (cross-section) of the 
nuclear excitation by electron transition. In fact it can be defined as the probability that the 
decay of the initial excited atomic state will result to the excitation of and subsequent decay 
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decay probability is linked with ImDE for system 
(nuclear subsystem plus electron subsystem) 
excited state. An imaginary part of the excited 
state energy shift in the lowest PT order is as [1]:  

                                            

           

                                                                                                                                  
(3)

Here D(r1t1,r2t2) is the photon propagator (for 
example, in the Lorenz gauge); NĴ , eĵ — are the 
4-dimensional components of a current operator 
for the nuclear and electron (hole) subsystems; 
x=(rn,re, t) is the 4D space-time coordinate of 
the particles, respectively; g- is an adiabatic 
parameter. The nuclear current can be written as 
follows:

                     N
P

N
P JtRJ ψψ ˆ),( *

+= ,                (4)
where PĴ  is operator of an nuclear electromagnetic 
transition, Nψ is a nuclear wave function. The 
current operator for electron is 

                           e e ej m mψ g ψ=
 

,                     (5)

where mg  are the Dirac matrices. The Hamiltonian 
of the interaction of the electronic hole current  

m
fij   and the nuclear current )(RJ fi

ν is written as :  

                                                                           (6)

The energy shift can be further represented 
as the PT set. After transformations the final 
expression for Im DE is written sum of the 
corresponding N-electron (hole) contributions:

                                                                       (10)

Here 2112 aaa rrr −= , IFw  is the energy of transi-
tion between the initial I and final F states; sum 
on F means the summation on the final states of 
a system. Naturally, the form of operator in (10) 
is defined by a gauge of photon propagator (see 
discussion in Refs. [9, 21]). In zeroth approxima-

tion dependence ΨF ΨI on nuclear and electron co-
ordinates (RN , Re(h)) is factorized (~ )NeΦΦ . Thus, 
the combined electron (hole)- nuclear one-photon 

transitions occur as each of the operators NT , eT  
in (10) contains the combination of nuclear and 
electron variables. After factorization and transfor-
mations the expression (10) can be presented in the 
following form: 

                                                                         (11)

The expansion of the operator 
12

12 )sin(

a

aIF

R
Rw  on the 

spherical harmonics generates the decay proba-
bility multipole expansion. It can be written in the 
following known form:  

             
,   

(12)

where J is the Bessel function of the first kind and 
(l)=2l+1. 

In fact this expansion coincides with the known 
power expansion; naturally the strict decreas-
ing contribution on multipolarity corresponds to 
them. In our problem the power expansion pa-
rameters are the combinations e

a
IF Rw , N

N
IF Rw . Fur-

ther the effects of purely nuclear transition, purely 
electron-(hole) transition and combined electron 
– nuclear transition in (11) can be distinguished.  
The corresponding technique of work with these 
expansions is well developed [8,19-21] and often 
used in our previous papers (look [1-5]). In the 
expression for PNEET there is the square modulus 
of the Hamiltonian of the electron hole current- 
nuclear current interaction, averaged over initial 
states and summed over the final states and writ-
ten (say, for MI – K transition) as: 

    

(13)
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N
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subsystems; x=(rn,re, t) is the 4D space-time coordinate of the particles, respectively; - is an 
adiabatic parameter. The nuclear current can be written as follows: 
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Here 2112 aaa rrr  , IF  is the energy of transition between the initial I and final F 
states; sum on F means the summation on the final states of a system. Naturally, the form of 
operator in (10) is defined by a gauge of photon propagator (see discussion in Refs. [9, 21]). 
In zeroth approximation dependence IF ΨΨ ,  on nuclear and electron coordinates (RN , Re(h)) is 
factorized (~ )Ne . Thus, the combined electron (hole)- nuclear one-photon transitions occur 
as each of the operators NT , eT  in (10) contains the combination of nuclear and electron variables.  
After factorization and transformations the expression (10) can be presented in the following form:  
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where J is the Bessel function of the first kind and ()=2+1.  

from the nuclear state. Within the energy approach a decay probability is linked with ImE 
for system (nuclear subsystem plus electron subsystem) excited state. An imaginary part of 
the excited state energy shift in the lowest PT order is as [1]:   

                                             

        
}.|))(ˆ)(ˆ(|),(

|))(ˆ)(ˆ(|),({limImIm

212211

212211
)(

2
4

1
4

0

2 21



  



IeeItete

INNItNtN
tt

ΨxjxjΨrrD

ΨxJxJΨrrDexdxdieE 



   (3) 

 

Here D(r1t1,r2t2) is the photon propagator (for example, in the Lorenz gauge); NĴ , eĵ — are 
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matrix elements of electric (magnetic) [E/M] 
multipolarity λ; ji,f and Ji,f are the angular 
momenta of the electronic and nuclear states 
correspondingly. The atomic radial matrix 

elements )( N
MR wl

of [E/M] multipolarity λ are 
expressed by means the integral:  

                                                                             

 (15)

where f(r) and g(r) are the large and small com-
ponents of the Dirac electronic wave functions. 
Other details can be found in Refs. [1-5,18-24].

3. Results and conclusions
In concrete calculation of the NEET prob-

abilities for different systems one should calcu-
late the corresponding matrix elements. As we 
will consider below M1 (E2) transition from the 
ground state to the first excited state in the nuclei 
       and         , it should be noted that the val-
ues of B[E/(M)l; Ji-Jf ] are usually taken from the 
Nuclear Data tables or can be estimated according 
the known formula (see Ref. [1]). To calculate the 
electronic wave functions and matrix elements 
we used the relativistic many-body PT formalism 
[1-4,18,22]. It allows take into account accurately 
the relativistic, exchange-correlation, nuclear, 
radiative corrections (code «Superatom»). The 
zeroth approximation electronic wave functions 
are found from the Dirac (or Dirac-Kohn-Sham) 
equation with potential, which includes the SCF 
potential, the electric and polarization potentials 
of a nucleus. As an account of the finite nuclear 
size has a sensitive effect on the energy levels 
of the bound electron, one should use  the Fermi 
function of the charge distribution in a nucleus. 
The correlation corrections of the second and high 
orders are taken into account within the Green 
functions method (with the use of the Feynman 
diagram’s technique). There have taken into ac-
count all correlation corrections of the second 
order and dominated classes of the higher orders 
diagrams [18]. The magnetic inter-electron inter-
action is accounted in the lowest (on a2 parameter; 
a is the hyperfine structure constant). The QED 
corrections are accounted effectively: the Lamb 

shift self-energy part - within the generalized 
Ivanov-Ivanova non-perturbative procedure and 
the polarization part - in the generalized Uehling-
Serber approximation [18]. The important feature 
of the whole method is using the optimized one-
quasiparticle representation in the zeroth approxi-
mation, which is constructed within the method 
[9].  The nuclear part of the method includes a set 
of the nuclear shells models, including the rela-
tivistic mean-field approach and Dirac-Bloum-
kvist-Wahlborn and Dirac-Woods-Saxon models 
[2, 26-28]. Our data on the NEET probability for 
                   , atoms together with the alternative the-
oretical (by Tkalya & Ahmed et al) [13,16,17] and 
experimental data (see [11-13] and Refs. therein) 
are listed in table 2. Let us note that in            during 
the NEET process the initial K-vacancy state de-
cays via an electronic transition from the M shell. 
The KMI (70.822 keV, M1),  KMIV (71.840 keV, 
E2) and KMV (71.911keV, E2) atomic transitions 
can give the contribution. The corresponding nu-
clear state at 69.535 keV can be excited via M1 or 
E2 transitions from the 3/2- nuclear ground state. 
The following energy parameters wN=69.535 keV, 
wА=EMI-EK=70.822 keV, GK=42.6 eV, GM=12.8 eV 
are used for          atom. The energy parameters for  
       : wN=73.04 keV, wА=72.937 keV, GK =45 eV, 
GM =12.8 eV. Analysis of all presented theoretical 
data shows that these results are consistent with 
each other and are in the physically reasonable 
agreement with the recent experimental results.  

Table 2. Theoretical and experimental probabilities 
PNEET (M1) for         and  

Nucl. Nuclear 
excitation 
energy 
(keV)

Experi-
ment. 
values

Theory 
by 

Tkalya 

Theory 
by 

Ahmed 
etal 

Our 
theory

Os189
76

69.535 <9.5×10-10 1.2
×10-10

1.3
×10-10

1.9
×10-10

Ir193
77

73.04 (2.8±0.4) 
×10-9

2.0
×10-9

- 2.7
×10-9

In conclusion note that above presented method 
with some modifications can be reformulated in 
a case of the multi-nucleon nuclear system with 

In fact this expansion coincides with the known power expansion; naturally the strict 
decreasing contribution on multipolarity corresponds to them. In our problem the power 
expansion parameters are the combinations e

a
IF R , N

N
IF R . Further the effects of purely nuclear 

transition, purely electron-(hole) transition and combined electron – nuclear transition in (11) 
can be distinguished.  The corresponding technique of work with these expansions is well 
developed [8,19-21] and often used in our previous papers (look [1-5]).  In the expression for 
PNEET there is the square modulus of the Hamiltonian of the electron hole current- nuclear 
current interaction, averaged over initial states and summed over the final states and written 
(say, for MI –K transition) as:  
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where f(r) and g(r) are the large and small components of the Dirac electronic wave functions. 
Other details can be found in Refs. [1-5,18-24]. 
 

3. Results and conclusions 
In concrete calculation of the NEET probabilities for different systems one should 

calculate the corresponding matrix elements. As we will consider below M1 (E2) transition 
from the ground state to the first excited state in the nuclei Os189

76 and Ir193
77 , it should be noted 

that the values of B[E/(M); Ji-Jf ] are usually taken from the Nuclear Data tables or can be 
estimated according the known formula (see Ref. [1]). To calculate the electronic wave 
functions and matrix elements we used the relativistic many-body PT formalism [1-4,18,22]. 
It allows take into account accurately the relativistic, exchange-correlation, nuclear, radiative 
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found from the Dirac (or Dirac-Kohn-Sham) equation with potential, which includes the SCF 
potential, the electric and polarization potentials of a nucleus. As an account of the finite 
nuclear size has a sensitive effect on the energy levels of the bound electron, one should use  
the Fermi function of the charge distribution in a nucleus. The correlation corrections of the 
second and high orders are taken into account within the Green functions method (with the 
use of the Feynman diagram’s technique). There have taken into account all correlation 
corrections of the second order and dominated classes of the higher orders diagrams [18]. The 
magnetic inter-electron interaction is accounted in the lowest (on 2 parameter;  is the 
hyperfine structure constant). The QED corrections are accounted effectively: the Lamb shift 
self-energy part - within the generalized Ivanov-Ivanova non-perturbative procedure and the 
polarization part - in the generalized Uehling-Serber approximation [18]. The important 
feature of the whole method is using the optimized one-quasiparticle representation in the 
zeroth approximation, which is constructed within the method [9].  The nuclear part of the 
method includes a set of the nuclear shells models, including the relativistic mean-field 
approach and Dirac-Bloumkvist-Wahlborn and Dirac-Woods-Saxon models [2, 26-28]. Our 
data on the NEET probability for Os189

76 , Ir193
77  atoms together with the alternative theoretical 

Table 1. Experimental data on the NEET probabilities PNEET (M1) for the isotope of Os189
76 . 

Exp.group year Experimental techniques РNEET 
Otozai et al 1973 e- bombardment 75-85 keV 110-6 

Otozai et al 1978 e- bombardment 72-100 keV (1.70.2)10-7 
Saito et al 1981 200 keV bremsstrahlung (4.30.2)10-8 
Shinohara etal 1987 „white“ synchrotron radiation  (5.71.7)10-9 
Lakosi et al 1995 300 keV bremsstrahlung (2.01.4) 10-8 

Ahmad et al 2000 monochromatic 100-keV X rays <9.510-10 

 
New theoretical approach by Ahmad et al [13] is based on using the time-dependent 
amplitude coupled equations. These authors calculated electron wave functions using the 
GRASP code and tabulated values of the nuclear transition matrix elements. Thus,  the 
theoretical models involved the use of different consistency level approximations led to 
results at quite considerable variance. It is obvious that more sophisticated relativistic many-
body methods should be used for correct treating the NEET effect. Really, the nuclear wave 
functions have the many-body character. The correct treating the electron subsystem processes 
requires an account of the relativistic, exchange-correlation and nuclear effects. Really, the 
nuclear excitation occurs by electron transition from the M shell to the K shell. So, there is the 
electron-hole interaction and it is of a great importance a correct account for the many-body 
correlation effects, including inter-shell correlations, the post-act interaction of the removing 
electron and hole, possibly the continuum pressure etc [1,17-20].  In this paper we have used 
earlier developed generalized relativistic energy approach [1-5] to calculation of probabilities 
of the electron-gamma-nuclear process in some heavy atoms ( Os189

76 , Ir193
77 ).    

 

2. Relativistic energy approach to cooperative electron-gamma-nuclear process 
The relativistic energy approach is based on the S-matrix Gell-Mann and Low 

formalism combined with the relativistic many-body PT [1,19-24]. Let us remind that in 
atomic theory, a convenient field procedure is known for calculating the energy shifts E of  
degenerate states [20,24]. Secular matrix M diagonalization is used. In constructing M, the 
Gell-Mann and Low adiabatic formula for E is used. A similar approach with the electro-
dynamical scattering matrix, is applicable in the relativistic theory [1-5,19-24]. In contrast to 
the non-relativistic case, the secular matrix elements are already complex in the PT second 
order. Their imaginary parts relate to radiation decay probability. The total energy shift is as:  
 
                                                                 E = ReE + i ImE,                                            (1) 
                                                                       Im E = -G/2,                                      (2) 
where G is interpreted as the level width, and the decay possibility P=G. The whole 
calculation of energies and decay probabilities of a non-degenerate excited state is reduced to 
calculation and diagonalization of the complex matrix M. To start with the Gell-Mann and 
Low formula it is necessary to choose the PT zero-order approximation. Usually, the one-
electron Hamiltonian is used, with a central potential that can be treated as a bare potential in 
the formally exact PT [21]. The total probability of radiative decay (excitation, de-excitation) 
is connected with imaginary part of E of the system “atom plus field” [9,18-21]. The 
corresponding corrections of the PT for ImE can be represented as a sum on the virtual 
states. In the lowest PT the separated terms of these sums correspond to the additive 
contributions of different physical channels into the total decay probability.  The fundamental 
parameter of the cooperative NEET process is a probability PNEET (cross-section) of the 
nuclear excitation by electron transition. In fact it can be defined as the probability that the 
decay of the initial excited atomic state will result to the excitation of and subsequent decay 
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using potentials [26-28]. Generally speaking, 
the approach used can be applied in studying the 
whole spectra of the cooperative electron-other 
particle-g-nuclear processes in atomic/nuclear 
systems [2-17,28-36] and thus provides opening a 
new field of cooperative atomic/nuclear quantum 
optics.  
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OPTICS AND SPECTROSCOPY OF COOPERATIVE ELECTRON-GAMMA-NUCLEAR 
PROCESSES IN HEAVY ATOMS

Abstract. It is presented an estimate of probability of the cooperative electron-g-nuclear processes 
in some heavy atoms within of earlier developed consistent relativistic approach. The approach is 
based on S-matrix Gell-Mann and Low formalism combined with relativistic many-body perturbation 
theory and provides opening new field of cooperative atomic-nuclear quantum optics.  
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ОПТИКА И СПЕКТРОСКОПИЯ КООПЕРАТИВНЫХ ЭЛЕКТРОН-ГАММА-ЯДЕРНЫХ 
ПРОЦЕССОВ В ТЯЖЕЛЫХ АТОМАХ

Резюме. На основе ранее развитого последовательного релятивистского энергетического 
подхода, базирующегося на S-матричном формализме Гелл-Мана и Лоу и релятивистской 
многочастичной теории возмущений, выполнена оценка вероятностей кооперативных электрон-
g-ядерных процессов в тяжелых атомах. 

Ключевые слова: кооперативная оптика, электрон-g-N процессы, релятивистская теория
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ОПТИКА І СПЕКТРОСКОПІЯ КООПЕРАТИВНИХ ЕЛЕКТРОН-ГАММА-ЯДЕРНИХ 
ПРОЦЕСІВ У ВАЖКИХ АТОМАХ

Резюме. На основі раніше розвинутого послідовного релятивістського енергетичного 
підходу, який базується на S-матричному формалізмі Гелл-Мана та Лоу і релятивістській 
багаточастинковій теорії збурень, виконано оцінку ймовірностей  кооперативних електрон - g- 
ядерних процесів у важких атомах. 

Ключові слова: кооперативна оптика, електрон-g-N процеси, релятивістська теорія


