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NEW NONLINEAR CHAOS-DYNAMICAL ANALYSIS OF ATMOSPHERIC RADON 222RN  
CONCENTRATION TIME SERIES FROM  BETA PARTICLES ACTIVITY DATA OF 

RADON MONITORS

The work is devoted to the development of the theoretical foundations of new  universal  complex chaos-dynamical 
approach to analysis and prediction of the atmospheric radon 222Rn  concentration changing from  beta particles activity 
data of radon monitors (with pair of the Geiger-Müller counters). The approach presented consistently includes a number 
of  new or improved methods of analysis (correlation integral, fractal analysis, algorithms of average mutual information, 
false nearest neighbors, Lyapunov exponents, surrogate data, non-linear prediction schemes, spectral methods, etc.) to solve 
problems quantitatively complete modeling and analysis of temporal evolution of the atmospheric radon 222Rn  concentra-
tion . There are firstly received data on topological and dynamical invariants for the time series of the 222Rn  concentration, 
discovered a deterministic chaos  phenomenon using detailed data of measurements of the radon concentrations at SMEAR 
II station of the Finnish Meteorological Institute.

1. Introduction

At present time one of the extremely important 
and too complex areas of elements, systems and 
devices physics and sensor electronics is study of 
regular and chaotic dynamics dynamics of non-
linear processes in the different classes of quan-
tum, quantum-generating systems and devices 
and quantum (atomic-molecular systems in an ex-
ternal electromagnetic field) [1-20]. It is worth to 
mention fulfilled by our group numerous study-
ing of dynamics of the different quantum systems 
in external electromagnetic field, which has the 
features of the random, stochastic kind and its re-
alization does not require the specific conditions. 

The importance of studying a phenomenon of 
stochasticity or quantum chaos in dynamical sys-
tems is provided by a whole number of technical 
applications, including a necessity of understand-
ing chaotic features in a work of different elec-
tronic devices and systems. New field of inves-
tigations of the quantum and other systems has 
been provided by a great progress in a develop-
ment of a chaos theory methods [1-12]. In pre-
vious our papers [5-20] we have given a review 
of new methods and algorythms to analysis of 
different systems of quantum physics, electron-
ics and photonics and used the nonlinear method 

of chaos theory and the recurrence spectra for-
malism to study quantum stochastic futures and 
chaotic elements in dynamics of atomic, mo-
lecular, nuclear systems in an free state and an 
external electromagnetic field,  atmospheric and 
even environmental systems [21-71].  There were 
discovered non-trivial manifestations of a chaos 
phenomenon. 

The work is devoted to the development of the 
theoretical foundations of new  universal  com-
plex chaos-dynamical approach to analysis and 
prediction of the atmospheric radon 222Rn  con-
centration changing from  beta particles activity 
data of radon monitors (with pair of the Geiger-
Müller counters). The approach presented con-
sistently includes a number of  new or improved 
methods of analysis (correlation integral, fractal 
analysis, algorithms, average mutual information, 
false nearest neighbors, Lyapunov exponents, 
surrogate data, non-linear prediction, spectral 
methods, etc.) to solve problems quantitatively 
complete modeling and analysis of temporal evo-
lution of the atmospheric radon 222Rn  concentra-
tion . There are firstly received data on topological 
and dynamical invariants for the time series of the 
222Rn  concentration, discovered a deterministic 
chaos  phenomenon using detailed data of mea-
surements of the radon concentrations at SMEAR 
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II station of the Finnish Meteorological Institute 
(see details in Refs. [72-75]).

2. Universal chaos-dynamical approach in 
analysis of chaotic dynamics of the radon con-
centration time series 

As many blocks of the presented approach 
have been developed earlier and are needed 
only to be reformulated regarding the problem 
studied in this paper,  here we are limited only 
by the key moments following to Refs. [5-20]. 
Let us formally consider scalar measurements 
s(n) = s(t0 + nDt) = s(n), where t0 is the start time, 
Dt is the time step, and is n the number of the mea-
surements. Further it is necessary to reconstruct 
phase space using as well as possible informa-
tion contained in the s(n).  Such a reconstruction 
results in a certain set of d-dimensional vectors 
y(n) replacing the scalar measurements. Packard 
et al.  introduced the method of using time-delay 
coordinates to reconstruct the phase space of an 
observed dynamical system. The direct use of the 
lagged variables s(n + t), where t is some integer 
to be determined, results in a coordinate system in 
which the structure of orbits in phase space can be 
captured. Then using a collection of time lags to 
create a vector in d dimensions,

(1)

the required coordinates are provided. In a non-
linear system, the s(n + jt) are some unknown 
nonlinear combination of the actual physical vari-
ables that comprise the source of the measure-
ments. The dimension d is called the embedding 
dimension, dE. Aany time lag will be acceptable 
is not terribly useful for extracting physics from 
data. If t is chosen too small, then the coordinates 
s(n + jt) and s(n + (j + 1)t) are so close to each 
other in numerical value that they cannot be dis-
tinguished from each other. Similarly, if t is too 
large, then s(n + jt) and s(n + (j + 1)t) are com-
pletely independent of each other in a statistical 
sense. Also, if t is too small or too large, then the 
correlation dimension of attractor can be under- 
or overestimated respectively [3]. It is therefore 
necessary to choose some intermediate (and more 

appropriate) position between above cases. First 
approach is to compute the linear autocorrelation 
function
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and to look for that time lag where CL(d) first 
passes through zero. This gives a good hint of 
choice for t at that s(n + jt) and s(n + (j + 1)t) 
are linearly independent. However, a linear in-
dependence of two variables does not mean that 
these variables are nonlinearly independent since 
a nonlinear relationship can differs from linear 
one. It is therefore preferably to utilize approach 
with a nonlinear concept of independence, e.g. 
the average mutual information. Briefly, the con-
cept of mutual information can be described as 
follows. Let there are two systems, A and B, with 
measurements ai and bk. The amount one learns in 
bits about a measurement of ai from measurement 
of bk is given by arguments of information theory 
[2,8,9] 
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where the probability of observing a out of the set 
of all A is PA(ai), and the probability of finding b 
in a measurement B is PB(bi), and the joint prob-
ability of the measurement of a and b is PAB(ai, bk). 
The mutual information I of two measurements ai 
and bk is symmetric and non-negative, and equals 
to zero if only the systems are independent. The 
average mutual information between any value ai 
from system A and bk from B is the average over 
all possible measurements of IAB(ai, bk),
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To place this definition to a context of observa-
tions from a certain physical system, let us think 
of the sets of measurements s(n) as the A and of 
the measurements a time lag t later, s(n + t), as 
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nonlinear system, the s(n + j) are some un-
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and to look for that time lag where CL() first 
passes through zero. This gives a good hint of 
choice for  at that s(n + j) and 
s(n + (j + 1)) are linearly independent. How-
ever, a linear independence of two variables 
does not mean that these variables are nonli-
nearly independent since a nonlinear relation-
ship can differs from linear one. It is there-
fore preferably to utilize approach with a 
nonlinear concept of independence, e.g. the 
average mutual information. Briefly, the con-
cept of mutual information can be described 
as follows. Let there are two systems, A and 
B, with measurements ai and bk. The amount 
one learns in bits about a measurement of ai 
from measurement of bk is given by argu-
ments of information theory [2,8,9]  
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where the probability of observing a out of 
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B set. The average mutual information between 
observations at n and n + t is then  
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Now we have to decide what property of I(t) we 
should select, in order to establish which among 
the various values of t we should use in making 
the data vectors y(n). One could remind that the 
autocorrelation function and average mutual in-
formation can be  considered as analogues of the 
linear redundancy and general redundancy, re-
spectively, which was applied in the test for non-
linearity. The general redundancies detect all de-
pendences in the time series, while the linear 
redundancies are sensitive only to linear struc-
tures. Further, a possible nonlinear nature of pro-
cess resulting in the vibrations amplitude level 
variations can be concluded. 

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. In accordance with the em-
bedding theorem, the embedding dimension, dE, 
must be greater, or at least equal, than a dimen-
sion of attractor, dA, i.e. dE > dA. However, two 
problems arise with working in dimensions larger 
than really required by the data and time-delay 
embedding [1-20]. First, many of computations 
for extracting interesting properties from the data 
require searches and other operations in Rd whose 
computational cost rises exponentially with d. 
Second, but more significant from the physical 
point of view, in the presence of noise or other 
high dimensional contamination of the observa-
tions, the extra dimensions are not populated by 
dynamics, already captured by a smaller dimen-
sion, but entirely by the contaminating signal. In 
too large an embedding space one is unnecessar-
ily spending time working around aspects of a 
bad representation of the observations which are 
solely filled with noise. It is therefore necessary 
to determine the dimension dA. There are several 
standard approaches to reconstruct the attractor 
dimension (see, e.g., [1-9]), but let us consider in 
this study two methods only. The correlation inte-
gral analysis is one of the widely used techniques 
to investigate the signatures of chaos in a time 

series. The analysis uses the correlation integral, 
C(r), to distinguish between chaotic and stochas-
tic systems. To compute the correlation integral, 
the algorithm of Grassberger and Procaccia is the 
most commonly used approach. According to this 
algorithm, the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u ≤ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. 

If the correlation exponent attains saturation 
with an increase in the embedding dimension, 
then the system is generally considered to exhibit 
chaotic dynamics. The saturation value of the cor-
relation exponent is defined as the correlation di-
mension (d2) of the attractor. The method of sur-
rogate data [1,8,9] is an approach that makes use 
of the substitute data generated in accordance to 
the probabilistic structure underlying the original 
data. 

Often, a significant difference in the estimates 
of the correlation exponents, between the origi-
nal and surrogate data sets, can be observed. In 
the case of the original data, a saturation of the 
correlation exponent is observed after a certain 
embedding dimension value (i.e., 6), whereas the 
correlation exponents computed for the surrogate 
data sets continue increasing with the increasing 
embedding dimension. It is worth consider an-
other method for determining dE that comes from 
asking the basic question addressed in the em-
bedding theorem: when has one eliminated false 
crossing of the orbit with itself which arose by 
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virtue of having projected the attractor into a too 
low dimensional space? By examining this ques-
tion in dimension one, then dimension two, etc. 
until there are no incorrect or false neighbours 
remaining, one should be able to establish, from 
geometrical consideration alone, a value for the 
necessary embedding dimension. Advanced ver-
sion is presented in Refs. [8,9]. 

The Lyapunov’s exponents (LE) are the dy-
namical invariants of the nonlinear system. In a 
general case, the orbits of chaotic attractors are 
unpredictable, but there is the limited predictabil-
ity of chaotic physical system, which is defined 
by the global and local LE. A negative exponent 
indicates a local average rate of contraction while 
a positive value indicates a local average rate of 
expansion. In the chaos theory, the spectrum of 
LE is considered a measure of the effect of per-
turbing the initial conditions of a dynamical sys-
tem. In fact, if one manages to derive the whole 
spectrum of the LE, other invariants of the sys-
tem, i.e. Kolmogorov entropy (KE) and attrac-
tor’s dimension can be found. The inverse of the 
KE is equal to an average predictability. Estimate 
of dimension of the attractor is provided by the 
Kaplan and Yorke conjecture:
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the LE la are taken in descending order. There are 
a few approaches to computing the LE. One of 
them computes the whole spectrum and is based 
on the Jacobi matrix of system. In the case where 
only observations are given and the system func-
tion is unknown, the matrix has to be estimated 
from the data. In this case, all the suggested meth-
ods approximate the matrix by fitting a local map 
to a sufficient number of nearby points. To calcu-
late the spectrum of the LE from the amplitude 
level data, one could determine the time delay t 
and embed the data in the four-dimensional space. 
In this point it is very important to determine the 
Kaplan-Yorke dimension and compare it with the 
correlation dimension, defined by the Grassberger-

Procaccia algorithm.  The estimations of the KE 
and average predictability can further show a lim-
it, up to which the amplitude level data can be on 
average predicted.  Other details can be found in 
Refs. [5-20]. 

3. Data on chaotic elements in time series of 
the radon concentration and conclusion

The concentration of atmospheric radon 222Rn  
was determined by measuring the activity of 
beta particles in atmospheric aerosol using ra-
don monitors. Measurements of the radon con-
centrations at SMEAR II station (61 ° 51’N, 24 ° 
17’E, 181 m above sea level; near the  Hyytiälä, 
Southern Finland) was done by group of experts 
of the Finnish Meteorological Institute (FMI) 
and was actually integrated into the system long-
term measurements (see details in Ref.[74] and 
[75-77] too). The continuous measurement was 
performed during 2000-2006 on the seventh 
heights (from 4.2 m to 127 m). Technologically 
for the detection of beta particles there are used 
the device with a pair of the Geiger-Müller coun-
ters, arranged in the lead corymbs. Registration 
of the beta particles was cumulatively carried  in 
10-minutes  intervals. Effectiveness of a detection 
was 0.96% and 4.3% for beta radiation from 214Pb 
and 214Bi respectively. Estimate of the  1-σ statis-
tical  counting - ± 20% for stable concentrations 
of 222Rn (1 Bq/m3). The mean-daily values   of at-
mospheric 222Rn concentrations were in the range 
from <0.1 to 11 Bq/m3. In fact, the lower limit 
of this range was limited by a hardware detection 
limit of the radon monitors. The corresponding data 
meet the log-normal distribution with a geometric 
mean of 2.5 Bq/m3 (a standard geometric deviation 
of 1.7 Bq/m3). The average geometric value for the 
daily average radon concentrations was  amounted 
to 2.3 to 2.6 Bq× m-3 per year. In general during 
2000-2006 as hourly, as daily values of a param-
eter, which corresponds to the radon concentration, 
were ranged from about 1 to 5 Bq/m3. In Figure 1 
there is presented the typical time dependent curve 
of the radon concentration , received on the base of 
measurements at SMEAR II station (61 ° 51’N, 24 
° 17’E, 181 m above sea level; near the  Hyytiälä, 
Southern Finland) (see [74]).
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Figure 1. Time dependent curve of the radon con-
centration, received on the base of measurement 

(SMEAR II station)

Below in Table 1 we list the results of com-
puting different dynamical and topological invri-
ants and parameters (Time delay t,correlation 
dimension (d 2), embedding space dimension 
(d E), Lyapunov exponent (li), Kolmogorov en-
tropy (Кent ), Kaplan-York dimension (d L), the 
predictability limit (Pr maх) and chaos indicator 
(Kсh ) for radon concentration time series (2001).

Table 1. Time delay t,correlation dimension 
(d 2), embedding space dimension (d E), Lyapunov 
exponent (li), Kolmogorov entropy (Кent ), 
Kaplan-York dimension (d L), the predictability 
limit (Pr maх) and chaos indicator (Kсh ) for the ra-
don concentration time series (2001)

Year t d 2 d E

2001 12 5,48 6

Year λ1 λ2 Кent

2001 0,0182 0,0058 0,024

Year d L Pr maх K

2001 5,36 42 0,80

The resulting Kaplan- York dimension is very 
close to the correlation dimension, which is de-
termined by the algorithm by Grassberger and 
Procaccia; Moreover, the Kaplan-York dimen-
sion is smaller than the dimension of attachment, 
which confirms the correctness of the choice 
of the latter. Therefore, using the new uniform 

chaos-dynamical approach we have carried out 
modeling and analysis of temporal evolution of 
the atmospheric radon 222Rn  concentration, firstly 
received data on topological and dynamical in-
variants for the time series of the 222Rn  concen-
tration and discovered a deterministic chaos  phe-
nomenon. The results are of great theoretical and 
practical interest as for the dynamical systems 
and chaos theories for applied scientific applica-
tions such as nuclear physics, photoelectronics, 
atmospheric and environmental (environmental 
radioactivity) sciences etc. 
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Summary
 The work is devoted to the development of the theoretical foundations of new  universal  com-

plex chaos-dynamical approach to analysis and prediction of the atmospheric radon 222Rn  concen-
tration changing from  beta particles activity data of radon monitors (with pair of the Geiger-Müller 
counters). The approach presented consistently includes a number of  new or improved methods of 
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etc.) to solve problems quantitatively complete modeling and analysis of temporal evolution of the 
atmospheric radon 222Rn  concentration . There are firstly received data on topological and dynamical 
invariants for the time series of the 222Rn  concentration, discovered a deterministic chaos  phenom-
enon using detailed data of measurements of the radon concentrations at SMEAR II station of the 
Finnish Meteorological Institute.

Key words: chaotic dynamics, time series of the 222Rn  concentration, universal  complex chaos-
dynamical approach, analysis and prediction
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НЕЛИНЕЙНЫЙ ХАОС-ДИНАМИЧЕСКИЙ АНАЛИЗ ВРЕМЕННЫХ РЯДОВ 
КОНЦЕНТРАЦИЙ АТМОСФЕРНОГО РАДОНА 222Rn НА ОСНОВЕ ДАННЫХ 

АКТИВНОСТИ БЕТА ЧАСТИЦ  РАДОНОВЫХ МОНИТОРОВ

Резюме
 Работа посвящена разработке теоретических основ нового универсального комплексного 

хаос-динамического подхода к анализу и прогнозированию временных изменений концентрации 
атмосферного радона 222Rn на основе данных активности бета-частиц радоновых мониторов (с 
парой счетчиков Гейгера-Мюллера). Подход последовательно включает в себя ряд новых или 
улучшенных методов анализа (метод корреляционного интеграла, фрактальный анализ, алго-
ритмы средней взаимной информации, ложных ближайших соседей, показателей Ляпунова, 
схемы нелинейного прогнозирования, спектральные методы и т.д.) для решения проблемы коли-
чественно полного моделирования и анализа временной эволюции концентрации атмосферной 
радона 222Rn. Впервые получены данные о топологических и динамических инвариантах для 
временных рядов концентрации 222Rn, открыт феномен детерминированного хаоса, используя 
подробные данные измерений концентраций радона на станции SMEAR II Финского метеоро-
логического института

Ключевые слова: Хаотическая динамика, временные ряды концентрации 222Rn, универ-
сальный комплексный хаос-динамический подход, анализ и прогнозирование
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НЕЛІНІЙНИЙ ХАОС-ДИНАМІЧНИЙ АНАЛІЗ ЧАСОВИХ СЕРІЙ КОНЦЕНТРАЦІЙ 
АТМОСФЕРНОГО РАДОНУ 222Rn   НА ОСНОВІ ДАНИХ АКТИВНОСТІ БЕТА 

ЧАСТИНОК  РАДОНОВИХ МОНІТОРІВ

Резюме
 Робота присвячена розробці теоретичних основ нового універсального комплексного хаос-

динамічного підходу  до аналізу та прогнозування часових змін концентрації атмосферного 
радону 222Rn  на основі  даних активності бета-частинок радонових моніторів (з парою лічиль-
ників Гейгера-Мюллера). Підхід послідовно включає в себе ряд нових або поліпшених методів 
аналізу (метод кореляційного інтегралу, фрактальний аналіз, алгоритми середньої  взаємної 
інформації, помилкових найближчих сусідів, показників Ляпунова,  схеми нелінійного прогно-
зування, спектральні методи і т.і.) для вирішення проблеми кількісно повного моделювання та 
аналізу часової еволюції концентрації атмосферної радону 222Rn. Вперше отримані дані про то-
пологічні і динамічні інваріанти для часових рядів концентрації 222Rn, відкрито феномен детер-
мінованого хаосу, використовуючи детальні дані вимірювань концентрацій радону на SMEAR 
II станції Фінського метеорологічного інституту.

Ключові слова: Хаотична динаміка, часові ряди концентрації 222Rn, універсальний комплек-
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