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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMIC SYSTEMS
208Pb WITH ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS 

It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the Klein-Gordon-Fock with 
a generalized radiation and strong pion-nuclear potentials. It is applied to calculation of the energy and spectral parameters 
for pionic atoms of the 208Pb  with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) 
and the strong pion-nuclear  interaction corrections. The measured values of the Berkley, CERN and Virginia laboratories 
and alternative data based on other versions of the Klein-Gordon-Fock theories with taking into account for a finite size 
of the nucleus in the model uniformly charged sphere and the standard Uehling-Serber radiation correction and optical 
atomic theory  are listed too. There are listed new data on shift and broadening of the 4f level in  208Pb  due to the strong 
pion-nuclear interaction.

1.  Introduction

In papers [1-3] we have presented a new rela-
tivistic method of the Klein-Gordon-Fock equa-
tion with an generalized pion-nuclear potential 
to determine transition energies in spectroscopy 
of light, middle and heavy pionic atoms with ac-
counting for the strong interaction effects. In this 
paper, which goes on our studying on spectros-
copy of pionic atoms, we firstly applied method 
[1-3] to calculating calculation of the energy and 
spectral parameters for pionic atom of the 208Pb 
with accounting for the radiation (vacuum po-
larization), nuclear (finite size of a nucleus ) and 
the strong pion-nuclear  interaction corrections. 
There are listed new data on shift and broadening 
of the 4f level in  208Pb  due to the strong pion-
nuclear interaction.

Following [1-3], let us remind that  spectros-
copy of hadron atoms has been used as a tool for 
the study of particles and fundamental properties 
for a long time. Exotic atoms are also interesting 
objects as they enable to probe aspects of atomic 
and nuclear structure that are quantitatively dif-
ferent from what can be studied in electronic or 
“normal” atoms. At present time one of the most 

sensitive tests for the chiral symmetry breaking 
scenario in the modern hadron’s physics is pro-
vided by studying the exotic hadron-atomic sys-
tems. Nowadays the transition energies in pionic 
(kaonic, muonic etc.) atoms are measured with an 
unprecedented precision and from studying spec-
tra of the hadronic atoms it is possible to investi-
gate the strong interaction at low energies meas-
uring the energy and natural width of the ground 
level with a precision of few meV [1-20].  The 
strong interaction is the reason for a shift in the 
energies of the low-lying levels from the purely 
electromagnetic values and the finite lifetime of 
the state corresponds to an increase in the ob-
served level width. For a long time the similar 
experimental investigations have been carried out 
in the laboratories of Berkley, Virginia (USA), 
CERN (Switzerland). The most known theoreti-
cal models to treating the hadronic (pionic, ka-
onic, muonic, antiprotonic etc.) atomic systems 
are presented in refs. [21-48]. The most difficult 
aspects of the theoretical modeling are reduced 
to the correct description of pion-nuclear strong 
interaction [1-3] as the electromagnetic part of the 
problem is reasonably accounted for. 
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2.  Relativistic approach to pionic atoms 
spectra 

 
As the basis’s of a new method has been 
published, here we present only the key 
topics of an approach [1-3]. All available 
theoretical models to treating the hadronic 
(kaonic, pionic) atoms are naturally based on 
the using the Klein-Gordon-Fock equation 
[2,5], which can be written as follows :                                         
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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(4) 
The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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                                                                   (5) 
where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  

<r2>1/2=(0.836A1/3+0.5700)fm. 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-71]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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theoretical models to treating the hadronic 
(kaonic, pionic) atoms are naturally based on 
the using the Klein-Gordon-Fock equation 
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  

 
<r2>1/2=(0.836A1/3+0.5700)fm. 

 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-77]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  

 
<r2>1/2=(0.836A1/3+0.5700)fm. 

 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-77]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  

 
<r2>1/2=(0.836A1/3+0.5700)fm. 

 
The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of 
the following system of the differential 
equations with the corresponding boundary 
conditions. Another, probably, more 
consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-77]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
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where x is the solution of the stationary 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential. The most 
direct approach to treating the strong  
interaction is provided by the well known 
optical potential model (c.g. [2]). The nuclear 
potential for the spherically symmetric 
density  Rr  is [13-15]: 
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The most popular Fermi-model pproximation 
the charge distribution in the nucleus  r  is:   
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parameter с is chosen by such a way that it is 
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the following system of the differential 
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consistent approach is in using the relativistic 
mean-field (RMF) model, which been 
designed as a renormalizable meson-field 
theory for nuclear matter and finite nuclei 
[21]. The detailed presentation of our method 
for construction of the many-body relativistic 
perturbation theory with accounting for 
relativistic, exchange-correlation, nuclqar 
and radiative (QED) effects is presented in 
Refs. [41-77]. Here we note that to account 
QED effect, namely, the vacuum polarization 
one we have used the generalized  Ueling-
Serber potential with modification to take 
into account the high-order corrections.  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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Here  rnp,  – distribution of a density of the 
protons and neutrons, respectively,  – 
parameter ( 0  corresponds to case of “no 
correlation”, 1 , if anticorrelations 
between nucleons);  respectively isoscalar 
and isovector parameters b0, c0 , B0, b1,c1 , C0  
B1, C1 –are corresponding to the s-wave and 
p-wave (repulsive and attracting potential 
member) scattering length in the combined 
spin-isospin space with taking into account 
the absorption of pions (with different 
channels at p-p pair  ppB0  and  p-n  pair  

 pnB0 ),  and isospin and  spin dependence of 

an amplitude  -N scattering   
(         rrbrbrb np   100 , 

the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:   

             ;KG FS VP NE E E E E         (12)                                                                                                                       

Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atom of 208Pb 
are presented. The measured values of the  
CERN and alternative data based on other 
versions of the Klein-Gordon-Fock theories 
with taking into account for a finite size of 
the nucleus in the model uniformly charged 
sphere and the standard Uehling-Serber 
radiation correction   and optical atomic 
theory are listed too [2-10]. In table 2 we 
present data on the shift and broadening 
(keV) of the 4f level due to the strong pion-
nuclear interaction [2-8]. 

 
Table 1. Transition energies (keV) in the spectra of heavy pionic atom  208Pb (see text) 

Trans. CERN 
EEXP 

EN 
[14, 18] 

EN, 
Our data 

4f-3d 1282 2.2 1261.23 1281.78 
5g-4f 575.46 0.04 - 575.78 

 
Table 2. Shift and broadening (keV) of the 4f level due to the strong pion-nuclear interaction 

4f ,4f Exp 
H-like 
Func. 

Tau1 
 

Tau2 
 

Bat 
 

Sek 
 

Laat 
 

Our  
 

208Pb:  1.680.04 - 1.76 1.62 1.58 1.39 1.68 1.65 
208Pb: Г 0.980.05 - 1.18 1.04 1.03 0.86 0.98 0.97 

 
Here we use the short designation of the VN: 
potential parameter sets: Tauscher, -Tau1; 
Tauscher, -Tau2; Batty etal-Bat .; Seki etal- 
Sek; Laat-Konijin etal - Laat, Our set – our. 

 
Our parameterization VN upheld options that 
are the most reliably determined 
(B0,с0,с1,С0). The potential parameters whose 
values differ greatly in different sets, in 
particular, b1 (b1= –0.094) plus not included 

absorption of pions (with different channels at p-p 
pair ( )ppB0  and  p-n  pair  ( )pnB0 ),  and isospin and  
spin dependence of an amplitude  p-N scattering  

( ( ) ( ) ( ) ( ){ }rrbrbrb np rrrr −+→ 100 ,

the Lorentz-Lorentz effect in the p-wave interac-
tion. For the pionic atom with remained  electron 
shells the total wave-function is a product of the 
product Slater determinant of the electrons sub-
system (Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:  

             ;KG FS VP NE E E E E≈ + + +               (12)

Here KGE -is the energy of a pion in a nucleus 
( ),Z A  with the point-like charge (dominative 
contribution in (12)), FSE  is the contribution due 
to the nucleus finite size effect,  VPE is the radia-
tion correction due to the vacuum-polarization ef-
fect, NE  is the energy shift due to the strong in-
teraction NV .

The strong pion-nucleus interaction contribu-
tion can be found from the solution of the Klein-
Gordon-Fock equation with the corresponding pi-
on-nucleon potential. The detailed description and 
analysis of different aspects of the computational 
procedure can be found in Refs. [1-4,48-75]. 

3.  Results and conclusions

In table 1 our data on the 4f-3d, 5g-4f transi-
tion energies for pionic atom of 208Pb are presen-
ted. The measured values of the  CERN and alter-
native data based on other versions of the Klein-
Gordon-Fock theories with taking into account for 
a finite size of the nucleus in the model uniformly 
charged sphere and the standard Uehling-Serber 
radiation correction   and optical atomic theory 
are listed too [2-10]. In table 2 we present data on 

Table 2
Shift and broadening (keV) of the 4f level due to the strong pion-nuclear interaction

the shift and broadening (keV) of the 4f level due 
to the strong pion-nuclear interaction [2-8].

Table 1 
Transition energies (keV) in the spectra of 

heavy pionic atom  208Pb (see text)

Trans. CERN
EEXP

EN
[14, 18]

EN,
Our 

data

4f-3d 1282 ± 2.2 1261.23 1281.78

5g-4f 575.46 ± 0.04 - 575.78

Here we use the short designation of the 
VpN: potential parameter sets: Tauscher, -Tau1; 
Tauscher, -Tau2; Batty etal-Bat .; Seki etal- Sek; 
Laat-Konijin etal - Laat, Our set – our.

Our parameterization VpN upheld options that 
are the most reliably determined (B0,с0,с1,С0). The 
potential parameters whose values   differ greatly 
in different sets, in particular, b1 (b1=

 –0.094) plus 
not included still to the VpN  parameter  set (ImB1, 
ImC1 ) were optimized by calculating the strong 
dependencies shifts for the pionic p-20Ne,24Mg, 93

Nb,133Cs,175Lu,181Ta,197Au,208Pb atoms upon the 
values   of b1, ImB1,ImC1; further the selected these 

values meet the standard deviation of the least re-
liable experimental values. 

The analysis of the presented data indicate on 
the importance of the correct accounting for the 
radiation (vacuum polarization) and the strong pi-
on-nuclear  interaction corrections. Obviously, it 
is clear that that the contributions provided by the 
finite size effect should be accounted in a precise 
theory. Besides, taking into account the increas-
ing accuracy of the X-ray pionic atom spectros-
copy experiments, it can be noted  that knowl-
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edge of the exact electromagnetic theory data will 
make more clear the true values for parameters 
of the pion-nuclear potentials and correct the dis-
advantage of widely used parameterization of the 
potentials (9)-(11). 
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RELATIVISTIC THEORY OF SPECTRA OF PIONIC ATOMIC SYSTEM 208Pb
WITH ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS 

Abstract. It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis 
of the Klein-Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. It is applied 
to calculation of the energy and spectral parameters for pionic atoms of the 208Pb  with accounting 
for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) and the strong pion-nuclear  
interaction corrections. The measured values of the Berkley, CERN and Virginia laboratories and 
alternative data based on other versions of the Klein-Gordon-Fock theories with taking into account 
for a finite size of the nucleus in the model uniformly charged sphere and the standard Uehling-Serber 
radiation correction and optical atomic theory  are listed too. There are listed new data on shift and 
broadening of the 4f level in  208Pb  due to the strong pion-nuclear intetraction.

Key words: strong interaction, pionic atom 208Pb, relativistic theory

УДК 539.182

И. Н. Серга, О. Ю. Хецелиус, Л. А. Витавецкая, А. Н. Быстрянцева

РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ АТОМНЫХ СИСТЕМ 208Pb С 
УЧЕТОМ ЭФФЕКТОВ СИЛЬНОГО ПИОН-ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ

Резюме. Представлена последовательная релятивистская теория спектров пионных атомов 
на основе уравнения Клейна-Гордона-Фока с обобщенными радиационным и сильным  пион-
ядерным потенциалом.  Выполнен расчет энергетических и спектральных параметров для пи-
онного атома 208Pb, с учетом радиационных (поляризация вакуума), ядерных (конечный размер 
ядра) эффектов и поправки на сильное пион-нуклонное взаимодействие.  Также для сравнения 
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представлены данные измерений в лабораториях Berkley, ЦЕРН и Вирджиния и теоретические 
результаты, полученные на основе альтернативных теорий Клейна-Гордона-Фока с учетом ко-
нечного размера ядра в модели равномерно заряженной сферы и стандартной Юлинг-Сербер 
поправки.   Представлены новые данные по сдвигу и уширению 4f уровня в атоме  208Pb  благо-
даря сильному пион-ядерному взаимодействию.

Ключевые слова: сильное взаимодействие, пионный атом 208Pb, релятивистская теория
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PЕЛЯТИВІСТСЬКА ТЕОРІЯ СПЕКТРІВ ПІОННИХ АТОМНИХ СИСТЕМ 208Pb  
З УРАХУВАННЯМ ЕФЕКТІВ СИЛЬНОЇ ПІОН-ЯДЕРНОЇ ВЗАЄМОДІЇ

Резюме. Представлена послідовна релятивістська теорія спектрів півоній атомів на основі 
рівняння Клейна-Гордона-Фока з узагальненими радіаційним і сильним півонія-ядерним по-
тенціалом. Виконано розрахунок енергетичних і спектральних параметрів для піоного атома 
208Pb з урахуванням радіаційних (поляризація вакууму), ядерних (кінцевий розмір ядра ) ефек-
тів та поправки на сильну піон-нуклонну взаємодію. Також для порівняння представлені дані 
вимірювань в лабораторіях Berkley, ЦЕРН і Вірджинія і теоретичні результати, отримані на 
основі альтернативних теорій Клейна-Гордона-Фока з урахуванням кінцевого розміру ядра в 
моделі рівномірно зарядженої сфери і стандартної Юлінг-Сербер поправки. Представлені нові 
данні щодо зсуву та уширення 4f рівня в атомі  208Pb  завдяки сильній піон-ядерній взаємодії

Ключові слова: сильна взаємодія, піонний атом 208Pb, релятивістська теорія


