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ADVANCED GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF DIATOMIC 

MOLECULE

The advanced combined theoretical approach to vibrational structure in photoelectron spectra  of diatomic molecules, 
which is based on the density functional theory (DFT) and the Green’s-functions approach, is used for quantitative treating 
the diatomic photoelectron spectra. The density of states, which describe the vibrational structure in photoelectron spectra, 
is defined with the use of combined DFT-Green’s-functions approach and is well approximated by using only the first 
order coupling constants in the one-particle approximation. Using the DFT theory leads to significant simplification of the 
calculation.

1. Introduction

The Green’s method is very well known in 
a quantum theory of field, quantum theory of 
solids. Naturally, an attractive idea was to use 
it in the molecular theory. Regarding a problem 
of description of the vibrational structure in 
photoelectron spectra of molecules, it is easily 
understand that this approach has great perspective 
(c.f.[1-51]).  One could note that the experimental 
photoelectron (PE) spectra usually show a 
pronounced vibrational structure. Usually the 
electronic Green’s function is defined for fixed 
position of the nuclei. As result, only vertical 
ionization potentials (V.I.P.’s) can be calculated 
[11,2,11,12]. The cited method, however, requires 
as input data the geometries, frequencies, and 
potential functions of the initial and final states. 
Since in most cases at least a part of these data are 
unavailable, the calculations have been carried 
out with the objective of determining the missing 
data by comparison with experiment. Naturally, 
the Franck-Condon factors are functions of the 
derivatives of the difference between the potential 
curves of the initial and final states with respect to 
the normal coordinates. To avoid the difficulty and 
to gain additional information about the ionization 
process, the Green’s functions approach has 

been extended to include the vibrational effects 
in the photoelectron spectra. Nevertheless, there 
are well known great difficulties of the correct 
interpretation of the photoelectron spectra for any 
molecules. 

Here we present the advanced combined 
theoretical approach to vibrational structure in 
photoelectron spectra  of diatomic molecules 
and  use it for effective quantitative treating the 
diatomics photoelectron spectra. The advanced 
approach is based on the Green’s function 
method (Cederbaum-Domske version) [11,12], 
Fermi-liquid DFT formalism [1-8] and use of 
the novel effective density functionals  (see also 
[13-16]). As usually  (see Refs. [2,4,11]), the 
density of states, which describe the vibrational 
structure in molecular photoelectron spectra, 
is calculated with the help of combined DFT-
Green’s-functions approach. In addition to 
exact solution of one-bode problem different 
approaches to calculate reorganization and 
many-body effects are presented. The density 
of states is well approximated by using only 
the first order coupling constants in the one-
particle approximation. It is important that the 
calculational procedure is significantly simplified 
with using the quasiparticle DFT formalism.  
Thus quite simple method becomes a powerful 
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tool in interpreting the vibrational structure of 
photoelectron spectra for different molecular 
systems.  

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information about 
the ionization potentials (I.P.) and molecular 
vibrational structure due to quick ionization is the 
density of occupied states:
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where 〉Y0  is the exact ground state wave function 

of the reference molecule and  )(tak is an electron 
destruction operator, both in the Heisenberg 
picture. For particle attachment the quantity of 
interest is the density of unoccupied states:
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 Usually in order to calculate the value (1) 
states for photon absorption one should express 
the Hamiltonian of the molecule in the second 
quantization formalism. The Hamiltonian is as 
follows:
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where ΕT  and ΝT  are the kinetic energy operators 
for electrons and nuclei, and U represents the 
interaction; ΕΕU represents  the Coulomb 
interaction between electrons, etc;  x (X) denotes 
electron (nuclear) coordinates. As usually, 
introducing a field operator 
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Hartree-Fock (HF) one–particle functions  

фi  ( )(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry on 
the HF level) and dimensionless normal 
coordinates Qs one can write the standard 
Hamiltonian as follows [2,11]:
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with ni=1 (0), iϵf  (iϵf), δσf=1 (0) , (ijkl)ϵσf , where 

the index set v1 means that at least  kφ  and lφ or iφ  

and jφ are unoccupied, v2 that at most one of the 

orbitals is unoccupied, and  v3  that  kφ  and jφ or 

lφ and  jφ  are unoccupied.  Here for simplicity all 
terms leading to anharmonicities are neglected. 

The sω are the HF frequencies; sb , t
sb  are 

destruction and creation operators for vibrational 
quanta as 
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The interpretation of the above Hamiltonian and 
an exact solution of the one-body HF problem is 
given in refs. [1,2,11,12]. The HF-single-particle 

component 0H  of the Hamiltonian (4) is as 
follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.
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where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  
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Usually in order to calculate the value (1) 
states for photon absorption one should 
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where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
represents the interaction; ΕΕU represents  the 
Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
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at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 
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sss bbQ −=∂∂ . (5)

The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:

formalism.  Thus quite simple method 
becomes a powerful tool in interpreting the 
vibrational structure of photoelectron spectra 
for different molecular systems.

2. Method: Density of states in one-body 
and many-body solution

As usually (see details in refs. [1-12]), the 
quantity which contains the information 
about the ionization potentials (I.P.) and 
molecular vibrational structure due to quick 
ionization is the density of occupied states:

〉〈∫=
−

00 ψ)()0(aψ)2/1(є)(
1

tadteN k
t

k
єti

k


π ,
(1)

where 〉Ψ0 is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture. For particle 
attachment the quantity of interest is the 
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Usually in order to calculate the value (1) 
states for photon absorption one should 
express the Hamiltonian of the molecule in 
the second quantization formalism. The 
Hamiltonian is as follows:
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where ΕT and ΝT are the kinetic energy 
operators for electrons and nuclei, and U
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Coulomb interaction between electrons, etc;  
x (X) denotes electron (nuclear) coordinates. 
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with ni=1 (0), i∈f  (i∉f), δσf=1 (0) , (ijkl)∈σf
, where the index set v1 means that at least  

kφ and lφ or iφ and jφ are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3 that  kφ and jφ or lφ and  jφ are 
unoccupied.  Here for simplicity all terms 
leading to anharmonicities are neglected. The 

sω are the HF frequencies; sb , t
sb are 

destruction and creation operators for 
vibrational quanta as 
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The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,2,11,12]. The HF-
single-particle component 0H of the 
Hamiltonian (4) is as follows:
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Correspondingly in the one-particle picture the 
density of occupied states is given by
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Introducing new operators                
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with real coefficients slsl
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eq. (7) is as follows:
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where d  function in (12) naturally  contains the 
information about adiabatic ionization potential 
and the spacing of the vibrational peaks; 

20ˆ 〉〈 Un  is the well-known Franck-Condon 
factor.   In a diagrammatic method to get function 

)(ºNk  one should calculate the GF )(' ºGkk first 
[1,2,11,12]:
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and the function )(ºNk  can be found from the 
relation
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Choosing the unperturbed Hamiltonian 0H  to be 

Ni
t
ii HaaºH += ∑0  one finds the GF. In the 

known approximation GF is as follows: 
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The direct method for calculation of Nk(∈) as the 
imaginary part of the GF includes a definition of 
the vertical I.P. (V.I.P.s) of the reference molecule 
and then of Nk ( )∈ .  The zeros of the functions
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where ( )k
op S+∈ denotes the k-th eigenvalue of the 

diagonal matrix of the one-particle energies added 
to matrix of the self-energy part, are the negative 
V. I. P. ‘s for a given geometry.  One can write 
[2,11,12]:
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Expanding the ionic energy 1−N
kE about the 

equilibrium geometry of the reference molecule 
in a power series of the normal coordinates of this 
molecule leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, and new 
coupling constants are then:
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The  coupling constants lg  and lly ′  are calculated 
by the well-known perturbation expansion of the 
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self-energy part using the Hamiltonian HEN of Eq. 
(3).   In second order one obtains:
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and the coupling constant gl, are written as
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It is suitable to use further the pole strength of the 
corresponding GF:
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Below we give the DFT definition of the pole 
strength corresponding to V. I. P.’s and confirm 
the earlier data [11-15]: pk≈0,8-0,95. The coupling 
constant is:   
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3. Fermi-liquid quasiparticle density function-
al theory

Further we consider  the quasiparticle Fermi-
liquid version of the DFT, following to refs. [1-
3,8,17]. The  master equations can be obtained 
on the basis of variational principle, if we start 
from a Lagrangian of a molecule  Lq . It should be 

defined as a functional of  quasiparticle densities: 
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llllln ].[)( **
2 nr

The densities ν0 and ν1  are similar to the HF 
electron density and kinetical energy density cor-
respondingly; the density ν2  has no an analog in 
the HF or DFT theory and appears as result of 
account for the energy dependence of the mass 
operator S. A Lagrangian Lq  can be written as a 
sum of a free Lagrangian and Lagrangian of inter-
action: Lq = Lq

0 + Lq
int, where a free Lagrangian Lq

0 
has a standard form: 
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l
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pq tindrL ,       (24)

The interaction Lagrangian is defined in the form, 
which is characteristic for a standard  DFT  (as 
a sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator S :
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where ikb  are some constants (look below), F is 
an effective potential of the exchange-correlation 

interaction. The Coulomb interaction part KL
looks as follows: 
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where                       In the local density 
approximation the potential F can be expressed 
through the exchange-correlation pseudo-
potential Vxc as follows: 

                                                                      (27)

Further, one can get the following expressions for  

iqi L dnd /int−=S :, in particular: 
     

(25)
where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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The terms ε∂∂∑ / and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 
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F is an effective potential of the exchange-
correlation interaction. The Coulomb 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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corresponding to the pole strength of the  
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method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
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theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
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HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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The terms ε∂∂∑ / and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 

(25)
where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 

coordinate shifts δQS, and new coupling 
constants are then:
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The  coupling constants lg and lly ′ are 
calculated by the well-known perturbation 
expansion of the self-energy part using the 
Hamiltonian HEN of Eq. (3).   In second order 
one obtains:
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and the coupling constant gl, are written as
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It is suitable to use further the pole strength 
of the corresponding GF:
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Below we give the DFT definition of the pole 
strength corresponding to V. I. P.'s and 
confirm the earlier data [11-15]: pk≈0,8-0,95.
The coupling constant is:
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3. Fermi-liquid quasiparticle density 
functional theory

Further we consider  the quasiparticle Fermi-
liquid version of the DFT, following to refs. 
[1-3,8,17]. The  master equations can be 
obtained on the basis of variational principle, 
if we start from a Lagrangian of a molecule 
Lq . It should be defined as a functional of 
quasiparticle densities: 

,|)(|)( 2
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λ
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∑ ΦΦ−ΦΦ=
λ

λλλλλν ].[)( **
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The densities ν0 and ν1 are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density ν2 has no an 
analog in the HF or DFT theory and appears 
as result of account for the energy 
dependence of the mass operator Σ. A 
Lagrangian Lq can be written as a sum of a 
free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where a free 

Lagrangian Lq
0 has a standard form: 

λ
λ

λλ ε Φ−∂∂Φ= ∫ ∑ )/(*0
pq tindrL , (24)

The interaction Lagrangian is defined in the 
form, which is characteristic for a standard  
DFT  (as a sum of the Coulomb and 
exchange-correlation terms), however, it 
takes into account for the energy dependence 
of a mass operator Σ :
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Here VK is the Coulomb term, ex
0S  is the ex-

change term. Using the known canonical relation-
ship, one can derive the  quasiparticle Hamiltoni-

an, which is corresponding to qL .Further con-
stants βik should be defined.  In some degree they 
have the same essence as the similar constants in 
the well-known Landau Fermi-liquid theory and  
the Migdal finite Fermi-systems theory. Regard-
ing universality of  βik,, indeed, as we know now, 
the total  universality of the constants in the last 
theories is absent, though a range of its changing 
is quite small [2,17]. The value of  β00  is depen-
dent on definition of Vxc. If as Vxc it is used one of 
the DFT exchange-correlation potentials from, 
then without losing a community of statement, 
β00=1. The constant β02  can be in principle calcu-
lated by analytical way, but it is very useful to 
remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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The terms e∂∂∑ /  and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function method 
expression (7) is in fact corresponding to the pole 
strength of the  Green’s function [2].  The new 
element of an approach can be connected with us-
ing the DFT correlation functional of the Lee-
Yang-Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic mole-
cule of N2 for application of the combined  Green’s 
function method and quasiparticle DFT approach. 
The nitrogen molecule has been naturally dis-
cussed in many papers. The valence V. I. P. ‘s of 
N2 have been calculated [1,13,14,24] by the meth-
od of Green’s functions and therefore the pole 
strengths pk are known and the mean values qk can 
be estimated. It should be reminded that the N2 

molecule is the classical example where the 
known Koopmans’ theorem even fails in reproduc-
ing the sequence of the V. I. P. ‘s in the PE spec-
trum.   From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. I. P. 

‘s assigned by gσ and uσ improve while for π V. I. 
P. the good agreement between the Koopmans 
value and the experimental one is lost, leading to 
the same sequence as given by Koopmans’ theo-
rem.  In Table 1 the experimental V. I. P. ‘s (a), the 
one-particle HF energies (b), the V. I. P. ‘s calcu-
lated by Koopmans’ theorem plus the contribution 
of reorganization (c), the V. I. P. ‘s calculated with 
Green’s functions method (d), the combined Green 
functions and DFT approach (e), the similar our 
results (f).   

Table 1
The experimental and calculated V. I. P.’s 
(in eV) of N2. Rk is the contribution of 

reorganization; pk stands for pole strength.

Orbital Exptla

V.I.P.,s - b
k∈ ( )c

kk R+∈−

3 gσ
15,60 17,36 16,01

1 up
16,98 17,10 15,67

2 uσ
18,78 20,92 19,93

Orbital Calcd

V.I.P.,s
Calce

V.I.P.,s
Calcf

V. I . P. ,

e
kr

3 gσ
15,50 15,52 15,58

1 up
16,83 16,85 16,96

2 uσ
18,59 18,63 18,76

The important point of all consideration is 
connected the principal possibility to reproduce 
diatomic spectra by applying a one-particle theory 
with account of the correlation and reorganization 
effects. The combined theoretical approach, which 
is based on the quasiparticle DFT  with using 

(25)
where ikβ are some constants (look below), 
F is an effective potential of the exchange-
correlation interaction. The Coulomb 
interaction part KL looks as follows: 
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where Σ2=∂Σ/∂ε. In the local density 
approximation the potential F can be 
expressed through the exchange-correlation 
pseudo-potential Vxc as follows: 

F(r1,r2)=δVxc/δν0⋅δ(r1-r2). (27)

Further, one can get the following 
expressions for  iqi L δνδ /int−=Σ :, in 
particular: 
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Here VK is the Coulomb term, ex

0Σ is the 
exchange term. Using the known canonical 
relationship, one can derive the  quasiparticle
Hamiltonian, which is corresponding to 

qL .Further constants βik should be defined. 
In some degree they have the same essence as 
the similar constants in the well-known 
Landau Fermi-liquid theory and  the Migdal 
finite Fermi-systems theory. Regarding 
universality of βik,, indeed, as we know now, 
the total  universality of the constants in the 
last theories is absent, though a range of its 
changing is quite small [2,17]. The value of 
β00 is dependent on definition of Vxc. If as 
Vxc it is used one of the DFT exchange-
correlation potentials from, then without 
losing a community of statement, β00=1. The 
constant β02 can be in principle calculated by 
analytical way, but it is very useful to 

remember its connection with a spectroscopic 
factor Fsp of the system [18]:
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The terms ε∂∂∑ / and ∑ 2
is directly linked 

[2,17]. In the terms of the Green function 
method expression (7) is in fact 
corresponding to the pole strength of the  
Green's function [2].  The new element of an 
approach can be connected with using the 
DFT correlation functional of the Lee-Yang-
Parr (LYP) (look details in ref. [13-16]).

3. Results and conclusions

As illustration, we choose the diatomic 
molecule of N2 for application of the 
combined  Green’s function method and 
quasiparticle DFT approach. The nitrogen 
molecule has been naturally discussed in 
many papers. The valence V. I. P. 's of N2
have been calculated [1,13,14,24] by the 
method of Green's functions and therefore the 
pole strengths pk are known and the mean 
values qk can be estimated. It should be 
reminded that the N2 molecule is the classical 
example where the known Koopmans' 
theorem even fails in reproducing the 
sequence of the V. I. P. 's in the PE spectrum.   
From the HF calculation of Cade et al.[24] 
one finds that including reorganization the V. 
I. P. 's assigned by gσ and uσ improve while 
for π V. I. P. the good agreement between the 
Koopmans value and the experimental one is 
lost, leading to the same sequence as given 
by Koopmans' theorem.  In Table 1 the 
experimental V. I. P. 's (a), the one-particle 
HF energies (b), the V. I. P. 's calculated by 
Koopmans' theorem plus the contribution of 
reorganization (c), the V. I. P. 's calculated 
with Green's functions method (d), the 
combined Green functions and DFT approach
(e), the similar our results (f). 
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correct DF and  the Green’s-functions approach 
can be prospectively used for quantitative treating 
the diatomic photoelectron spectra. It is very 
important that the computational complexity of 
the combined approach is significantly lower in 
comparison with original version of the Green’s-
functions method. 

References
1.	 Glushkov A.V., New approach to theo-

retical definition of ionization potentials 
for molecules on the basis of Green’s 
function method//Journ.of Phys.
Chem.-1992.-Vol.66.-P.2671-2677.

2.	 Glushkov A.V., Relativistic quantum 
theory. Quantum mechanics of atomic 
systems.-Odessa: Astroprint, 2008.-
700P.

3.	 Glushkov A.V., The Green’s functions 
and density functional approach to vi-
brational structure in the photoelectron 
spectra of molecules: Review of meth-
od// Photoelectronics.-2014.-Vol.23.-
P.54-72.

4.	 Glushkov A.V., Lepikh Ya.I., Fed-
chuk A.P., Loboda A.V., The Green’s 
functions and density functional ap-
proach to vibrational structure in 
the photoelectron spectra of mole-
cules//Photoelectronics.-2009.-N18.-
P.119-127.

5.	 Svinarenko A.A., Fedchuk A.P., Glush-
kov A.V.,Lepikh Ya.I.,  Loboda A.V., 
Lopatkin Yu.M., The Green’s func-
tions and density functional approach 
to vibrational structure in the photo-
electron spectra of carbon oxide mol-
ecule//Photoelectronics.-2010.-N19.-
P.115-120.

6.	 Glushkov A.V., Fedchuk A.P., Kon-
dratenko P.A., Lepikh Ya.I., Lopatkin 
Yu.M., Svinarenko A.A., The Green’s 
functions and density functional ap-
proach to vibrational structure in the 
photoelectron spectra: Molecules of 
CH, HF//Photoelectronics.-2011.-
Vol.20.-P.58-62.

7.	 Glushkov A.., Koltzova N., Effective 
account of polarization effects in calcu-

lation of oscillator strengths and ener-
gies for atoms and molecules by meth-
od of equations of motion// Opt. Spectr. 
-1994.- Vol. 76,№6.-P.885-890.

8.	 Glushkov A.V., Quasiparticle approach 
in the density functional theory under 
finte temperatures and dynamics of ef-
fective Bose -condensate // Ukr. Phys. 
Journ.- 1993.-Vol. 38, №8.-P.152-157.

9.	 Ponomarenko Е.L., Kuznetsova A.A., 
Dubrovskaya Yu.V., Bakunina (Mis-
chenko) E.V., Energy and spectros-
copic parameters of diatomics within  
generalized equation of motion meth-
od// Photoelectronics.-2016.-Vol.25.-
P.114-118.

10.	Mischenko E.V., An effective ac-
count of correlation in calculation 
of excited states energies for mol-
ecules by equation of motion method: 
О3//Photoelectronics.-2007.-N16.-
P.123-125.

11.	Köppel H., Domcke W., Ceder-
baum L.S., Green’s function method 
in quantum chemistry// Adv. Chem. 
Phys.-1994.-Vol.57.-P.59-132.

12.	Cederbaum L.S., Domcke W., On vi-
brational structure of photoelectron 
spectra by the Green’s functions meth-
od//  J.Chem. Phys.-1984.-Vol.60.-
P.2878-2896. 

13.	Zangwill A.,Soven P.J. Density-func-
tional approach to local field effects in 
finite systems. Photo-absorption in rare 
gases // Phys.Rev.A.-1990.-Vol.21,N5-
P.1561-1572.   

14.	Kobayashi K., Kurita N., Kumahora 
H., Kuzatami T. Bond-energy calcula-
tions of Cu , Ag, CuAg with the gen-
eralized gradient  approximation// Phys.
Rev.A.-1991.-Vol.43.-P.5810-5813.

15.	Lagowscki J.B., Vosko S.H.  Analysis 
of  local and gradient- correction corre-
lation energy functionals using electron 
removal energies// J. Phys.B: At. Mol. 
Opt. Phys.-1998.-Vol.21,N1-P.203-208.

16.	Guo Y., Whitehead M.A. Effect of the 
correlation correction  on the ionization 
potential and electron affinity in atoms// 
Phys.Rev.A-1999.-Vol.39,N1.-P.28-34.



84

17.	Glushkov A.V., An universal quasi-
particle energy functional in a density 
functional theory for relativistic atom//
Optics and Spectr.-1999.-Vol.66,N1-
P.31-36.

18.	Glushkov A.V., Relativistic and cor-
relation effects in spectra of atomic 
systems.-Odessa: Astroprint.-2006.-
400P.  

19.	Glushkov A.V., Atom in electromagnet-
ic field.-Kiev: KNT, 2005.-450P. 

20.	Khetselius O.Yu., Hyperfine structure 
of atomic spectra.-Odessa: Astroprint, 
2008.-210P.

21.	Glushkov A.V., Khetselius O.Y., Mali-
novskaya S.V., Spectroscopy of coop-
erative laser-electron nuclear effects in 
multiatomic molecules// Molec. Phys.-
2008.  -Vol.106.-N9-10.-P.1257-1260. 

22.	Glushkov A.V., Khetselius O.Y., Ma-
linovskaya  S.V.,  New laser-electron 
nuclear effects in the nuclear γ transi-
tion spectra in atomic and molecular 
systems// Frontiers in Quantum Sys-
tems in Chemistry and Physics. Series: 
Progress in Theoretical Chemistry and 
Physics , Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer).-2008.-Vol.18.-525-541.

23.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko A.A., Prepelitsa G.P. , Shakhman 
A., Spectroscopy of cooperative laser-
electron nuclear processes in diatomic 
and multiatomic molecules//Spec-
tral Lines Shape (AIP, USA).-2010.-
Vol.16.-P.269-273.

24.	Glushkov A.V., Kondratenko P.A., Buy-
adzhi V.,  Kvasikova A.S., Shakhman 
A., Sakun T., Spectroscopy of coop-
erative laser electron-γ-nuclear pro-
cesses in polyatomic molecules// Jour-
nal of Physics: C Series (IOP, London, 
UK).-2014.-Vol.548.-P. 012025 (5p.).

25.	Glushkov A.V., Kondratenko P.A., 
Lopatkin Yu., Buyadzhi V., Kvasikova 
A., Spectroscopy of cooperative la-
ser electron- γ -nuclear processes in 
diatomics and multiatomic molecules 
// Photoelectronics.-2014.-Vol.23.-
P.142-146.

26.	Khetselius O.Yu., Optimized perturba-
tion theory to calculating the hyperfine 
line shift and broadening for heavy atoms 
in the buffer gas// Frontiers in Quantum 
Methods and Applications in Chemistry 
and Physics. Ser.: Progress in Theor. 
Chem. and Phys., Eds. M.Nascimento, 
J.Maruani, E.Brändas, G.Delgado-Bar-
rio (Springer).-2015-Vol.29.-P.55-76.

27.	Khetselius O.Yu., Relativistic ener-
gy approach to cooperative electron-
γ-nuclear processes: NEET Effect// 
Quantum Systems in Chemistry and 
Physics: Progress in Methods and Ap-
plications.  Ser.: Progress in Theor. 
Chem. and Phys., Eds. K.Nishikawa, J. 
Maruani, E.Brandas, G. Delgado-Bar-
rio, P.Piecuch (Springer).-2012-Vol.26.-
P.217-229. 

28.	Buyadzhi V.V., Glushkov A.V., Lovett 
L., Spectroscopy of atoms and nu-
clei in a strong laser field: AC Stark 
effect and multiphoton resonances//
Photoelectronics.-2014.-Vol.23.-
P.  38-43. 

29.	Khetselius O., Spectroscopy of coopera-
tive electron-gamma-nuclear processes  
in heavy atoms: NEET effect// J. Phys.: 
Conf. Ser.-2012.- Vol.397.-P.012012

30.	Glushkov A.V., Khetselius O.Yu., Lo-
boda A.V., Svinarenko  A.A., QED ap-
proach to atoms in a laser field: Multi-
photon resonances and above threshold 
ionization// Frontiers in Quantum Sys-
tems in Chemistry and Physics, Ser.: 
Progress in Theoretical Chemistry and 
Physics; Eds. S.Wilson, P.J.Grout,  J. 
Maruani, G. Delgado-Barrio, P. Piecuch 
(Springer), 2008.-Vol.18.-P.543-560.

31.	Glushkov A.V., Khetselius O.Yu.,  
Svinarenko A.A., Prepelitsa G.P., En-
ergy approach to atoms in a laser field 
and quantum dynamics with laser puls-
es of different shape//In: Coherence 
and Ultrashort Pulse Laser Emission, 
Ed. by Dr. F. Duarte (InTech).-2010.-
P.159-186. 

32.	Glushkov A.V., Khetselius O.,  Svin-
arenko A, Relativistic theory of cooper-
ative muon-g gamma-nuclear processes: 



85

Negative muon capture and metastable 
nucleus discharge// Advances in the 
Theory of Quantum Systems in Chem-
istry and Physics. Ser.: Progress in The-
or. Chem. and Phys., Eds. P.Hoggan, 
E.Brandas, J.Maruani, G. Delgado-
Barrio, P.Piecuch (Springer).-2012.-
Vol.22.-P.51.  

33.	Glushkov A.V., Khetselius O.Yu., Pre-
pelitsa G., Svinarenko A.A., Geometry 
of Chaos: Theoretical basis's of a con-
sistent combined approach to treating 
chaotic dynamical systems and their 
parameters determination //Proc. of  In-
ternational Geometry Center".-2013.-
Vol.6, N1.-P.43-48.

34.	Malinovskaya S.V., Glushkov A.V., 
Dubrovskaya Yu.V., Vitavetskaya L.A., 
Quantum calculation of cooperative 
muon-nuclear processes: discharge of 
metastable nuclei during negative muon 
capture// Recent Advances in the The-
ory of Chemical and Physical Systems 
(Springer).-2006.-Vol.15.-P.301-307. 

35.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu.,  Lopatkin Yu., Lobo-
da A., Svinarenko A., Nikola L., Pere-
lygina T., Generalized energy approach 
to calculating electron collision cross-
sections for multicharged ions in a plas-
ma: Debye shielding model// Int. Journ. 
Quant. Chem.-2011.-Vol.111,N2.-
P.288-296.

36.	Malinovskaya S.V., Glushkov A.V., 
Khetselius O.Yu., Svinarenko A.A., 
Mischenko E.V., Florko T.A.,   Opti-
mized perturbation theory scheme for 
calculating the interatomic potentials 
and hyperfine lines shift for heavy at-
oms in the buffer inert gas//Int. Journ. 
Quant.Chem.-2009.-Vol.109,N14.-
P.3325-3329.

37.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko A., Prepelitsa G., Mischenko E., 
The Green’s functions and density func-
tional approach to vibrational structure 
in the photoelectron spectra for mol-
ecules// AIP Conf. Proceedings.-2010.-
Vol.1290.-P. 263-268. 

38.	Khetselius O.Yu., Florko T.A., Svin-

arenko A.A., Tkach T.B., Radiative 
and collisional spectroscopy of hy-
perfine lines of the Li-like heavy ions 
and Tl atom in an atmosphere of inert 
gas//Phys.Scripta.-2013.-Vol.T153-
P.014037.  

39.	Khetselius O.Yu., Hyperfine structure 
of radium// Photoelectronics.-2005.-
N14.-P.83-85.

40.	Glushkov A.V, Malinovskaya S.,Co-op-
erative laser nuclear processes: border 
lines effects// In:  New projects and new 
lines of research in nuclear physics. 
Eds. G.Fazio, F.Hanappe, Singapore: 
World Scientific.-2003.-P.242-250. 

41.	Glushkov A.V., Lovett L., Khetselius 
O., Gurnitskaya E., Dubrovskaya Yu., 
Loboda A., Generalized multiconfigu-
ration model of decay of multipole giant 
resonances applied to analysis of reac-
tion (m-n) on the nucleus 40Ca// Internat. 
Journ. Modern  Physics A.-2009.- Vol. 
24, N.2-3.-P.611-615.

42.	Glushkov A., Malinovskaya S., 
Sukharev D., Khetselius O.Yu., Loboda 
A., Lovett L., Green’s function method 
in quantum chemistry: New numerical 
algorithm for the Dirac equation with 
complex energy and Fermi-model nu-
clear potential//Int.J. Quant. Chem.-
2009.- Vol. 109.-N8.-P.1717-1727.

43.	Glushkov A.V., Malinovskaya S.V, 
Gurnitskaya E.P., Khetselius O.Yu., Du-
brovskaya Yu.V., Consistent quantum 
theory of  the recoil induced excitation 
and ionization in atoms during capture 
of neutron// Journal of Physics: Conf. 
Series (IOP).-2006.- Vol.35.-P.425-430.  

44.	Glushkov A.V., Khetselius O.Yu., Gur-
nitskaya E.P., Loboda A.V., Sukharev 
D.E.,  Relativistic quantum chemis-
try of heavy ions and hadronic atomic 
systems: spectra and energy shifts//
Theory and Applications of Com-
putational Chemistry. AIP Confer-
ence Proceedings.-2009.-Vol.1102.-
P.168-171. 

45.	Khetselius O.Yu., Turin A.V., Sukharev 
D.E., Florko T.A., Estimating of  X-
ray spectra for kaonic atoms as tool for 



86

sensing the nuclear  structure// Sensor 
Electr. and Microsyst. Techn.-2009.-
N1.-P.30-35. 

46.	Glushkov A.V., Effective quasi-particle 
valence hamiltonian of molecules in the 
comprehensive semi-empirical theory// 
Sov. J. Struct. Chem.-1998.-Vol.29,N4.-
P.3-9.

47.	Khetselius O.Yu., Quantum Geometry: 
New approach to quantization of the 
quasistationary states of Dirac equation 
for super heavy ion and calculating hy-
per fine structure parameters// Proc.  Int.
Geometry Center.-2012.-Vol.5,№ 3-4.-
P.39-45.   

48.	Glushkov A.V., Khetselius O.Yu., Svin-
arenko  A.A., Theoretical spectroscopy 
of autoionization resonances in spectra 
of lanthanide atoms//  Physica Scripta.-
2013.-Vol.T153.-P.014029.

49.	Gedasimov V N, Zelenkov A G, Kulakov 
V M et al 1994 JETP. 86 1169; Solda-

tov A A 1983 Preprint of I.V.Kurchatov 
Institute for Atomic Energy IAE-3916, 
Moscow

50.	Glushkov A.V., Operator Perturba-
tion Theory for Atomic Systems in a 
Strong DC Electric Field//Advances 
in Quantum Methods and Applications 
in Chemistry, Physics, and Biology. 
Series: Frontiers in Theoretical Phys-
ics and Chemistry, Eds. M.Hotokka, 
J.Maruani, E. Brändas, G.Delgado-
Barrio (Springer).-2013.-Vol. 27.-
P.161-177.

51.	Glushkov A.V., Kondratenko P.A., 
Lepikh Ya., Fedchuk A.P., Svinaren-
ko A.A., Lovett L., Electrodynamical 
and quantum - chemical approaches 
to modelling the electrochemical and 
catalytic processes on  metals, metal 
alloys and semiconductors// Int. J. 
Quantum Chem.-2009.-Vol.109, N14.-
P.3473-3481.

This article has been   received in May  2017  

UDC 539.186

A. A. Kuznetsova, Yu. V. Dubrovskaya,  A. V. Glushkov, Ya. I  Lepikh

ADVANCED GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF DIATOMIC 

MOLECULE

Summary
The advanced combined theoretical approach to vibrational structure in photoelectron spectra  of 

molecules, which is based on the density functional theory (DFT) and the Green’s-functions (GF) 
approach, is used for quantitative treating the diatomics photoelectron spectra. The density of states, 
which describe the vibrational structure in photoelectron spectra, is defined with the use of combined 
‘density functional-Green’s functions’ approach and is well approximated by using only the first order 
coupling constants in the one-particle approximation. Using the DFT theory leads to significant sim-
plification of the molecular calculations.      

Key words: photoelectron spectra of molecules, Green’s functions, density functional theory
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А. А. Кузнецова, Ю. В. Дубровская, А. В. Глушков, Я. И. Лепих

ОБОБЩЕННЫЙ МЕТОД ФУНКЦИЙ ГРИНА И ФУНКЦИОНАЛА ПЛОТНОСТИ 
В ОПРЕДЕЛЕНИИ КОЛЕБАТЕЛЬНОЙ СТРУКТУРЫ ФОТОЭЛЕКТРОННОГО 

СПЕКТРА ДВУХАТОМНЫХ МОЛЕКУЛ

Резюме
Усовершенствованный комбинированный теоретический метод описания вибрационной 

структуры для фотоэлектронных спектров молекул, основанный на методе функций Грина и те-
ории функционала плотности, применен к количественному описанию фотоэлектронного спек-
тра двухатомных молекул. Плотность состояний, которые описывают колебательную структу-
ру в фотоэлектронных спектрах, определяется с использованием комбинированного  подхода 
(метод функционала плотности и функций Грина) и хорошо аппроксимируется с использова-
нием только первого порядка констант связи в одноквазичастичном приближении. Использо-
вание теории функционала плотности приводит к значительному упрощению молекулярных 
расчетов.

Ключевые слова: фoтoэлектронный спектр молекул, метод функций Грина, теория функци-
онала плотности

УДК 539.186

Г. О. Кузнецова, Ю. В. Дубровська, О. В. Глушков, Я. І. Лепіх

УДОСКОНАЛЕНИЙ МЕТОД ФУНКЦІЙ ГРІНА І ФУНКЦІОНАЛУ ГУСТИНИ У 
ВИЗНАЧЕННІ ВІБРАЦІЙНОЇ СТРУКТУРИ ФОТОЕЛЕКТРОННОГО СПЕКТРУ 

ДВОАТОМНИХ МОЛЕКУЛ

Резюме
Удосконалений комбінований теоретичний метод опису вібраційної  структури для фото-

електронних спектрів молекул, який базується на методі функцій Гріна і теорії функціоналу 
густини , застосовано до кількісного опису фотоелектронного спектру двоатомних молекул. 
Густина  станів, які описують коливальну структуру у фотоелектронних спектрах, визначається 
з використанням комбінованого Гріна підходу (метод функціоналу густини  і функцій Гріна) та 
добре апроксимується  з використанням тільки першого порядку констант зв’язку в одноквазі-
частинковому наближенні. Використання теорії функціоналу густини призводить до значного 
спрощення молекулярних розрахунків.

Ключові слова: фoтoелектронний спектр молекул, метод функцій Гріна, теорія функціонала 
густини


