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ADVANCED DATA FOR HYDROGEN ATOM  
IN CROSSED ELECTRIC AND MAGNETIC FIELDS

Spectroscopy of atoms in the crossed external electric and magnetic fields is investigated on the basis of the operator 
perturbation theory. As a novel element within the operator perturbation theory, we use more flexible functions for model 
function, which imitates an electric field. In a case of the crossed electric and magnetic fields we develop more effective 
finite differences numerical scheme. As illustration, some advanced data for the hydrogen atom in the electric and crossed 
external electric and magnetic fields are listed.  Advanced data for hydrogen atom are listed.   

1. Introduction

From the standard quantum mechanics it is well 
known that the external electric field shifts and 
broadens the bound state atomic levels. One 
should note that the usual quantum-mechanical 
approach relates complex eigen-energies (EE) 
E=Er+0,5iG and complex eigen-functions (EF) 
to the shape resonances [1-6]. The calculation 
difficulties in the standard quantum mechanical 
approach are well known and described in many 
Refs. Let us remind that the usual quasiclassical 
WKB approximation overcomes these difficulties 
for the states, lying far from “new continuum 
“ boundary and, as rule, is applied in the case 
of a relatively weak electric field. The same 
is regarding the widespread asymptotic phase 
method (c.f.[2]). Quite another calculation 
procedures are used in the Borel summation of the 
divergent perturbation theory (PT) series and in 
the numerical solution of the difference equations 
following from expansion of the wave function 
over finite basis [2,3,9,10]. 
Experimental observation of the Stark effect in 
a constant (DC) electric field near threshold in 
hydrogen and alkali atoms led to the discovery 
of resonances extending into the ionization 
continuum (c.f.[1]). Calculation of the 
characteristics of these resonances as well as the 
Stark resonances in the strong electric field and 
crossed electric and magnetic fields  remains very 

important problem of as modern atomic physics 
[1-20]. 
In this paper we go on our studying of 
sspectroscopy of atoms in the crossed external 
electric and magnetic fields. Our method of 
studying is based on the known formalism of 
the operator perturbation theory (OPT) [1-3]. 
According to [1-5], the essence of operator 
perturbation theory approach is the inclusion 
of the well known method of “distorted waves 
approximation” in the frame of the formally exact 
perturbation theory.  As a novel element within 
the operator perturbation theory, we use more 
flexible functions for model function, which 
imitates an electric field. In a case of the crossed 
electric and magnetic fields we develop more 
effective finite differences numerical scheme. As 
illustration, some advanced data for the hydrogen 
atom in the electric and crossed external electric 
and magnetic fields are listed.     

2. Method of operator perturbation theory

As our approach to strong field DC Stark effect 
was presented in a series of papers (see, for 
example, [1-6]), here we are limited only by the 
key aspects. According to [2,3], the Schrödinger 
equation for the electronic eigen-function taking 
into account the uniform DC electric field (the 
field strength is F)and the field of the nucleus 
(Coulomb units are used: a unit is h2 /Ze2 m and a 
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unit of  mZ2 e4 /h2 for energy) looks like:

    (1)

where  E is the electronic energy, Z — charge 
of nucleus, N —  the number of electrons in 
atomic core. Our approach allow to use more 
adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum defect 
value μl, electron energy E and principal quantum 
number n is: μl=n-z*(-2E)-1/2. As it is known, in an 
electric field all the electron states can be classified 
due to quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then the 
quantum defect in the parabolic co-ordinates 
δ(n1n2m) is connected with the quantum defect 
value of the free (F=0) atom by the following 
relation [3]: 

After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g: 

(2)

                                                                           (3)

coupled through the constraint on the separation 
constants: β1+β2=1.

For the uniform electric field  F(t) =F. In ref. 
[11], the uniform electric field  ε  in  (3) and (4)  
was  substituted  by  model function  F(t) with 
parameter t ( t = 1.5 t2) . To simplify the calculation 
procedure, the uniform electric field e  in (3) and 
(4)  should be substituted by the function [57,58]:

(4)
                         

th sufficiently large τ (τ=1.5t2). The function ( )te  

practically coincides with the constant e  in the 
inner barrier motion region (t<t2) and disappears 
at t>>t2.  Potential energy in equation (4) has the 
barrier. Two turning points for the classical motion 
along the η axis, t1 and t2 , at a given energy E  are 
the  solutions  of  the   quadratic equation  (β = β1, 
E = E0 ). According to [1-3], one should know two 
zeroth order EF of the H0: bound state function 
YEb (e, n, j) and scattering state function YEs (e, 
h, j) with the same EE in order to calculate the 
width G  of  the concrete quasi-stationary state in 
the lowest PT order. Firstly, one would have to 
define the EE of the expected bound state. It is the 
well known problem of states quantification in 
the case of the penetrable barrier.  Further one 
should solve the system (2, 3) system with the 
total Hamiltonian H  using the conditions [11]: 

with

These two conditions quantify the bounding  
energy E, with separation constant b1 . The further 
procedure for this two-dimensional eigenvalue 
problem results in solving of the system of the 
ordinary  differential equations(2, 3) with probe 
pairs of E, b1. The bound state EE, eigenvalue 
b1 and EF for the zero order Hamiltonian H0 
coincide with those for the total Hamiltonian H 
at e ⇒ 0, where all the states can be classified 
due to quantum numbers: n, n1, l , m  (principal, 
parabolic, azimuthal) that are connected with 
E, b1, m by the well known expressions.. The 
scattering states’ functions must be orthogonal 
to the above defined bound state functions and 
to each other. According to the OPT ideology 
[11,12], the following form of gE′s  :is possible:

                                (6)  

with fE′s , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) satisfies 
the non-homogeneous differential equation, 
which differs from (3) only by the right hand 
term, disappearing at t ⇒ ∞. 
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shifts and broadens the bound state atomic 
levels. One should note that the usual 
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eigen-functions (EF) to the shape resonances 
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of resonances extending into the ionization 
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remains very important problem of as modern 
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studying is based on the known formalism of 
the operator perturbation theory (OPT) [1-3]. 
According to [1-5], the essence of operator 
perturbation theory approach is the inclusion 
of the well known method of "distorted waves 
approximation" in the frame of the formally 
exact perturbation theory.  As a novel element 
within the operator perturbation theory, we use 
more flexible functions for model function, 
which imitates an electric field. In a case of the 
crossed electric and magnetic fields we 
develop more effective finite differences 
numerical scheme. As illustration, some 
advanced data for the hydrogen atom in the 
electric and crossed external electric and 
magnetic fields are listed.      
 
2. Method of operator perturbation theory 

 
As our approach to strong field DC Stark 
effect was presented in a series of papers (see, 
for example, [1-6]), here we are limited only 
by the key aspects. According to [2,3], the 
Schrödinger equation for the electronic eigen-
function taking into account the uniform DC 
electric field (the field strength is F)and the 
field of the nucleus (Coulomb units are used: a 
unit is h2 /Ze2 m and a unit of  mZ2 e4 /h2 for 
energy) looks like: 
 
    [-(1 - N/Z) / r + F z - 0,5 - E ]  = 0    (1) 
 
where  E is the electronic energy, Z — charge 
of nucleus, N —  the number of electrons in 
atomic core. Our approach allow to use more 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
n
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
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the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  
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n
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further procedure for this two-dimensional 
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system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
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zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
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azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
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with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
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Schrödinger equation for an atomic system in 
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adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
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n
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the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  

(n1n2m)=(1/n) l
n

ml

JM
lmmMJCl 






1 2
;, ))(12(   

J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
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coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 

adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
 

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . To simplify 
the calculation procedure, the uniform electric 
field   in (3) and (4)  should be substituted by 
the function [57,58]: 
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th sufficiently large  (=1.5t2). The function 
 t  practically coincides with the constant   

in the inner barrier motion region (t<t2) and 
disappears at t>>t2.  Potential energy in 
equation (4) has the barrier. Two turning 
points for the classical motion along the  
axis, t1 and t2 , at a given energy E  are the  

solutions  of  the   quadratic equation  ( = 1, 
E = E0 ). According to [1-3], one should know 
two zeroth order EF of the H0: bound state 
function Eb (  ) and scattering state 
function Es (  ) with the same EE in 
order to calculate the width G  of  the concrete 
quasi-stationary state in the lowest PT order. 
Firstly, one would have to define the EE of the 
expected bound state. It is the well known 
problem of states quantification in the case of 
the penetrable barrier.  Further one should 
solve the system (2, 3) system with the total 
Hamiltonian H  using the conditions [11]:    
 

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
 
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
 In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation for an atomic system in 
crossed fields and operator perturbation 
theory. For definiteness, we consider a 
dynamics of the complex non-coulomb atomic 
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 In Ref, [7] it has been presented  approach, based 
on solution of the 2-dimensional Schrödinger 
equation for an atomic system in crossed fields and 
operator perturbation theory. For definiteness, we 
consider a dynamics of the complex non-coulomb 
atomic systems in a static magnetic and electric 
fields. The hamiltonian of the multi-electron atom 
in a static magnetic and electric fields is (in atomic 
units) as follows: 
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where the electric field F and magnetic field B are 
taken along the z-axis in a cylindrical system; In 
atomic units: 1 a.u.B=2.35×105T, 
1a.u.F=5,144×106 kV/cm. For solution of the 
Schrödinger equation with hamiltonian equations 
(7) we constructed the finite differences scheme 
which is in some aspects similar to method [7]. 
An infinite region is exchanged by a rectangular  

region: 0<ρ< rL , 0<z< zL . It has sufficiently 
large size; inside it a rectangular uniform grid 

with steps rh , zh was constructed. The external 
boundary condition, as usually, is: .0)( =/∂Y∂ rn  

The knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get numer-
al estimates for rL , zL . A wave function has an 
asymptotic of the kind as: exp[-(-2E)1/2r], where 
(-E) is the ionization energy from stationary state 
to lowest Landau level. Then L can be estimated 
as L~9(-2E)-1/2. The more exact estimate is found 
empirically. The finite-difference scheme is con-
structed as follows. The three-point symmetric 
differences scheme is used for second derivative 
on z. The derivatives on ρ are approximated by 
(2m+1)-point symmetric differences scheme with 
the use of the Lagrange interpolation formula dif-
ferentiation. To calculate the values of the width 
G for resonances in atomic spectra in an electric 
field and crossed electric and magnetic field one 
can use the modified operator perturbation theory 
method (see details in ref.[10,20]). Note that the 
imaginary part of the state energy in the lowest 
PT order is:  

      (8)

with the total Hamiltonian of system in an electric 
and magnetic field. The state functions YEb and 
YEs are assumed to be normalized to unity and by 
the d(k -k')-condition, accordingly. Other calcula-
tion details can be found in ref. [7]. Different ap-
plication are considered in Refs. [21-57]. 

3. Illustration results and conclusion

As an illustration,, we make computing  the 
energy of the ground state of the hydrogen atom 
in crossed fields and compare results with data 
obtained within analytical perturbation theory by 
TurbinerV (see. [8]) for the case of sufficiently 
weak fields. Table 1 shows the values   of the en-
ergy of the ground state of the hydrogen atom (the 
following designations: E+E|| - energy for the 
case of the electric and magnetic fields are paral-
lel; E+E corresponds to the case of the electric 
and magnetic fields are perpendicular). 

Table 1 
Energy values  (Ry) of the H ground state in 
electric  F (1au=5.14∙109 V/cm) and magnetic B 

(1 au.В=2.35∙105 T) fields 

systems in a static magnetic and electric fields. 
The hamiltonian of the multi-electron atom in 
a static magnetic and electric fields is (in 
atomic units) as follows:  
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where the electric field F and magnetic field B 
are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35105T, 
1a.u.F=5,144106 kV/cm. For solution of the 
Schrödinger equation with hamiltonian 
equations (7) we constructed the finite 
differences scheme which is in some aspects 
similar to method [7]. An infinite region is 
exchanged by a rectangular  region: 0<< L , 

0<z< zL . It has sufficiently large size; inside it 
a rectangular uniform grid with steps h , 

zh was constructed. The external boundary 
condition, as usually, is: .0)(  rn  The 
knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get 
numeral estimates for L , zL . A wave function 
has an asymptotic of the kind as: exp[-(-
2E)1/2r], where (-E) is the ionization energy 
from stationary state to lowest Landau level. 
Then L can be estimated as L~9(-2E)-1/2. The 
more exact estimate is found empirically. The 
finite-difference scheme is constructed as 
follows. The three-point symmetric differences 
scheme is used for second derivative on z. The 
derivatives on  are approximated by (2m+1)-
point symmetric differences scheme with the 
use of the Lagrange interpolation formula 
differentiation. To calculate the values of the 
width G for resonances in atomic spectra in an 
electric field and crossed electric and magnetic 
field one can use the modified operator 
perturbation theory method (see details in 
ref.[10,20]). Note that the imaginary part of 
the state energy in the lowest PT order is:   

                                                        
        2||2/Im  EsEb HGE        (8)                                                  

with the total Hamiltonian of system in an 
electric and magnetic field. The state functions 
Eb and Es are assumed to be normalized to 
unity and by the (k -k')-condition, 

accordingly. Other calculation details can be 
found in ref. [7]. Different application are 
considered in Refs. [21-57].  

 
3. Illustration results and conclusion 

As an illustration,, we make computing  the 
energy of the ground state of the hydrogen 
atom in crossed fields and compare results 
with data obtained within analytical 
perturbation theory by TurbinerV (see. [8]) for 
the case of sufficiently weak fields. Table 1 
shows the values of the energy of the ground 
state of the hydrogen atom (the following 
designations: E+E|| - energy for the case of the 
electric and magnetic fields are parallel; E+E 
corresponds to the case of the electric and 
magnetic fields are perpendicular).  

 
Table 1. Energy values (Ry) of the H ground 
state in electric  F (1au=5.14109 V/cm) and 

magnetic B (1 au.В=2.35105 T) fields  
 

F,B 
10-2 

E+E|| 

Turbiner theory 
[8] 

E+E|| 

[5] 

0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000099 
-1,000402 
-1,000906 
-1,001617 
-1,002542 
-1,003685 
-1,005054 
-1,0066619 
-1,008520 
-1,010642 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002540 
-1,003682 
-1,005053 
-1,006659 
-1,008517 
-1,010636 

F,B 
10-2 

E+E|| 

This work 
E+E 

This work 
0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000100 
-1,000402 
-1,000906 
-1,001617 
-1,002541 
-1,003684 
-1,005054 
-1,006686 
-1,008519 
-1,010638 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002535 
-1,003673 
-1,005036 
-1,006627 
-1,008464 
-1,010556 

 
Since the considered electric field is  
sufficiently weak, difference between all data 

systems in a static magnetic and electric fields. 
The hamiltonian of the multi-electron atom in 
a static magnetic and electric fields is (in 
atomic units) as follows:  
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where the electric field F and magnetic field B 
are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35105T, 
1a.u.F=5,144106 kV/cm. For solution of the 
Schrödinger equation with hamiltonian 
equations (7) we constructed the finite 
differences scheme which is in some aspects 
similar to method [7]. An infinite region is 
exchanged by a rectangular  region: 0<< L , 

0<z< zL . It has sufficiently large size; inside it 
a rectangular uniform grid with steps h , 

zh was constructed. The external boundary 
condition, as usually, is: .0)(  rn  The 
knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get 
numeral estimates for L , zL . A wave function 
has an asymptotic of the kind as: exp[-(-
2E)1/2r], where (-E) is the ionization energy 
from stationary state to lowest Landau level. 
Then L can be estimated as L~9(-2E)-1/2. The 
more exact estimate is found empirically. The 
finite-difference scheme is constructed as 
follows. The three-point symmetric differences 
scheme is used for second derivative on z. The 
derivatives on  are approximated by (2m+1)-
point symmetric differences scheme with the 
use of the Lagrange interpolation formula 
differentiation. To calculate the values of the 
width G for resonances in atomic spectra in an 
electric field and crossed electric and magnetic 
field one can use the modified operator 
perturbation theory method (see details in 
ref.[10,20]). Note that the imaginary part of 
the state energy in the lowest PT order is:   

                                                        
        2||2/Im  EsEb HGE        (8)                                                  

with the total Hamiltonian of system in an 
electric and magnetic field. The state functions 
Eb and Es are assumed to be normalized to 
unity and by the (k -k')-condition, 

accordingly. Other calculation details can be 
found in ref. [7]. Different application are 
considered in Refs. [21-57].  

 
3. Illustration results and conclusion 

As an illustration,, we make computing  the 
energy of the ground state of the hydrogen 
atom in crossed fields and compare results 
with data obtained within analytical 
perturbation theory by TurbinerV (see. [8]) for 
the case of sufficiently weak fields. Table 1 
shows the values of the energy of the ground 
state of the hydrogen atom (the following 
designations: E+E|| - energy for the case of the 
electric and magnetic fields are parallel; E+E 
corresponds to the case of the electric and 
magnetic fields are perpendicular).  

 
Table 1. Energy values (Ry) of the H ground 
state in electric  F (1au=5.14109 V/cm) and 

magnetic B (1 au.В=2.35105 T) fields  
 

F,B 
10-2 

E+E|| 

Turbiner theory 
[8] 

E+E|| 

[5] 

0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000099 
-1,000402 
-1,000906 
-1,001617 
-1,002542 
-1,003685 
-1,005054 
-1,0066619 
-1,008520 
-1,010642 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002540 
-1,003682 
-1,005053 
-1,006659 
-1,008517 
-1,010636 

F,B 
10-2 

E+E|| 

This work 
E+E 

This work 
0,0 
0,1 
0,5 
1,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 

-1,000000 
-1,000004 
-1,000100 
-1,000402 
-1,000906 
-1,001617 
-1,002541 
-1,003684 
-1,005054 
-1,006686 
-1,008519 
-1,010638 

-1,000000 
-1,000004 
-1,000099 
-1,000401 
-1,000905 
-1,001616 
-1,002535 
-1,003673 
-1,005036 
-1,006627 
-1,008464 
-1,010556 

 
Since the considered electric field is  
sufficiently weak, difference between all data 
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Since the considered electric field is  suffi-
ciently weak, difference between all data in Table 
1 is quite little. At the same time it is clear that 
the perturbation theory in the standard quantum-
mechanical version is correct exclusively for the  
weak fields, while for strong fields it can lead to 
substantially inaccurate data. Really, in Table 2 
we list the results for the Stark resonances en-
ergies and widths of the ground state hydrogen 
atom in the DC electric field with the strength 
ε=0.1 and 0.8 a.u., obtained within the most exact 
alternative  methods and our data (see [2]).

Table 2 
The energies and widths of the Stark resonances 
of the H ground state (F=0.1, 0.8 a.u.). 
Notation: (A) Hehenberger, H.V. McIntosh and 
E. Brändas, (B) Farrelly and Reinhardt, (C) 
Rao, Liu and Li  [18], (D) Glushkov-Ivanov, 
the standard OPT method; (E)- Popov et al; 

(F) – our data

F , 
a.u.

Method Er, a.u. G/2, a.u.

0.10 A -0.52743 0.725×10-2

C -0.527418 0.7269×10-2

D -0.527419 0.2269×10-2

E -0.527 0.227×10-2

F -0.527418 0.7269×10-2

0.80 B -0.6304 0.5023
C -0.630415 0.50232
D -0.630416 0.50232
F -0.630415 0.50231

The comparison of our data (Table 2: F) with 
earlier similar results, obtained within the sum-
mation of divergent PT series, the numerical so-
lution with expansion of the wave function over 
finite basis, a complex scaling plus B-spline cal-
culation, the standard OPT one (Table 2: A-E) 
shows quite acceptable agreement. We believe 
that the OPT method with new elements will be 
especially efficient for atoms in the strong crossed 
electric and magnetic fields, where the standard 
methods (usual perturbation theory etc) deal with 
great principal and computational problems).  
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ADVANCED DATA FOR HYDROGEN ATOM  IN CROSSED ELECTRIC AND 
MAGNETIC FIELDS

Summary
Spectroscopy of atoms in the crossed external electric and magnetic fields is investigated on the 

basis of the operator perturbation theory. As a novel element within the operator perturbation theory, 
we use more flexible functions for model function, which imitates an electric field. In a case of the 
crossed electric and magnetic fields we develop more effective finite differences numerical scheme. 
As illustration, some advanced data for the hydrogen atom in the electric and crossed external electric 
and magnetic fields are listed.  Advanced data for hydrogen atom are listed.     
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АТОМ ВОДОРОДА В СКРЕЩЕННЫХ ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ

Резюме
Работа посвящена изучению спектроскопических параметров атомов в постоянном электри-

ческом и скрещенных электрическом и магнитном  полях на основе формализма известной опе-
раторной теории возмущений. В качестве нового элемента в операторную теорию возмущений 
оператора вводится применение более эффективной функции для модельной функции, имитиру-
ющей электрическое поле. В случае скрещенных электрического и магнитного полей разработа-
на более эффективная численная конечно-разностная схема. В качестве иллюстрации приведены 
некоторые уточненные данные для атома водорода в сильном электрическом поле и скрещенных 
электрическом и магнитном полях. Приведены численные данные для атома водорода.
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Резюме
Робота присвячена вивченню спектроскопічних параметрів атомів у сталому електричному 

та схрещених електричному та магнітному полях на основі відомої операторної теорії збурень. 
В якості нового елементу в операторну теорію збурень вводиться використання більш ефектив-
ної функції для модельної функції, яка імітує зовнішнє електричне поле. У випадку схрещених 
електричного та магнітного полей  розроблена ефективна чисельна скінченно-різницева схема. 
В якості ілюстрації наведені уточнені данні для атома водню в сильному електричному полі і 
схрещених електричному та магнітному полях полях.   Наведено чисельні дані для атома водню.  
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