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CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE WITH
ACCOUNTING FOR SPACE CHARGE FIELD AND DISSIPATION EFFECTS:
NEW EFFECTS

We have performed an advanced modelling nonlinear dynamics elements for relativistic backward-wave tube
(RBWT) with accounting for dissipation and space charge field effects etc. The temporal dependences of the
normalized field amplitude (power) in a wide range of variation of the controlling parameters (electric length of an
interaction space N, bifurcation parameter L and relativistic factor y)) are computed. The dynamic and topological
invariants of the RBWT dynamics in auto-modulation and chaotic regimes such as correlation dimensions values,
embedding, Kaplan-York dimensions, Lyapunov’s exponents, Kolmogorov entropy etc are calculated. It has been
discovered the "beak" effect on the plane of parameters: bifurcation Piers-like parameter L — relativistic factor v,.

1. Introduction

Powerful generators of chaotic oscillations
of microwave range of interest for radar, plasma
heating in fusion devices, modern systems of
information transmission using dynamic chaos
and other applications. Among the most studied
of vacuum electronic devices with complex dy-
namics are backward-wave tubes (BWT) , for
which the possibility of generating chaotic os-
cillations has been theoretically and experimen-
tally found [1-12]. The BWT is an electronic de-
vice for generating electromagnetic vibrations
of the superhigh frequencies range. Authors [7]
formally considered the possible chaos scenario
in a single relativistic BWT. Authors [4,6] have
studied dynamics of a non-relativistic BWT, in
particular, phase portraits, statistical quantifiers
for a weak chaos arising via period-doubling
cascade of self-modulation and the same char-
acteristics of two non-relativistic backward-
wave tubes. The authors of [4,6] have solved the
equations of nonstationary nonlinear theory for
the O-type BWT without account of the spatial
charge, relativistic effects, energy losses etc. It
has been shown that the finite-dimension strange
attractor is responsible for chaotic regimes in
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the BWT. The multiple studies [1-12], increas-
ing the beam current in the system implemented
complex pattern of alternation of regular and
chaotic regimes of generation, completes the
transition to a highly irregular wideband chaotic
oscillations with sufficiently uniform continu-
ous spectrum.

In this work we have performed an advanced
modelling emission spectrum and nonlinear dy-
namics elements for relativistic backward-wave
tube (RBWT) with accounting for dissipation
and space charge effects etc. The temporal de-
pendences of the normalized field amplitude
(power) in a wide range of variation of the con-
trolling parameters (electric length of an inter-
action space N, bifurcation parameter L and rel-
ativistic factor y,) are computed. The dynamic
and topological invariants of the RBWT dynam-
ics in automodulation and chaotic regimes such
as correlation dimensions values, embedding,
Kaplan-York dimensions, Lyapunov’s expo-
nents, Kolmogorov entropy etc are calculated.
WE discovered discovered the «beak» effect on
the plane L —v,.



2. Relativistic model and some results

As the key ideas of our technique for nonlin-
ear analysis of chaotic systems have been in de-
tails presented in refs. [13-28], here we are lim-
ited only by a short representation. We use the
standard non-stationary theory [3-7], however,
despite the above cited papers we take into ac-
count a number of effects, namely, influence of
space charge, dissipation, the waves reflections
at the ends of the system and others (a modifica-
tion of model of Refs. [12,13]).

The relativistic dynamics is described sys-
tem of equations for unidimensional relativistic
electron phase 6((,7,0,) (which moves in the
interaction space with phase 6, (&,[0; 2r]) and
has a coordinate C at time moment t) and field
unidimensional complex amplitude
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with the corresponding boundary and initial
conditions. The dynamical system studied has
several controlling parameters which are char-
acteristic for distributed relativistic electron-
waved self-vibrational systems: 1) electric
length of an interaction space N; ii) bifurcation
parameter [ =27CN /y, (here C-is the known
Piers parameter) ; iii) relativistic factor, which
is determined as:

)

As input parameters there were taken follow-
ing initial values: relativistic factor y=1.5 (fur-
ther we will increase v, in 2 and 4 times), electri-
cal length of the interaction space N =k,/{ =
=10, electrons speed v,=0.75c, vrp=0.25c, dis-
sipation parameter D = 5Db, starting reflection
parameters: s = 0.5, p=0.7, 0< <2m . A choice

of ¢ due to the fact that the dependence upon it
is periodic. The influence of reflections leads to
the fact that bifurcational parameter L begins to
be dependent on the phase ¢ of the reflection
parameter (see discussion regarding it in [7,8]).
The basic idea of the construction of our ap-
proach to prediction of chaotic properties of
complex systems is in the use of the traditional
concept of a compact geometric att (CGA) in
which evolves the measurement data, plus the
neural networks (NNW) algorithm implementa-
tion [10-16]. Let us consider some scalar meas-
urements s(n) = s(¢, + nAt) = s(n), where ¢ is
the start time, A¢ is the time step, and # is the
number of the measurements. The main task
is to reconstruct phase space using as well as
possible information contained in s(n). To do it,
the method of using time-delay coordinates by
Packard et al [17] can be used. The direct us-
ing lagged variables s(n+t) (here T is some inte-
ger to be defined) results in a coordinate system
where a structure of orbits in phase space can
be captured. A set of time lags is used to create
a vector in d dimensions, y(n)= [s(n), s(n + 1),
s(n + 21), .., s(n +(d—1)7)], the required coor-
dinates are provided. Here the dimension d is
the embedding dimension, d,. To determine the
proper time lag at the beginning one should use
the known method of the linear autocorrelation
function (ACF) C,(8) and look for that time lag
where C,(8) first passes through 0 [4]. The al-
ternative additional approach is provided by the
average mutual information (AMI) method as
an approach with so called nonlinear concept of
independence. The further next step is to deter-
mine the embedding dimension, d,, and corre-
spondingly to reconstruct a Euclidean space R?
large enough so that the set of points d, can be
unfolded without ambiguity. The dimension, d,,
must be greater, or at least equal, than a dimen-
sion of attractor, d, i.e. d, > d . To reconstruct
the attractor dimension and to study the signa-
tures of chaos in a time series, one could use
such methods as the correlation integral algo-
rithm (CIA) by Grassberger and Procaccia [21]
or the false nearest neighbours (FNN) method
by Kennel et al [18]. The principal question of
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studying any complex chaotic system is to build
the corresponding prediction model and define
how predictable is a chaotic system. The new
element of our approach is using the NNW al-
gorithm in forecasting nonlinear dynamics of
chaotic systems [9,10]. In terms of the neuro-
informatics and neural networks theory the
process of modelling the evolution of the sys-
tem can be generalized to describe some evo-
lutionary dynamic neuro-equations. Imitating
the further evolution of a system within NNW
simulation with the corresponding elements of
the self-study, self- adaptation, etc., it becomes
possible to significantly improve the prediction
of its evolutionary dynamics. The fundamental
parameters to be computed are the Kolmogorov
entropy (and correspondingly the predictabil-
ity measure as it can be estimated by the Kol-
mogorov entropy), the Lyapunov’s exponents
(LE), the Kaplan-Yorke dimension (KYD) etc.
The LE are usually defined as asymptotic aver-
age rates and they are related to the eigenvalues
of the linearized dynamics across the attractor.
Naturally, the knowledge of the whole LE al-
lows to determine other important invariants
such as the Kolmogorov entropy and the at-
tractor’s dimension. The Kolmogorov entropy
is determined by the sum of the positive LE.
The estimate of the dimension of the attractor
is provided by the Kaplan and Yorke conjecture

2
and ).

ing order. In Figure 1 we present the flowchart
of the our combined chaos-geometric and NNW
computational approach to nonlinear analysis
and prediction of dynamics of any complex sys-
tem [10-30].

In figure 2 we list the data on the tempo-
ral dependence of normalized field amplitude

, where j is such that D’

, and the LE are taken in descend-

F(x0)=E/ (25 0UCZ) (our data subject dissipa-

tion, the influence of space charge, the effect of
reflections waves) at the values of the bifurcation
parameter L:(a) — 3.5, (b) — 3.9 (other parameters:
7,~1.5, 10, s=0.5, p=0.7, =1.3m).

46

I. General analysis of the dynamical
problem, processing dynamical variable
series for studied complex system
(preliminary general analysis of
dynamics, evolutionary differential
equations treating,...)

II.  Chaos-geometric method:
assessment of the presence of chaos:
1. The Gottwald-Melbourne test:

K — 1 —chaos;
2. Fourier decompositions, irregular
nature of change — chaos;
3. Spectral analysis, Energy spectra
statistics, the Wigner distribution, the
spectrum of power, "Spectral rigidity";

III. The geometry of phase space.
Fractal Geometry:
4. Computation time delay t using
ACF or AMI;
5. Determining embedding dimension dg
by the CIA method or FNN points;
6. Calculation multi-fractal spectra.
Wavelet analysis;

U

IV. Prediction model:
7. Computing global LE: Ay; KYD dj,
average predictability measure Prp,y;
8. Determining the number of FNN points
for the best prediction results;

9. Methods of nonlinear prediction:
nonlinear parameterized function; NNW;
optimized trajectories (propagators)
algorithms, ...;

Figure 1. Flowchart of the combined chaos-geometric
approach and NNW to nonlinear analysis and prediction

of chaotic dynamics of the complex systems (devices)

Figures 1a,b are corresponding to the regimes
of periodical automodulation (a) and hyper cha-
otic regime (b). It is worth to note that our re-
sults obtained without accounting for the reflec-
tion effect are very well correlated with the data
by Ryskin-Titov in Ref. [ 7], where it has been in
details studied the RBWT dynamics with.



Figure 2. Data on the time dependence of normalized

field amplitude F({,7)(our data with accounting dis-

sipation, the influence of space charge and an effect of

wave reflections) at the values of the bifurcation pa-

rameter L: (a) 3.0 (b) 4.0 (other parameters: y =1.5,
10, s=0.5, p=0.7, =1.3m).

In table 1 we list our data on the correla-
tion dimension d,, embedding dimension, deter-
mined on the basis of false nearest neighbours
algorithm (d,) with percentage of false neigh-
bours (%). calculated for different values of lag
7 (data on figlb, regime of a chaos).

In Table 2 we list our computing data on
the Lyapunov exponents (LE), the dimension
of the Kaplan-York attractor, the Kolmogorov
entropy K

entr’

Table 1.

Correlation dimension d,, embedding di-

mension, determined on the basis of false

nearest neighbours algorithm (d,) with per-

centage of false neighbours (%) calculated
for different values of lag ©

; d, (d,)

60 8.2 10 (12)

8 6.5 8(2.1)

10 6.5 8(2.1)
Table 2.

The Lyapunov exponents (LE), the
dimension of the Kaplan-York attractor, the
Kolmogorov entropy K _ . (our data)

A A A A K

1 2 3 4

0.508 | 0.196 | -0.0001 | —0.0003 | 0.704

For studied series there are the positive and
negative LE values.The resulting KYD in both
cases are very similar to the correlation dimen-
sion (calculated by the algorithm by Grassberg-
er-Procachia). More important is the analysis
of the RBWT nonlinear dynamics in the plane
“relativistic factor — bifurcation parameter.”

The numerical solution has shown that under
the realistic values of the dissipation parameter,
the effect is reduced to the shift of the value
of the bifurcation parameter L towards the in-
crease. The most interesting, in our opinion, is
the results of the analysis of the change of the
nonlinear dynamics of the considered RBWT
in the plane “relativistic factor - bifurcation pa-
rameter”. In this aspect, in fact, the three par-
ametric nonlinear dynamics of the RBWT are
fundamentally different from the dynamics of
processes in the non-relativistic BWT. In Fig-
ure 3 we refer to our calculated diagram which
quantitatively shows the limits of automodula-
tion (line I) on the plane of parameters: L-y,.
Note that line II limits the region where the par-
ticle rotation takes place, that is, the used theo-
retical model (1) works. A characteristic feature
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of Figure 3 is the presence of the “beak” effect,
which, depending on the relativistic factor, goes
far into the domain of automodulation.
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Figure 3. The boundaries of automodulation (line I) on
the plane of parameters:L-g .

3. Conclusions

In this work we have performed an advanced
modelling and for the first time forecasting an
emission spectrum and nonlinear dynamics el-
ements for relativistic backward-wave tube
(RBWT) with accounting for dissipation and
space charge effects etc. The temporal depend-
ences of the normalized field amplitude (power)
in a wide range of variation of the controlling pa-
rameters (electric length of an interaction space
N, bifurcation parameter L and relativistic factor
Y,) are computed. The dynamic and topological
invariants of the RBWT dynamics in auto-mod-
ulation and chaotic regimes such as correlation
dimensions values, embedding, Kaplan-York
dimensions, Lyapunov’s exponents, Kolmogo-
rov entropy etc are calculated. diagram which
quantitatively shows the limits of self-modula-
tion (line I) on the plane of parameters:L-y, .is
calculated. It has been discovered the “beak” ef-
fect (on the plane of parameters L, y ), which,
depending on the relativistic factor, goes far into
the domain of automodulation for the RBWT
studied.
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A. V. Glushkov, A. V. Tsudik, D. A. Novak, O. V. Dubrovsky

CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE WITH
ACCOUNTING FOR SPACE CHARGE FIELD AND DISSIPATION EFFECTS:
NEW EFFECTS

Summary.

We have performed an advanced modelling and for the first time forecasting an emission spec-
trum and nonlinear dynamics elements for relativistic backward-wave tube (RBWT) with account-
ing for dissipation and space charge effects etc. The temporal dependences of the normalized field
amplitude (power) in a wide range of variation of the controlling parameters (electric length of an
interaction space N, bifurcation parameter L and relativistic factor y,) are computed. The dynamic
and topological invariants of the RBWT dynamics in auto-modulation and chaotic regimes such
as correlation dimensions values, embedding, Kaplan-York dimensions, Lyapunov’s exponents,
Kolmogorov entropy etc are calculated. It has been discovered the «beak» effect on the plane of
parameters: bifurcation Piers-like parameter L — relativistic factor vy, which, depending on the
relativistic factor, goes far into the domain of automodulation.

Key words: relativistic backward-wave tube, chaos, non-linear methods
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A. B. I'nywros, A. B. [[youx, /. A. Hosax, O. B. /[yoposckuti

XAOTHYECKAS TMHAMUKA PEJIITUBACTCKOM JAMIIbBI OGPATHOM BOJIHBI
C YYETOM BJIMAHUA 110JIAA IPOCTPAHCTBEHHOI'O 3APAJTA
N JNCCUITAIIMU: HOBBIE DOPPEKTDBI

Pesrome.

[IpencraBieHsl pe3ynbTaThl MOJACTUPOBAHUS JIEMEHTOB HEIMHEHHON TUHAMMKH Ui PEJISATH-
BUCTCKOI 0OparHoii BoiHbI (PJIOB) ¢ yuetoMm 3¢pexroB quccunaiyy u rnosst mpoCcTpaHCTBEHHOTO
3apsiia U Ip. BpeMeHHbIe 3aBHCHMOCTH HOPMHUPOBAHHOM aMILTUTY/bI 1OJIs1 (MOLTHOCTH) BBIYHC-
JICHbI B IIUPOKOM JIMANa30HE BapHalUil yNpaBIsSIOUINX apaMeTpoB (3JIEKTpUYecKas JJIHHA MPO-
cTpaHcTBa B3auMozeicTeus N, napamerp 6udypkanuu L u penstuBuctckuit akrop v,). Paccun-
TaHbl JMHAMUYECKHE U TOMOJIOTWYeCKUe MHBapUaHThl AuHaMuKu PJIOB B aBTOMOAYNSIIMOHHOM
U XaOTHYHOM pEXHMaX, B YaCTHOCTHU, 3HAYEHUS KOPPEISIMOHHON pa3MepHOCTH, Pa3MEpHOCTH
Broxenns, Kannana-Mopka, mokasarenu JsmyHoBa, suTponust Konmoroposa u ap. OGHapyxeH
3 QEKT «KIII0Ba» Ha MIOCKOCTU MapamMeTpoB: OudypkarmoHHbIi nmapamerp L - pensiTuBUCTCKUN

daxrop v,.
KiroueBble c10Ba: pensTUBUCTCKAs JIaMITbl OOPAaTHOM BOJIHBI, Xa0C, HEIMHEIHBIE METO/IbI

PACS 42.55.-f
O. B. I'nywxos, A. B. I[yoix, /1. A. Hosaxk, O. B. /[yopoécbkuii

XAOTHYHA JJMHAMIKA PEJISITUBICTCBHKOI JIAMIIN 3BEPHEHOI XBIJII 3
YPAXYBAHHSM BILIUBY IOJIS TIPOCTOPOBOI'O 3APSTY TA JUCHITAIIIL:
HOBI E®EKTH

Pesrome.

[Ipencrapieni pe3yiabTaTd MOJIEIIOBAHHS CIIEKTPY BUIPOMIHIOBAHHS Ta €JIEMEHTIB HeNiHIHHO1
JUHAMIKH U1 pensaTuBicTchKoi 3BopoTHOi xBuii (PJI3X) 3 ypaxyBanusM edekriB aucunarii ta
TOJIsl IIPOCTOPOBOTO 3apsiAy TOIIO. YacoBi 3aJIeKHOCTI HOPMUPOBAHHOT aMILTITYAH TOJs (TTOTYXK-
HOCTI) OOUHMCIICH] B IIMPOKOMY Jiara3oHi Bapialliil Kepylounx napamMeTpiB (€JIeKTpHYHa JOBKUHA
npoctopy B3aemozii N, mapamerp Gidypxauii L i pensarusicTepkuii paxrop y,). Pospaxosani tuna-
MiYHI Ta TONOJOT14YHI iHBapiaHTu AuHaMiku PJI3X B aBTOMOIYNALIHHOMY Ta XaOTUYHOMY PEXKHU-
MaxX, 30KpeMa, 3HAUeHHS KOPEIALiiHOT po3MipHOCTi, po3MipHOCTi BKIajnenns, Kamana-Hopka,
noka3Huku JIsmyHoBa, entpomnist Kommoroposa tomio. BusiBieHo edexT «1300a» Ha IUIOMKHI Ma-
pamerpiB: GidypKauifinuii mapameTp L - peasaTuBiCTCHKUA BakTop 7.

Ki1r04oBi c10Ba: pensTUBICTCHKA JTaMITM 3BOPOTHOT XBHJIL, Xaoc, HEMHIIHI MeTOn
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