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CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE WITH 
ACCOUNTING FOR SPACE CHARGE FIELD AND DISSIPATION EFFECTS: 

NEW EFFECTS

We have performed an advanced modelling nonlinear dynamics elements for relativistic backward-wave tube 
(RBWT) with accounting for  dissipation and space charge field  effects etc. The temporal dependences of the 
normalized field amplitude (power) in a wide range of variation of the controlling parameters (electric length of an 
interaction space N, bifurcation parameter L and relativistic factor γ0) are  computed. The dynamic and topological 
invariants of the RBWT dynamics in auto-modulation and chaotic regimes such as correlation dimensions values, 
embedding, Kaplan-York dimensions, Lyapunov’s exponents, Kolmogorov entropy etc are calculated. It has been 
discovered the "beak" effect on the plane of parameters:  bifurcation Piers-like parameter L – relativistic factor  γ0.

1.  Introduction
Powerful generators of chaotic oscillations 

of microwave range of interest for radar, plasma 
heating in fusion devices, modern systems of 
information transmission using dynamic chaos 
and other applications. Among the most studied 
of vacuum electronic devices with complex dy-
namics are backward-wave tubes (BWT) , for 
which the possibility of generating chaotic os-
cillations has been theoretically and experimen-
tally found [1-12]. The BWT is an electronic de-
vice for generating electromagnetic vibrations 
of the superhigh frequencies range. Authors [7] 
formally considered the possible chaos scenario 
in a single relativistic BWT. Authors [4,6] have 
studied dynamics of a non-relativistic BWT, in 
particular, phase portraits, statistical quantifiers 
for a weak chaos arising via period-doubling 
cascade of self-modulation and the same char-
acteristics of two non-relativistic backward-
wave tubes. The authors of [4,6] have solved the 
equations of nonstationary nonlinear theory for 
the O-type BWT without account of the spatial 
charge, relativistic effects, energy losses etc. It 
has been shown that the finite-dimension strange 
attractor is responsible for chaotic regimes in 

the BWT.  The multiple studies [1-12], increas-
ing the beam current in the system implemented 
complex pattern of alternation of regular and 
chaotic regimes of generation, completes the 
transition to a highly irregular wideband chaotic 
oscillations with sufficiently uniform continu-
ous spectrum. 

In this work we have performed an advanced 
modelling emission spectrum and nonlinear dy-
namics elements for relativistic backward-wave 
tube (RBWT) with accounting for  dissipation 
and space charge effects etc. The temporal de-
pendences of the normalized field amplitude 
(power) in a wide range of variation of the con-
trolling parameters (electric length of an inter-
action space N, bifurcation parameter L and rel-
ativistic factor g0) are  computed. The dynamic 
and topological invariants of the RBWT dynam-
ics in automodulation and chaotic regimes such 
as correlation dimensions values, embedding, 
Kaplan-York dimensions, Lyapunov’s expo-
nents, Kolmogorov entropy etc are calculated. 
WE discovered discovered the «beak» effect on 
the plane L – g0.
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2.  Relativistic model and some results
As the key ideas of our technique for nonlin-

ear analysis of chaotic systems have been in de-
tails presented in refs. [13-28], here we are lim-
ited only by a short  representation. We use the 
standard non-stationary theory [3-7], however, 
despite the above cited papers we take into ac-
count a number of effects, namely, influence of 
space charge,  dissipation, the waves reflections 
at the ends of the system and others (a modifica-
tion of model of Refs.   [12,13]). 

The relativistic dynamics is described sys-
tem of equations for unidimensional relativistic 
electron phase ( )0è æ,ô,è  (which moves in the 
interaction space with phase c0 (c0c[0; 2p]) and 
has a coordinate z at time moment t) and field 
unidimensional complex amplitude  

( ) ( )2
0æ,ô / 2âF E UC=   as  [12,13]:                 
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with the corresponding boundary and initial 
conditions. The dynamical system studied has 
several controlling parameters which are char-
acteristic for distributed relativistic electron-
waved self-vibrational systems: i) electric 
length of an interaction space N; ii) bifurcation 
parameter CNL =  (here  C- is the known 
Piers parameter) ; iii)  relativistic factor, which 
is determined as: 

            
                           .          (2)

As input parameters there were taken follow-
ing initial values: relativistic factor g0=1.5 (fur-
ther we will increase g0  in 2 and 4 times), electri-
cal length of the interaction space /(0 plkN =
=10, electrons speed v0=0.75c, vгр=0.25c, dis-
sipation parameter D = 5Db, starting reflection 
parameters: s = 0.5, r=0.7, 0< <2p . A choice 

of j due to the fact that the dependence upon it 
is periodic. The influence of reflections leads to 
the fact that bifurcational parameter L begins to 
be dependent on the phase j of  the reflection 
parameter (see discussion regarding it in [7,8]).

The basic idea of the construction of our ap-
proach to prediction of chaotic properties of 
complex systems is in the use of the traditional 
concept of a compact geometric att (CGA) in 
which evolves the measurement data, plus the 
neural networks (NNW) algorithm implementa-
tion [10-16]. Let us consider some scalar meas-
urements s(n) = s(t0 + nDt) = s(n), where t0 is 
the start time, Dt is the time step, and n is the 
number of the measurements.  The main task 
is to reconstruct phase space using as well as 
possible information contained in s(n). To do it, 
the method of using time-delay coordinates by 
Packard et al [17] can be used. The direct us-
ing lagged variables s(n+t) (here t is some inte-
ger to be defined) results in a coordinate system 
where a structure of orbits in phase space can 
be captured. A set of time lags is  used to create 
a vector in d dimensions, y(n)= [s(n), s(n + t), 
s(n + 2t), .., s(n +(d-1)t)], the required coor-
dinates are provided. Here the dimension d is 
the embedding dimension, dE. To determine the 
proper time lag at the beginning one should use 
the known method of the linear autocorrelation 
function (ACF) CL(d) and look for that time lag 
where CL(d) first passes through 0 [4].  The al-
ternative additional approach is provided by the 
average mutual information (AMI) method as 
an  approach with so called nonlinear concept of 
independence. The further next step is to deter-
mine the embedding dimension, dE, and corre-
spondingly to reconstruct a Euclidean space Rd 
large enough so that the set of points dA can be 
unfolded without ambiguity. The dimension, dE, 
must be greater, or at least equal, than a dimen-
sion of attractor, dA, i.e. dE > dA. To reconstruct 
the attractor dimension and to study the signa-
tures of chaos in a time series, one could use 
such methods as the correlation integral algo-
rithm (CIA) by Grassberger and Procaccia [21] 
or the false nearest neighbours (FNN) method   
by Kennel et al [18]. The principal question of 
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been in details presented in refs. [13-28], 
here we are limited only by a short  
representation. We use the standard non-
stationary theory [3-7], however, despite the 
above cited papers we take into account a 
number of effects, namely, influence of space 
charge,  dissipation, the waves reflections at 
the ends of the system and others (a 
modification of model of Refs.   [12,13]).  

The relativistic dynamics is described 
system of equations for unidimensional 
relativistic electron phase  0θ ζ,τ,θ  (which 
moves in the interaction space with phase 0 
(0[0; 2]) and has a coordinate  at time 
moment ) and field unidimensional complex 
amplitude     2

0ζ,τ / 2βF E UC  as  [12,13]:                  
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
             
                           2/.12

00 )1(   .          (2) 
 
As input parameters there were taken 
following initial values: relativistic factor 
0=1.5 (further we will increase 0  in 2 and 4 
times), electrical length of the interaction 
space )2/(0 lkN  =10, electrons speed 
v0=0.75c, vгр=0.25c, dissipation parameter D 
= 5Db, starting reflection parameters: s = 0.5, 
=0.7, 0< <2 . A choice of  due to the 
fact that the dependence upon it is periodic. 

The influence of reflections leads to the fact 
that bifurcational parameter L begins to be 
dependent on the phase  of  the reflection 
parameter (see discussion regarding it in 
[7,8]). 
The basic idea of the construction of our 
approach to prediction of chaotic properties 
of complex systems is in the use of the 
traditional concept of a compact geometric 
att (CGA) in which evolves the measurement 
data, plus the neural networks (NNW) 
algorithm implementation [10-16]. Let us 
consider some scalar measurements 
s(n) = s(t0 + nt) = s(n), where t0 is the start 
time, t is the time step, and n is the number 
of the measurements.  The main task is to 
reconstruct phase space using as well as 
possible information contained in s(n). To do 
it, the method of using time-delay 
coordinates by Packard et al [17] can be 
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a vector in d dimensions, y(n)= [s(n), 
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required coordinates are provided. Here the 
dimension d is the embedding dimension, dE. 
To determine the proper time lag at the 
beginning one should use the known method 
of the linear autocorrelation function (ACF) 
CL() and look for that time lag where CL() 
first passes through 0 [4].  The alternative 
additional approach is provided by the 
average mutual information (AMI) method as 
an  approach with so called nonlinear concept 
of independence. The further next step is to 
determine the embedding dimension, dE, and 
correspondingly to reconstruct a Euclidean 
space Rd large enough so that the set of 
points dA can be unfolded without ambiguity. 
The dimension, dE, must be greater, or at 
least equal, than a dimension of attractor, dA, 
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here we are limited only by a short  
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with the corresponding boundary and initial 
conditions. The dynamical system studied 
has several controlling parameters which are 
characteristic for distributed relativistic 
electron-waved self-vibrational systems: i) 
electric length of an interaction space N; ii) 
bifurcation parameter 0/2 CNL   (here  C- 
is the known Piers parameter) ; iii)  
relativistic factor, which is determined as:  
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with the corresponding boundary and initial 
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has several controlling parameters which are 
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electron-waved self-vibrational systems: i) 
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is the known Piers parameter) ; iii)  
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0=1.5 (further we will increase 0  in 2 and 4 
times), electrical length of the interaction 
space )2/(0 lkN  =10, electrons speed 
v0=0.75c, vгр=0.25c, dissipation parameter D 
= 5Db, starting reflection parameters: s = 0.5, 
=0.7, 0< <2 . A choice of  due to the 
fact that the dependence upon it is periodic. 

The influence of reflections leads to the fact 
that bifurcational parameter L begins to be 
dependent on the phase  of  the reflection 
parameter (see discussion regarding it in 
[7,8]). 
The basic idea of the construction of our 
approach to prediction of chaotic properties 
of complex systems is in the use of the 
traditional concept of a compact geometric 
att (CGA) in which evolves the measurement 
data, plus the neural networks (NNW) 
algorithm implementation [10-16]. Let us 
consider some scalar measurements 
s(n) = s(t0 + nt) = s(n), where t0 is the start 
time, t is the time step, and n is the number 
of the measurements.  The main task is to 
reconstruct phase space using as well as 
possible information contained in s(n). To do 
it, the method of using time-delay 
coordinates by Packard et al [17] can be 
used. The direct using lagged variables 
s(n+) (here  is some integer to be defined) 
results in a coordinate system where a 
structure of orbits in phase space can be 
captured. A set of time lags is  used to create 
a vector in d dimensions, y(n)= [s(n), 
s(n + ), s(n + 2), .., s(n +(d1))], the 
required coordinates are provided. Here the 
dimension d is the embedding dimension, dE. 
To determine the proper time lag at the 
beginning one should use the known method 
of the linear autocorrelation function (ACF) 
CL() and look for that time lag where CL() 
first passes through 0 [4].  The alternative 
additional approach is provided by the 
average mutual information (AMI) method as 
an  approach with so called nonlinear concept 
of independence. The further next step is to 
determine the embedding dimension, dE, and 
correspondingly to reconstruct a Euclidean 
space Rd large enough so that the set of 
points dA can be unfolded without ambiguity. 
The dimension, dE, must be greater, or at 
least equal, than a dimension of attractor, dA, 
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studying any complex chaotic system is to build 
the corresponding prediction model and define 
how predictable is a chaotic system. The new 
element of our approach is using the NNW al-
gorithm in forecasting nonlinear dynamics of 
chaotic systems [9,10]. In terms of the neuro-
informatics and neural networks theory the 
process of modelling the evolution of the sys-
tem can be generalized to describe some evo-
lutionary dynamic neuro-equations. Imitating 
the further evolution of a system within NNW 
simulation with the corresponding elements of 
the self-study, self- adaptation, etc., it becomes 
possible to significantly improve the prediction 
of its evolutionary dynamics. The fundamental 
parameters to be computed are the Kolmogorov 
entropy (and correspondingly the predictabil-
ity measure as it can be estimated by the Kol-
mogorov entropy), the Lyapunov’s exponents 
(LE), the Kaplan-Yorke dimension (KYD) etc. 
The LE are usually defined as asymptotic aver-
age rates and they are related to the eigenvalues 
of the linearized dynamics across the attractor. 
Naturally, the knowledge of the whole LE al-
lows to determine other important invariants 
such as the Kolmogorov entropy and the at-
tractor’s dimension. The Kolmogorov entropy 
is determined by the sum of the positive LE. 
The estimate of the dimension of the attractor 
is provided by the Kaplan and Yorke conjecture  

∑ ,  where j is such that ∑  

and ∑ , and the LE are taken in descend-

ing order. In Figure 1 we present the flowchart 
of the our combined chaos-geometric and NNW 
computational approach to nonlinear analysis 
and prediction of dynamics of any complex sys-
tem [10-30]. 

In figure 2 we list the data on the tempo-
ral dependence of normalized field amplitude 

( ) ( )2
0æ,ô / 2âF E UC=   (our data subject dissipa-

tion, the influence of space charge, the effect of 
reflections waves) at the values of the bifurcation 
parameter L:(a) – 3.5, (b) – 3.9 (other parameters: 
g0=1.5, 10, s=0.5, r=0.7, =1.3p).

Figure 1. Flowchart of the combined chaos-geometric 
approach and NNW to nonlinear analysis and prediction 

of chaotic dynamics of the complex systems (devices)

Figures 1a,b are corresponding to the regimes 
of periodical automodulation (a) and hyper cha-
otic regime (b). It is worth to note that our re-
sults obtained without accounting for the reflec-
tion effect are very well correlated with the data 
by Ryskin-Titov in Ref. [7], where it has been in 
details studied the RBWT dynamics with. 

i.e. dE > dA. To reconstruct the attractor 
dimension and to study the signatures of 
chaos in a time series, one could use such 
methods as the correlation integral algorithm 
(CIA) by Grassberger and Procaccia [21] or 
the false nearest neighbours (FNN) method   
by Kennel et al [18]. The principal question 
of studying any complex chaotic system is to 
build the corresponding prediction model and 
define how predictable is a chaotic system. 
The new element of our approach is using the 
NNW algorithm in forecasting nonlinear 
dynamics of chaotic systems [9,10]. In terms 
of the neuro-informatics and neural networks 
theory the process of modelling the evolution 
of the system can be generalized to describe 
some evolutionary dynamic neuro-equations. 
Imitating the further evolution of a system 
within NNW simulation with the 
corresponding elements of the self-study, 
self- adaptation, etc., it becomes possible to 
significantly improve the prediction of its 
evolutionary dynamics. The fundamental 
parameters to be computed are the 
Kolmogorov entropy (and correspondingly 
the predictability measure as it can be 
estimated by the Kolmogorov entropy), the 
Lyapunov’s exponents (LE), the Kaplan-
Yorke dimension (KYD) etc. The LE are 
usually defined as asymptotic average rates 
and they are related to the eigenvalues of the 
linearized dynamics across the attractor. 
Naturally, the knowledge of the whole LE 
allows to determine other important 
invariants such as the Kolmogorov entropy 
and the attractor's dimension. The 
Kolmogorov entropy is determined by the 
sum of the positive LE. The estimate of the 
dimension of the attractor is provided by the 
Kaplan and Yorke conjecture  
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descending order. In Figure 1 we present the 
flowchart of the our combined chaos-
geometric and NNW computational approach 
to nonlinear analysis and prediction of 
dynamics of any complex system [10-30].  
 

I. General analysis of the dynamical 
problem, processing dynamical variable 

series for studied complex system 
(preliminary general analysis of 

dynamics, evolutionary differential 
equations treating,…) 

 
II. Chaos-geometric method: 

assessment of the presence of chaos: 
1. The Gottwald-Melbourne test:  

K → 1 – chaos; 
2. Fourier decompositions, irregular 

nature of change – chaos; 
3. Spectral analysis, Energy spectra 
statistics, the Wigner distribution, the 

spectrum of power, "Spectral rigidity"; 
 

III. The geometry of phase space. 
Fractal Geometry: 

4. Computation time delay τ using 
ACF or AMI; 

5. Determining embedding dimension dE 
by the CIA method or FNN points; 
6. Calculation multi-fractal spectra. 

Wavelet analysis; 
 

IV. Prediction model: 
7. Computing global LE:  ; KYD dL, 
average predictability measure Prmax; 

8. Determining the number of FNN points 
for the best prediction results; 

9. Methods of nonlinear prediction: 
nonlinear parameterized function; NNW; 

optimized trajectories (propagators) 
algorithms, ...; 

 
Figure 1. Flowchart of the combined 

chaos-geometric approach and NNW to 
nonlinear analysis and prediction of chaotic 
dynamics of the complex systems (devices) 

 
In figure 2 we list the data on the temporal 
dependence of normalized field amplitude 
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Figure 2. Data on the time dependence of normalized 
field amplitude F(ζ,τ)(our data with accounting  dis-
sipation, the influence of space charge and an effect of 
wave reflections) at the values of the bifurcation pa-
rameter L: (a) 3.0 (b) 4.0 (other parameters: γ0=1.5, 

10, s=0.5, ρ=0.7, =1.3π).

In table 1 we list our data on  the correla-
tion dimension d2, embedding dimension, deter-
mined on the basis of false nearest neighbours 
algorithm (dN) with percentage of false neigh-
bours (%).  calculated for different values of lag  
t (data on fig1b, regime of a chaos).

In Table 2 we list our computing data on 
the  Lyapunov exponents (LE), the dimension 
of the Kaplan-York attractor, the Kolmogorov 
entropy Kentr. 

Table 1. 
Correlation dimension d2, embedding di-

mension, determined on the basis of false 
nearest neighbours algorithm (dN) with per-
centage of false neighbours (%) calculated 

for different values of lag τ

t d2 (dN)
60 8.2 10 (12)
8 6.5 8 (2.1)
10 6.5 8 (2.1)

Table 2. 
The  Lyapunov exponents (LE), the 

dimension of the Kaplan-York attractor, the 
Kolmogorov entropy Kentr. (our data)

l1 l2 l3 l4 K

0.508 0.196 -0.0001 -0.0003 0.704

For studied series there are the positive and 
negative LE values.The resulting KYD in both 
cases are very similar to the correlation dimen-
sion (calculated by the algorithm by Grassberg-
er-Procachia). More important is the analysis 
of the RBWT nonlinear dynamics in the plane 
“relativistic factor – bifurcation parameter.” 

The numerical solution has shown that under 
the realistic values of the dissipation parameter, 
the effect is reduced to the shift of the value 
of the bifurcation parameter L towards the in-
crease. The most interesting, in our opinion, is 
the results of the analysis of the change of the 
nonlinear dynamics of the considered RBWT 
in the plane “relativistic factor - bifurcation pa-
rameter”. In this aspect, in fact, the three par-
ametric nonlinear dynamics of the RBWT are 
fundamentally different from the dynamics of 
processes in the non-relativistic BWT. In Fig-
ure 3 we refer to our calculated diagram which 
quantitatively shows the limits of automodula-
tion (line I) on the plane of parameters: L-g0. 
Note that line II limits the region where the par-
ticle rotation takes place, that is, the used theo-
retical model (1) works. A characteristic feature 

   2
0ζ,τ / 2βF E UC  (our data subject 

dissipation, the influence of space charge, the 
effect of reflections waves) at the values of 
the bifurcation parameter L:(a) – 3.5, (b) – 
3.9 (other parameters: 0=1.5, N 10, s=0.5, 
=0.7,  =1.3). 

 

 
(a) 

 
(b) 

Figure 2. Data on the time dependence of 
normalized field amplitude F(,  )(our data 
with accounting  dissipation, the influence of 

space charge and an effect of wave 
reflections) at the values of the bifurcation 

parameter L: (a) 3.0 (b) 4.0 (other 
parameters: 0=1.5, N 10, s=0.5, =0.7, 

 =1.3). 
 
Figures 1a,b are corresponding to the regimes 
of periodical automodulation (a) and hyper 
chaotic regime (b). It is worth to note that our 
results obtained without accounting for the 
reflection effect are very well correlated with 
the data by Ryskin-Titov in Ref. [7], where it 
has been in details studied the RBWT 
dynamics with.  

In table 1 we list our data on  the 
correlation dimension d2, embedding 
dimension, determined on the basis of false 
nearest neighbours algorithm (dN) with 
percentage of false neighbours (%).  
calculated for different values of lag   (data 
on fig1b, regime of a chaos). 
 

Table 1. Correlation dimension d2, 
embedding dimension, determined on the 

basis of false nearest neighbours algorithm 
(dN) with percentage of false neighbours (%) 

calculated for different values of lag   
 d2 (dN) 

60 8.2 10 
(12) 

8 6.5 8 
(2.1) 

10 6.5 8 
(2.1) 

 
In Table 2 we list our computing data on the  
Lyapunov exponents (LE), the dimension of 
the Kaplan-York attractor, the Kolmogorov 
entropy Kentr.  

 
Table 2. The  Lyapunov exponents (LE), the  
dimension of the Kaplan-York attractor, the 

Kolmogorov entropy Kentr. (our data) 
1 2 3 4 K 

0.508 0.196 -0.0001 0.0003 0.704 
 

For studied series there are the 
positive and negative LE values.The 
resulting KYD in both cases are very similar 
to the correlation dimension (calculated by 
the algorithm by Grassberger-Procachia). 
More important is the analysis of the RBWT 
nonlinear dynamics in the plane "relativistic 
factor – bifurcation parameter."  
The numerical solution has shown that under 
the realistic values of the dissipation 
parameter, the effect is reduced to the shift of 
the value of the bifurcation parameter L 
towards the increase. The most interesting, in 
our opinion, is the results of the analysis of 
the change of the nonlinear dynamics of the 
considered RBWT in the plane "relativistic 
factor - bifurcation parameter". In this aspect, 
in fact, the three parametric nonlinear 
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of Figure 3 is the presence of the “beak” effect, 
which, depending on the relativistic factor, goes 
far into the domain of automodulation. 

Figure 3. The boundaries of automodulation (line I) on 
the plane of parameters:L-g0.  

                       
3. Conclusions
In this  work we have performed an advanced 

modelling and for the first time forecasting an 
emission spectrum and nonlinear dynamics el-
ements for relativistic backward-wave tube 
(RBWT) with accounting for  dissipation and 
space charge effects etc. The temporal depend-
ences of the normalized field amplitude (power) 
in a wide range of variation of the controlling pa-
rameters (electric length of an interaction space 
N, bifurcation parameter L and relativistic factor 
g0) are  computed. The dynamic and topological 
invariants of the RBWT dynamics in auto-mod-
ulation and chaotic regimes such as correlation 
dimensions values, embedding, Kaplan-York 
dimensions, Lyapunov’s exponents, Kolmogo-
rov entropy etc are calculated. diagram which 
quantitatively shows the limits of self-modula-
tion (line I) on the plane of parameters:L-g0 .is 
calculated. It has been discovered the “beak” ef-
fect (on the plane of parameters L, g0), which, 
depending on the relativistic factor, goes far into 
the domain of automodulation for the RBWT 
studied.   
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A. V. Glushkov, A. V. Tsudik, D. A. Novak, O. V. Dubrovsky

CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE WITH 
ACCOUNTING FOR SPACE CHARGE FIELD AND DISSIPATION EFFECTS: 

NEW EFFECTS

Summary.
We have performed an advanced modelling and for the first time forecasting an emission spec-

trum and nonlinear dynamics elements for relativistic backward-wave tube (RBWT) with account-
ing for  dissipation and space charge effects etc. The temporal dependences of the normalized field 
amplitude (power) in a wide range of variation of the controlling parameters (electric length of an 
interaction space N, bifurcation parameter L and relativistic factor g0) are  computed. The dynamic 
and topological invariants of the RBWT dynamics in auto-modulation and chaotic regimes such 
as correlation dimensions values, embedding, Kaplan-York dimensions, Lyapunov’s exponents, 
Kolmogorov entropy etc are calculated. It has been discovered the «beak» effect on the plane of 
parameters:  bifurcation Piers-like parameter L – relativistic factor  g0, which, depending on the 
relativistic factor, goes far into the domain of automodulation.  

Key words: relativistic backward-wave tube, chaos, non-linear methods
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А. В. Глушков, А. В. Цудик, Д. А. Новак, О. В. Дубровский

ХАОТИЧЕСКАЯ ДИНАМИКА РЕЛЯТИВИСТСКОЙ ЛАМПЫ ОБРАТНОЙ ВОЛНЫ 
С УЧЕТОМ ВЛИЯНИЯ ПОЛЯ ПРОСТРАНСТВЕННОГО ЗАРЯДА 

И ДИССИПАЦИИ: НОВЫЕ ЭФФЕКТЫ

Резюме.
Представлены результаты моделирования элементов нелинейной динамики для реляти-

вистской обратной волны (РЛОВ) с учетом эффектов диссипации и поля пространственного 
заряда и др.  Временные зависимости нормированной амплитуды поля (мощности) вычис-
лены в широком диапазоне вариаций управляющих параметров (электрическая длина про-
странства взаимодействия N, параметр бифуркации L и релятивистский фактор g0). Рассчи-
таны динамические и топологические инварианты динамики РЛОВ в автомодуляционном 
и хаотичном режимах, в частности, значения корреляционной размерности, размерности 
вложения, Каплана-Йорка, показатели Ляпунова, энтропия Колмогорова и др. Обнаружен 
эффект «клюва» на плоскости параметров: бифуркационный параметр L - релятивистский 
фактор g0.

Ключевые слова: релятивистская лампы обратной волны, хаос, нелинейные методы
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О. В. Глушков, А. В. Цудік, Д. А. Новак, О. В. Дубровський

ХАОТИЧНА ДИНАМІКА РЕЛЯТИВІСТСЬКОЇ ЛАМПИ ЗВЕРНЕНОЇ ХВИЛІ  З 
УРАХУВАННЯМ  ВПЛИВУ ПОЛЯ ПРОСТОРОВОГО ЗАРЯДУ ТА ДИСИПАЦІЇ: 

НОВІ ЕФЕКТИ

Резюме.
Представлені результати моделювання спектру випромінювання та елементів нелінійної 

динаміки для релятивістської зворотної хвилі (РЛЗХ) з урахуванням  ефектів дисипації та 
поля просторового заряду тощо. Часові залежності нормированної амплітуди поля (потуж-
ності) обчислені в широкому діапазоні варіацій керуючих параметрів (електрична довжина 
простору взаємодії N, параметр біфуркації L і релятивістський фактор g0). Розраховані дина-
мічні та топологічні інваріанти динаміки РЛЗХ в автомодуляційному та хаотичному режи-
мах, зокрема, значення кореляційної розмірності, розмірності вкладення, Каплана-Йорка, 
показники Ляпунова, ентропія Колмогорова тощо. Виявлено ефект «дзьоба» на площині па-
раметрів: біфуркаційний параметр L - релятивістський фактор g0.

Ключові слова: релятивістська лампи зворотної хвилі, хаос, нелінійні методи
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