СПЕКТРОСКОПІЯ БАГАТОЕЛЕКТРОННОГО АТОМА В DC ЕЛЕКТРИЧНОМУ ПОЛІ: МОДИФІКОВАНИЙ МЕТОД ОПЕРАТОРНОЇ ТЕОРІЇ ЗБУРЕНЬ ДЛЯ ОПИСУ ШТАРКIВСЬКИХ РЕЗОНАНСІВ

Автор(и)

  • A A Kuznetsova Національний університет "Одеська морська академія, Ukraine
  • A. A. Buyadzhi Одеський державний екологічний університет, Ukraine
  • M Yu Gurskaya Одеський державний екологічний університет,
  • A. O Makarova Одеський державний екологічний університет, Ukraine

DOI:

https://doi.org/10.18524/0235-2435.2018.27.150576

Ключові слова:

multielectron atom in a dc electric field, modified operator perturbation theory, Stark resonances

Анотація

Представлений новий модифікований метод розрахунку характеристик енергій штарківських резонансів (енергії і ширини) для багатоелектронних атомних систем в електричному полі. Метод заснований на модифікованій операторної теорії збурень, яка забезпечує послідовний, коректний опис  ефекту Штарка в сильному полі для багатоелектронних атомів і базується на використанні фізично обґрунтованого наближення перекручених хвиль в рамках формально точної квантово-механічної процедури. В якості ілюстрації представлені деякі тестові дані для енергій і ширин резонансів Штарка в спектрі атомів літію, які порівнюються з результатами розрахунків в рамках альтернативних послідовних теоретичних методів

Посилання

Glushkov, A.V. Atom in an electromagnetic field. KNT: Kiev, 2005.

Glushkov, A.V. Relativistic Quantum theory. Quantum mechanics of atomic systems. Astroprint: Odessa, 2008.

Lisitsa, V.S. New results on the Stark and Zeeman effects in the hydrogen atom. Sov. Phys. Usp. 1987, 30, 927-960.

Ivanov, L.N.; Letokhov, V.S. Selective ionization of atoms by a light and electric field. Quant. Electr.(in Russian) 1975, 2, 585-590.

Glushkov, A.V. Operator Perturbation Theory for Atomic Systems in a Strong DC Electric Field. In Advances in Quantum Methods and Applications in Chemistry, Physics, and Biology, Series: Progress in Theoretical Chemistry and Physics; Hotokka, M., Brändas, E., Maruani, J., Delgado-Barrio, G., Eds.; Springer: Cham, 2013; Vol. 27, pp 161–177.

Glushkov, A.V. Advanced Relativistic Energy Approach to Radiative Decay Processes in Multielectron Atoms and Multicharged Ions. In Quantum Systems in Chemistry and Physics: Progress in Methods and Applications, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brandas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 231–252.

Moiseyev, N. Quantum theory of resonances: calculating energies, widths and cross-sections by complex scaling Phys. Rep. 1998, 302, 211-293

Rao, J.; Liu, W.; Li, B. Theoretical complex Stark energies of hydrogen by a complex-scaling plus B-spline approach. Phys. Rev. A. 1994, 50, 1916-1919 (1994).

Rao, J.; Li, B. Resonances of the hydrogen atom in strong parallel magnetic and electric fields. Phys. Rev. A. 1995, 51, 4526-4530.

Hehenberger, M.; McIntosh, H.V.; Brändas, E. Weyl's theory applied to the Stark effect in the hydrogen atom. Phys. Rev. A 1974, 10 (5), 1494-1506.

Glushkov, A; Khetselius, O; Svinarenko, A.; Buyadzhi, V. Spectroscopy of autoionization states of heavy atoms and multiply charged ions. Odessa: TEC, 2015.

Buyadzhi, V.V. Laser multiphoton spectroscopy of atom embedded in Debye plasmas: multiphoton resonances and transitions. Photoelectronics. 2015, 24, 128-133.

Khetselius, O.Yu. Quantum structure of electroweak interaction in heavy finite Fermi-systems. Astroprint: Odessa, 2011.

Khetselius, O.Yu. Spectroscopy of cooperative electron-gamma-nuclear processes in heavy atoms: NEET effect. J. Phys.: Conf. Ser. 2012, 397, 012012

Glushkov, A.V. Spectroscopy of cooperative muon-gamma-nuclear processes: Energy and spectral parameters J. Phys.: Conf. Ser. 2012, 397, 012011

Glushkov A.V.; Ivanov, L.N. DC strong-field Stark effect: consistent quantum-mechanical approach. J. Phys. B: At. Mol. Opt. Phys. 1993, 26, L379-386.

Glushkov, A.V. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. J. Phys.: Conf. Ser. 2014, 548, 012020

Buyadzhi, V.V.; Glushkov, A.V.; Lovett, L. Spectroscopy of atom and nucleus in a strong laser field: Stark effect and multiphoton resonances. Photoelectronics. 2014, 23, 38-43.

Glushkov, A.V.; Dan'kov, S.V.; Prepelitsa, G.P.; Polischuk, V.N.; Efimov, A.E. Qed theory of nonlinear interaction of the complex atomic systems with laser field multi-photon resonances. J. Techn. Phys. 1997, 38(2), 219-222.

Ignatenko, A.V. Probabilities of the radiative transitions between Stark sublevels in spectrum of atom in an DC electric field: New approach. Photoelectronics, 2007, 16, 71-74.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V. Non-hydrogenic atoms and Wannier-Mott excitons in a DC electric field: Photoionization, Stark effect, Resonances in ionization continuum and stochasticity. Photoelectronics, 2001, 10, 103-106.

Glushkov, A.V.; Malinovskaya S.V. Co-operative laser nuclear processes: border lines effects In New Projects and New Lines of Research in Nuclear Physics. Fazio, G., Hanappe, F., Eds.; World Scientific: Singapore, 2003, 242-250.

Stambulchik, E.; Maron, Y. Stark effect of high-n hydrogen-like transitions: quasi-contiguous approximation. J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 095703.

Dunning, F.B.; Mestayer, J.J.; Reinhold, C.O.; Yoshida S.; Burgdörfer, J. Engineering atomic Rydberg states with pulsed electric fields. J. Phys. B: At. Mol. Opt. Phys. 2009, 42, 022001.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V.; Korchevsky, D.A. DC strong field stark effect for nonhydrogenic atoms: Consistent quantum mechanical approach. Int. Journ. Quant. Chem. 2004, 99, 936-939.

Ivanov, L.N.; Ivanova, E.P. Atomic ion energies for Na-like ions by a model potential method Z = 25–80. Atom. Data Nucl. Data Tabl. 1979, 24, 95-109

Glushkov, A.V.; Gurskaya, M.Yu.; Ignatenko, A.V.; Smirnov, A.V.; Serga, I.N.; Svinarenko, A.A.; Ternovsky, E.V. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field. J. Phys.: Conf. Ser. 2017, 905, 012004.

Glushkov, A. Multiphoton spectroscopy of atoms and nuclei in a laser field: relativistic energy approach and radiation atomic lines moments method// Adv. Quant.Chem. (Elsevier), 2018, 78, doi.org/10.1016/bs.aiq.2018.06.004

Khetselius, O. Optimized relativistic many-body perturbation theory calculation of wavelengths and oscillator strengths for li-like multicharged ions// Adv. Quant. Chem. (Elsevier) , 2018, 78,

doi.org/10.1016/bs.aiq.2018.06.001.

Glushkov, A.V.; Ivanov, L.N. Radiation decay of atomic states: atomic residue polarization and gauge noninvariant contributions. Phys. Lett. A 1992, 170, 33-36.

Ivanova, E.P.; Glushkov, A.V. Theoretical investigation of spectra of multicharged ions of F-like and Ne-like isoelectronic sequences. J. Quant. Spectr. Rad. Transfer. 1986, 36, 127-145.

Glushkov, A.V.; Ivanov, L.N.; Ivanova, E.P. Autoionization Phenomena in Atoms. Moscow University Press, Moscow, 1986, 58-160

Khetselius, O.Yu. Relativistic perturbation theory calculation of the hyperfine structure parameters for some heavy-element isotopes. Int. Journ.Quant.Chem. 2009, 109, 3330-3335.

Glushkov, A.V. Negative ions of inert gases. JETP Lett. 1992, 55, 97-100.

Glushkov, A.V. Relativistic and Correlation Effects in Spectra of Atomic Systems; Astroprint: Odessa, 2006.

Khetselius, O.Yu. Hyperfine structure of radium. Photoelectronics. 2005, 14, 83-85.

Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Prepelitsa, G.P. Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules. J.Phys.: Conf. Ser. 2006, 35, 420-424.

Glushkov, A.V.; Malinovskaya, S.V.; Loboda, A.V.; Shpinareva, I.M.; Gurnitskaya, E.P.; Korchevsky, D.A. Diagnostics of the collisionally pumped plasma and search of the optimal plasma parameters of x-ray lasing: calculation of electron-collision strengths and rate coefficients for Ne-like plasma. J. Phys.: Conf. Ser. 2005, 11, 188-198.

Glushkov, A.V. Energy approach to resonance states of compound superheavy nucleus and EPPP in heavy nuclei collisions In Low Energy Antiproton Physics; Grzonka, D., Czyzykiewicz, R., Oelert,W., Rozek, T., Winter, P., Eds.; AIP: New York, AIP Conf. Proc. 2005, 796, 206-210.

Meng, H.-Y.; Zhang, Y.-X.; Kang, S.; Shi, T.-Y.; Zhan, M.-S. Theoretical complex Stark energies of lithium by a complex scaling plus the B-spline approach. J. Phys. B: At. Mol. Opt. Phys. 2008, 41, 155003.

Glushkov, A.V.; Malinovskaya, S.V.; Prepelitsa, G.P.; Ignatenko, V. Manifestation of the new laser-electron nuclear spectral effects in the thermalized plasma: QED theory of co-operative laser-electron-nuclear processes. J. Phys.: Conf. Ser. 2005, 11, 199-206.

Themelis, S.I.; Nicolaides, C.A. Complex energies and the polyelectronic Stark problem: II. The Li n = 4 levels for weak and strong fields 2001 J. Phys. B: At. Mol. Opt. Phys. 2001, 34, 2905-2926.

Glushkov, A.V.; Ambrosov, S.V.; Ignatenko, A.V.; Korchevsky, D.A. DC strong field stark effect for nonhydrogenic atoms: Consistent quantum mechanical approach. Int. Journ. Quant. Chem. 2004, 99, 936-939.

Khetselius, O.Yu. Relativistic Energy Approach to Cooperative Electron-γ-Nuclear Processes: NEET Effect In Quantum Systems in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nishikawa, K., Maruani, J., Brändas, E., Delgado-Barrio, G., Piecuch, P., Eds.; Springer: Dordrecht, 2012; Vol. 26, pp 217-229.

Sahoo, S.; Ho, Y. K. Stark effect on the low-lying excited states of the hydrogen and the lithium atoms. J. Phys. B: At. Mol. Opt. Phys. 2000, 33, 5151.

Glushkov, A.V.; Ternovsky, V.B.; Buyadzhi, V.V.; Prepelitsa, G.P. Geometry of a Relativistic Quantum Chaos: New approach to dynamics of quantum systems in electromagnetic field and uniformity and charm of a chaos. Proc. Intern. Geom. Center. 2014, 7(4), 60-71.

Kuznetsova, A.A.; Glushkov, A.V.; Ignatenko, A.V.; Svinarenko, A.A.; Ternovsky V.B. Spectroscopy of multielectron atomic systems in a DC electric field. Adv. Quant. Chem. (Elsevier) 2018, 78,

doi.org/10.1016/bs.aiq.2018.06.005

Khetselius, O.Yu. Optimized Perturbation Theory for Calculating the Hyperfine Line Shift and Broadening of Heavy Atoms in a Buffer Gas. In Frontiers in Quantum Methods and Applications in Chemistry and Physics, Series: Progress in Theoretical Chemistry and Physics; Nascimento, M., Maruani, J., Brändas, E., Delgado-Barrio, G., Eds.; Springer: Cham, 2015; Vol. 29, pp. 55-76.

Khetselius, O.Yu. Atomic parity non-conservation effect in heavy atoms and observing P and PT violation using NMR shift in a laser beam: To precise theory. J. Phys.: Conf. Ser. 2009, 194, 022009.

Buyadzhi, V.V.; Chernyakova, Yu.G.; Smirnov, A.V.; Tkach, T.B. Electron-collisional spectroscopy of atoms and ions in plasma: Be-like ions. Photoelectronics. 2016, 25, 97-101.

Buyadzhi, V.V.; Chernyakova, Yu.G.; Antoshkina, O.A.; Tkach, T.B. Spectroscopy of multicharged ions in plasmas: Oscillator strengths of Be-like ion Fe. Photoelectronics. 2017, 26, 94-102.

Glushkov, A.V.; Kondratenko, P.A.; Buyadgi, V.V.; Kvasikova, A.S.; Sakun T.N.; Shakhman, A.S. Spectroscopy of cooperative laser electron-γ-nuclear processes in polyatomic molecules. J. Phys.: Conf. Ser. 2014, 548, 012025.

Svinarenko, A.A. Study of spectra for lanthanides atoms with relativistic many- body perturbation theory: Rydberg resonances. J. Phys.: Conf. Ser. 2014, 548, 012039.

Khetselius, O.Yu. Hyperfine structure of atomic spectra. Astroprint: Odessa, 2008.

##submission.downloads##

Опубліковано

2018-12-12

Номер

Розділ

Статті