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SPECTROSCOPY OF MULTIELECTRON ATOM IN A DC ELECTRIC FIELD: 
MODIFIED OPERATOR PERTURBATION THEORY APPROACH 

TO STARK RESONANCES

It is presented a new modified method to calculation of the Stark resonances energies characteristics (energies and 
widths) for the multielectron  atomic systems in a DC electric field. The method is based on the modified operator 
perturbation theory. The latter allows an accurate, consistent treatment of a strong field DC Stark effect and includes 
the physically reasonable distorted-waves approximation in the frame of the formally exact quantum-mechanical 
procedure. As illustration, some  test data for the  Stark resonances energies and widths in the lithium atom spectrum 
are presented and compared with  results of calculations  within the alternative consistent sophisticated methods.   

1.  Introduction
At last years it attracts a great interest especially 

in the multielectron atoms that is stimulated by a 
whole range of interesting phenomena to be stud-
ied (such as quasi-discrete state mixing, a zoo of 
Landau- Zener anticrossings, autoionization in the 
multielectron atoms, the effects of potential barri-
ers (shape resonances), new kinds of resonances  
above threshold etc) and by many applications on 
atoic, laser and plasmas physics [1-54].

An external electric field shifts and broad-
ens the bound state atomic levels.  The stan-
dard quantum-mechanical approach relates the 
complex eigenenergies (EE)  and 
complex eigenfunctions (EF) to the shape res-
onances.  The field effects drastically increase 
upon going from one excited level to another. 
The highest levels overlap forming a “new con-
tinuum” with lowered boundary. 

The calculation difficulties inherent to the 
standard  quantum mechanical approach are 
well known. Here one should mention the 
well-known Dyson phenomenon. The Wentzel-
Kramers-Brillouin (WKB) approximation over-
comes these difficulties for the states lying far 

from the “ new continuum” boundary. Some 
modifications  of the WKB  method (see review 
in Ref. [1]) are introduced by Stebbings and 
Dunning, Kondratovich and Ostrovsky, Popov 
et al. Ivanov-Letokhov [5] have fulfilled the 
first estimations of the effectiviness of the se-
lective ionization of the  Rydberg atom using a 
DC electric and laser fields within the quasiclas-
sical model. Different calculational procedures 
are used in the Pade and then Borel summation 
of the divergent Rayleigh-Schrödinger perturba-
tion theory (PT) series (Franceschini et al 1985, 
Popov et al 1990) and in the sufficiently exact 
numerical solution  of the  difference equations  
following from expansion of the  wave function 
over finite basis  (Benassi ans Grecchi 1980, 
Maquet et al 1983, Kolosov 1987, Telnov 1989, 
Anokhin-Ivanov 1994), complex-coordinate 
method, quantum defect approximation etc (see 
review in Ref. [1]). 

Hehenberger, McIntosh and E. Brändas [10] 
have applied the Weyl’s theory to the Stark ef-
fect in the hydrogen atom. 

Themelis and Nicolaides [42] adopted an ab 
initio theory to compute the complex energy 
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of multielectron atomic states. Their approach 
is based on the state-specific construction of 
a non-Hermitian matrix according to the form 
of the decaying-state EF which emerges from 
the complex eigenvalue Schrodinger equation 
(CESE) theory.  Sahoo and Ho [45] carried out  
the calculation the Stark resonances energies 
and widths in the lithium atom on the basis of 
the  complex absorbing potential (CAP) formal-
ism. Jianguo Rao et al and Hui-Yan Meng et al 
[40] have presented the B-spline-based coordi-
nate rotation method plus the model potential 
approach and  applied it to investigate the com-
plex energies of low-lying resonances of the hy-
drogen and lithium atoms in an electric field. 

In Refs.[5,16] it has been presented a consis-
tent uniform quantum approach to the solution 
of the non-stationary state problems including 
the DC (Direct Current) strong-field Stark effect 
and also scattering problem It is based on the 
operator form of the perturbation theory (OPT) 
for the Schrödinger equation of an atom in a 
strong DC electric field.  ё

In this work we present a new modified ver-
sion of the OPT  method for the non-H atomic 
systems and test it by studying the Stark reso-
nances parameters for some lithium atom states 
in a DC electric field. Besides, a relativistic gen-
eralization is presented too. The Stark resonanc-
es parameters energies and widths are calculated 
and compared with the data of calculations on 
the basis of the alternative sophisticated com-
plex eigenvalue approaches [40,42,45]. 

2.Modified operator perturbation theory 
to Stark resonances for atoms in a DC elec-
tric field

As usually [16,47], the Schrödinger equation 
for the electron function taking into account the 
uniform electric field and field of the nucleus 
(Coulomb units are used: for length, 1 unit is 

mZeh 22 ; for energy 1 unit is 242 hemZ ) is: 

[-(1 - N/Z) / r+Vm(r) + e z –1/2D -E ] y = 0,    (1)

where E  is the electron energy, Z is the nucleus 
charge, N is the number of electrons in the atom-

ic core (for the hydrogen atom: Z=1, N=0), Vm is 
a model potential that describes interaction with 
the electron shells for multi-electron atom (for 
the hydrogen atom Vm=0). Firstly, we only deal 
with the Coulomb part of the electron-atomic 
residue interaction. The non-Coulomb part, as 
well as relativistic effects, can be approximately 
accounted for next step. The separation of vari-
ables in the parabolic coordinates:

                    y(z,h,j)=f (z) g(h)(z× h )|m|/2×

                                     exp(imj)/(2p)1/2                           (2)

transforms it to the system of two equations for 
the functions  f, g:

f¢¢+
t

m 1|| +  f¢+[1/2E +(b1 -N/Z /t-1/4e (t)t ]
f =0                     

                                                                   (3)
g²+ | |m

t
+1g¢+[1/2E+b2  / t + 1/4e (t)  t ] g = 0,                              

                                                                   (4)
coupled through the constraint on the separa-

tion constants:
                                                 (5)

Here and below variable t denotes the argu-
ment common for the whole differential equa-
tions system (4). For the uniform electric field 
( ) ee =t . Potential energy in equation (4)  has 

the barrier. Two turning points for the classical 
motion along the  axis,  and  , at a given 
energy E are the solutions of the quadratic equa-
tion ( ):

               t2 ={[ E2
0 - 4e (1-b)] 1/2 - E0 }/e,     (6)

       t1 ={-[E2
0  - 4e (1-b)] 1/2 - E0 }/e,   t1< t2   (7)

To simplify the calculational procedure, the 
uniform electric field  in (3) and (4)  should be 
substituted by the function [16]:   
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with sufficiently large t (t=1.5t2). The motiva-
tion of a choice of the ( )te  and some physical 
features of electron motion along the h-axis are 
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approach is based on the state-specific 
construction of a non-Hermitian matrix 
according to the form of the decaying-state 
EF which emerges from the complex 
eigenvalue Schrodinger equation (CESE) 
theory.  Sahoo and Ho [45] carried out  the 
calculation the Stark resonances energies and 
widths in the lithium atom on the basis of the  
complex absorbing potential (CAP) 
formalism. Jianguo Rao et al and Hui-Yan 
Meng et al [40] have presented the B-spline-
based coordinate rotation method plus the 
model potential approach and  applied it to 
investigate the complex energies of low-lying 
resonances of the hydrogen and lithium 
atoms in an electric field.  

In Refs.[5,16] it has been presented a 
consistent uniform quantum approach to the 
solution of the non-stationary state problems 
including the DC (Direct Current) strong-
field Stark effect and also scattering problem 
It is based on the operator form of the 
perturbation theory (OPT) for the 
Schrödinger equation of an atom in a strong 
DC electric field.   

In this work we present a new modified 
version of the OPT  method for the non-H 
atomic systems and test it by studying the 
Stark resonances parameters for some lithium 
atom states in a DC electric field. Besides, a 
relativistic generalization is presented too. 
The Stark resonances parameters energies 
and widths are calculated and compared with 
the data of calculations on the basis of the 
alternative sophisticated complex eigenvalue 
approaches [40,42,45].  
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presented in Refs. [1,2,16]. Here we only under-
line that  the function ( )te  practically coincides 
with the constant in the inner barrier motion 
region, i.e. < and disappears at > . It is 
important that the final results do not depend on 
the parameter t. It is carefully checked in the nu-
merical calculation. The scattering states energy 
spectrum now spreads over the range ( )∞+- ,2et
, compared with  ( )∞+∞- ,  in the uniform field. 
In contrast to the case of a free atom in scatter-
ing states in the presence of the uniform electric 
field remain quantified at any energy E, i.e. only 
definite values of  are possible. The latter are 
determined by the confinement condition for 
the motion along the h-axis. The same is true in 

our case, but only for E 

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2
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1 .  Ulti-

mately, such a procedure provides construction 
of realistic functions of the bound and scattering 
states. In a certain sense, this completely corre-
sponds to the advantages of the distorted-wave 
approximation known in scattering theory [2].

The total Hamiltonian ( )jνς ,,H  does not 
possess the bound stationary states. According 
to OPT [16]), one has to define the zero order 
Hamiltonian H0, so that its spectrum reproduces 
qualitatively that of the initial one. To calcu-
late the width G of the concrete quasistation-
ary state in the lowest PT order one needs only 
two zeroth–order EF of H0: bound state func-
tion ( )jηe ,,EbΨ  and scattering state function 

( )jηe ,,EsΨ  with the same EE. It can be solved 
a more  general problem: a construction of the 
bound  state function along with its complete 
orthogonal complementary of  scattering func-
tions  with  E 






 ∞+-⊂ ,

2
1 et . First, one has 

to define the EE of the expected bound state. It is 
the well-known problem of states quantification 
in the case of the penetrable barrier [16]. The  
system (3) and (4) with the total Hamiltonian  
is solved under the conditions:

                           f(t)® 0 at t Þ ¥ ,              (9) 

¶x(b, E) / ¶E = 0  with

x(b, E) = 
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lim [ g2 (t) + {g¢(t) / k}2 ] t| m| + 1.         (10)

These two conditions quantify the bound en-
ergy E and separation constant . Further one 
should solve the system of the ordinary differen-
tial equations (3) and (4) with probe pairs of  E, 

. The corresponding EF:
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where  ( )tf Eb   is the solution of (3) ( with the 
just determined E, ) at ( )∞⊂ ,0t   and ( )tg Eb  is 
the solution of (4) (with the same E, ) at  
(inside barrier) and  ( ) 0=tg  otherwise.  

These bound state EE, eigenvalue  and 
EF for the zero-order Hamiltonian  coincide  
with those  for the total Hamiltonian  at  ⇒
, where all the states can be classified  due  to 
the quantum numbers  (principal, 
parabolic, azimuthal) connected with E, , m 
by the well-known expressions. The scattering 
state functions:
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is orthogonal to the above defined bound state 
function and to each other. In addition, these 
functions must describe the motion of the eject-
ed electron, i.e. ′  must satisfy the equation 
(4) asymptotically. Following the OPT ideology 
[16], we choose the next form of ′ :
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| |m
t
+1 f¢E¢s+[1/2E¢+(b1¢-N/Z)/t-1/4 e 

(t)t] f E¢s = 0,
g1²+

| |m
t
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g2²+
| |m
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+1g2¢+[1/2E+b2¢/t +1/4e (t)t]g2=2gEb,
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To simplify the calculational procedure, the 
uniform electric field   in (3) and (4)  should 
be substituted by the function [16]:  
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with sufficiently large  (=1.5t2). The 
motivation of a choice of the  t  and some 
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the -axis are presented in Refs. [1,2,16]. 
Here we only underline that  the function 
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energy E and separation constant 1 . Further 
one should solve the system of the ordinary 
differential equations (3) and (4) with probe 
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pairs of  E, 1 . The corresponding EF: 

 
Eb (  = fEb () gEb ()( )|m|/2  

                          exp (im)(2--1/2 ,           (11) 
 
where   tf Eb   is the solution of (3) ( with the 
just determined E, 1 ) at   ,0t   and  tgEb  
is the solution of (4) (with the same E, 1 ) at 

2tt   (inside barrier) and    0tg  otherwise.   
These bound state EE, eigenvalue 1  and 

EF for the zero-order Hamiltonian 0H  
coincide  with those  for the total 
Hamiltonian H  at  0 , where all the states 
can be classified  due  to the quantum 
numbers mnnn ,,, 21  (principal, parabolic, 
azimuthal) connected with E, 1 , m by the 
well-known expressions. The scattering state 
functions: 

Es  (  = f Es () gE’s () ( )|m|/2  

                                   exp (im)(2-1/2                (12) 
 
is orthogonal to the above defined bound 
state function and to each other. In addition, 
these functions must describe the motion of 
the ejected electron, i.e. sEg   must satisfy the 
equation (4) asymptotically. Following the 

To simplify the calculational procedure, the 
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the -axis. The same is true in our case, but 
only for E 






  

2
1,

2
1 .  Ultimately, 
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with  E 





  ,

2
1  . First, one has to 
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is the well-known problem of states 
quantification in the case of the penetrable 
barrier [16]. The  system (3) and (4) with the 
total Hamiltonian H  is solved under the 
conditions: 
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These two conditions quantify the bound 
energy E and separation constant 1 . Further 
one should solve the system of the ordinary 
differential equations (3) and (4) with probe 
pairs of  E, 1 . The corresponding EF: 

 
Eb (  = fEb () gEb ()( )|m|/2  

                          exp (im)(2--1/2 ,           (11) 
 
where   tf Eb   is the solution of (3) ( with the 
just determined E, 1 ) at   ,0t   and  tgEb  
is the solution of (4) (with the same E, 1 ) at 

2tt   (inside barrier) and    0tg  otherwise.   
These bound state EE, eigenvalue 1  and 

EF for the zero-order Hamiltonian 0H  
coincide  with those  for the total 
Hamiltonian H  at  0 , where all the states 
can be classified  due  to the quantum 
numbers mnnn ,,, 21  (principal, parabolic, 
azimuthal) connected with E, 1 , m by the 
well-known expressions. The scattering state 
functions: 

Es  (  = f Es () gE’s () ( )|m|/2  

                                   exp (im)(2-1/2                (12) 
 
is orthogonal to the above defined bound 
state function and to each other. In addition, 
these functions must describe the motion of 
the ejected electron, i.e. sEg   must satisfy the 
equation (4) asymptotically. Following the 

OPT ideology [16], we choose the next form 
of sEg  : 

                  gEs(t) = g1 (t) - z2 g2(t)       (13) 
 
with sEf   and  tg1  satisfying the differential 
equations (3) and (4). The function  tg2  
satisfies the non-homogeneous differential 
equation, which differs from (4) only by the 
right-hand term, disappearing at t . The 
total equation system, determining the 
scattering function, reads 
fEs+ | |m

t
1 fEs+[1/2E+(1-N/Z)/t-1/4  (t)t] 

f Es = 0, 
g1+ | |m

t
1g1+[1/2E+2/t +1/4 (t)t]g1=0,                                      

g2+ | |m
t
1g2+[1/2E+2/t +1/4 (t)t]g2=2gEb, 

                                                                   (14) 
( 121   ). At the given E , the only 
quantum parameter 1   is determined by the 
natural boundary condition: fEs at t . 
Of course:  11   , EbsE ff    at EE  ; only 
this case is needed in the particular problem 
we deal with here. The coefficient 2z  ensures 
the orthogonality condition:  

                                                                          
                          0 sEEb .                  (15) 
The imaginary part of state energy in the 
lowest PT order is as follows: 
 
          ImE = /2 = |<Eb |H|Es>|2     (16)   
 
with the total Hamiltonian H . The state 
functions Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [1,16].  

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an 
electron moving in the field of the atomic 
core in many-electron atom (in particular, an 
alkali element) and a uniform external 

electric field does not allow separation of 
variables in the parabolic coordinates , ,  
[2].One of the ways this problem could be 
related to the use of effective potentials, 
chosen in such a way (for example, in the 
Miller-Green approximation; look review in 
ref [2]) that to achieve the separation of 
variables in the Schrödinger equation. Here 
the model potential approach [2] is used. One 
may introduce the ion core charge z  for the 
multielectron atom. According to standard 
quantum defect theory, the relation between 
quantum defect value 1 , electron energy E 
and principal quantum number n is: 

  21
1 2   Ezт . The quantum defect in 

the parabolic coordinates  mnn 21  is 
connected to the quantum defect value of the 
free  0  atom by the following relation 
[25,47]:  
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Using the quantum defect approximation 
allows to modify the OPT method for the 
non-H atoms. All calculations are performed 
on the basis of the numeral code Superatom-
ISAN (version 93). The details of the used 
method can be found in the references 
[1,2,16,25,47].  
  

3. Results and Conclusions 
 

We have applied the developed 
computational approach to calculating the 
complex energy eigenvalues representing the 
shifted and broadened 2s state of lithium 
atom as a function of electric field strength. 
Sahoo and Ho [45] performed the calculation 
on the basis of a complex absorbing potential 
(CAP) method. Themelis and Nicolaides [42] 
adopted ab initio theory to compute the 
complex energy of multielectron atomic 
states. Their approach is based on the state-
specific construction of a non-Hermitian 
matrix according to the form of the decaying-
state eigenfunction which emerges from the 
complex eigenvalue Schrodinger equation 
(CESE) theory. Meng et al [40] has 

OPT ideology [16], we choose the next form 
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with sEf   and  tg1  satisfying the differential 
equations (3) and (4). The function  tg2  
satisfies the non-homogeneous differential 
equation, which differs from (4) only by the 
right-hand term, disappearing at t . The 
total equation system, determining the 
scattering function, reads 
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( 121   ). At the given E , the only 
quantum parameter 1   is determined by the 
natural boundary condition: fEs at t . 
Of course:  11   , EbsE ff    at EE  ; only 
this case is needed in the particular problem 
we deal with here. The coefficient 2z  ensures 
the orthogonality condition:  

                                                                          
                          0 sEEb .                  (15) 
The imaginary part of state energy in the 
lowest PT order is as follows: 
 
          ImE = /2 = |<Eb |H|Es>|2     (16)   
 
with the total Hamiltonian H . The state 
functions Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [1,16].  

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an 
electron moving in the field of the atomic 
core in many-electron atom (in particular, an 
alkali element) and a uniform external 

electric field does not allow separation of 
variables in the parabolic coordinates , ,  
[2].One of the ways this problem could be 
related to the use of effective potentials, 
chosen in such a way (for example, in the 
Miller-Green approximation; look review in 
ref [2]) that to achieve the separation of 
variables in the Schrödinger equation. Here 
the model potential approach [2] is used. One 
may introduce the ion core charge z  for the 
multielectron atom. According to standard 
quantum defect theory, the relation between 
quantum defect value 1 , electron energy E 
and principal quantum number n is: 

  21
1 2   Ezт . The quantum defect in 

the parabolic coordinates  mnn 21  is 
connected to the quantum defect value of the 
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Using the quantum defect approximation 
allows to modify the OPT method for the 
non-H atoms. All calculations are performed 
on the basis of the numeral code Superatom-
ISAN (version 93). The details of the used 
method can be found in the references 
[1,2,16,25,47].  
  

3. Results and Conclusions 
 

We have applied the developed 
computational approach to calculating the 
complex energy eigenvalues representing the 
shifted and broadened 2s state of lithium 
atom as a function of electric field strength. 
Sahoo and Ho [45] performed the calculation 
on the basis of a complex absorbing potential 
(CAP) method. Themelis and Nicolaides [42] 
adopted ab initio theory to compute the 
complex energy of multielectron atomic 
states. Their approach is based on the state-
specific construction of a non-Hermitian 
matrix according to the form of the decaying-
state eigenfunction which emerges from the 
complex eigenvalue Schrodinger equation 
(CESE) theory. Meng et al [40] has 
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( ′′ ). At the given ′ , the only quan-
tum parameter ′  is determined by the natural 
boundary condition: fE¢sÞ0 at t Þ ¥. Of course:  
′ , EbsE ff =′   at ′ ; only this case is 

needed in the particular problem we deal with 
here. The coefficient ′  ensures the orthogonal-
ity condition: 

                          0=ΨΨ ′sEEb .                  (15)

The imaginary part of state energy in the 
lowest PT order is as follows:

            ImE = G/2 = p|<YEb |H|YEs>|2     (16)  

with the total Hamiltonian . The state func-
tions 

EbΨ  and EsΨ  are assumed to be normalized 
to 1 and by the ( )kk ′-d  condition, accordingly. 
The matrix elements 

sEEb H ′ΨΨ  entering the 
high- order PT corrections can be determined in 
the same way. They can be expressed through 
the set of one-dimensional integrals, described 
in details in Refs. [1,16]. 

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an electron 
moving in the field of the atomic core in many-
electron atom (in particular, an alkali element) 
and a uniform external electric field does not al-
low separation of variables in the parabolic co-
ordinates x, h, j [2].One of the ways this problem 
could be related to the use of effective potentials, 
chosen in such a way (for example, in the Mill-
er-Green approximation; look review in ref [2]) 
that to achieve the separation of variables in the 
Schrödinger equation. Here the model potential 
approach [2] is used. One may introduce the ion 
core charge  for the multielectron atom. Ac-
cording to standard quantum defect theory, the 
relation between quantum defect value , elec-
tron energy E and principal quantum number n 
is: ( ) 21

1 2 -∗ --= Ezòm . The quantum defect in 
the parabolic coordinates ( )mnn 21d  is connected 
to the quantum defect value of the free ( )0=e  
atom by the following relation [25,47]: 
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Using the quantum defect approximation al-
lows to modify the OPT method for the non-H 
atoms. All calculations are performed on the ba-
sis of the numeral code Superatom-ISAN (ver-
sion 93). The details of the used method can be 
found in the references [1,2,16,25,47]. 

 
3. Results and Conclusions
We have applied the developed computational 

approach to calculating the complex energy ei-
genvalues representing the shifted and broadened 
2s state of lithium atom as a function of electric 
field strength. Sahoo and Ho [45] performed the 
calculation on the basis of a complex absorbing 
potential (CAP) method. Themelis and Nicolaides 
[42] adopted ab initio theory to compute the com-
plex energy of multielectron atomic states. Their 
approach is based on the state-specific construc-
tion of a non-Hermitian matrix according to the 
form of the decaying-state eigenfunction which 
emerges from the complex eigenvalue Schro-
dinger equation (CESE) theory. Meng et al [40] 
has elaborated the B-spline based coordinate ro-
tation (B-CR) approach. In Table 1 we present 
our data on the eigenvalues EE (in atomic units: 
a.u.) representing the shifted and broadened 2s 
state of lithium atom as a function of electric field 
strength (in a.u.). 

Table 1. 
Complex eigenvalues for the shifted and 
broadened 2s state of lithium atom as a func-
tion of the field strength, calculated by differ-

ent methods (see text)

Li 2s B-CR  
[40]

B-CR 
[40]

CAP 
[45]

CAP 
[45]

ε (a.u.) Er (a.u.) G/2 (a.u) Er (a.u.) G/2 (a.u)
0.0050 −0.20009 – −0.20019 7.20[−9]
0.0100 −0.20642 4.50[−5] −0.20651 4.77[−5]
0.0125 −0.21147 4.76[−4] −0.21155 4.68[−4]
0.0175 −0.22393 4.03[−3] −0.22397 4.06[−3]
Li 2s CESE 

[42]
WKB
[42]

This 
work  

This 
work  

e (a.u.) G/2 (a.u) G/2 (a.u) Er (a.u.) G/2 (a.u)
0.0050 – 4.6[−11] −0.20012 7.80[−9]
0.0100 5.50[−5 ] 1.72[−4 ] −0.20645 4.81[−5]
0.0125 5.46[−4 ] 2.95[−3 ] −0.21149 4.96[−4]
0.0175 4.35[−3 ] 6.35[−2 ] −0.22394 4.24[−3]

OPT ideology [16], we choose the next form 
of sEg  : 

                  gEs(t) = g1 (t) - z2 g2(t)       (13) 
 
with sEf   and  tg1  satisfying the differential 
equations (3) and (4). The function  tg2  
satisfies the non-homogeneous differential 
equation, which differs from (4) only by the 
right-hand term, disappearing at t . The 
total equation system, determining the 
scattering function, reads 
fEs+ | |m

t
1 fEs+[1/2E+(1-N/Z)/t-1/4  (t)t] 

f Es = 0, 
g1+ | |m

t
1g1+[1/2E+2/t +1/4 (t)t]g1=0,                                      

g2+ | |m
t
1g2+[1/2E+2/t +1/4 (t)t]g2=2gEb, 
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( 121   ). At the given E , the only 
quantum parameter 1   is determined by the 
natural boundary condition: fEs at t . 
Of course:  11   , EbsE ff    at EE  ; only 
this case is needed in the particular problem 
we deal with here. The coefficient 2z  ensures 
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The imaginary part of state energy in the 
lowest PT order is as follows: 
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with the total Hamiltonian H . The state 
functions Eb  and Es  are assumed to be 
normalized to 1 and by the  kk   
condition, accordingly. The matrix elements 

sEEb H   entering the high- order PT 
corrections can be determined in the same 
way. They can be expressed through the set 
of one-dimensional integrals, described in 
details in Refs. [1,16].  

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an 
electron moving in the field of the atomic 
core in many-electron atom (in particular, an 
alkali element) and a uniform external 

electric field does not allow separation of 
variables in the parabolic coordinates , ,  
[2].One of the ways this problem could be 
related to the use of effective potentials, 
chosen in such a way (for example, in the 
Miller-Green approximation; look review in 
ref [2]) that to achieve the separation of 
variables in the Schrödinger equation. Here 
the model potential approach [2] is used. One 
may introduce the ion core charge z  for the 
multielectron atom. According to standard 
quantum defect theory, the relation between 
quantum defect value 1 , electron energy E 
and principal quantum number n is: 

  21
1 2   Ezт . The quantum defect in 

the parabolic coordinates  mnn 21  is 
connected to the quantum defect value of the 
free  0  atom by the following relation 
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Using the quantum defect approximation 
allows to modify the OPT method for the 
non-H atoms. All calculations are performed 
on the basis of the numeral code Superatom-
ISAN (version 93). The details of the used 
method can be found in the references 
[1,2,16,25,47].  
  

3. Results and Conclusions 
 

We have applied the developed 
computational approach to calculating the 
complex energy eigenvalues representing the 
shifted and broadened 2s state of lithium 
atom as a function of electric field strength. 
Sahoo and Ho [45] performed the calculation 
on the basis of a complex absorbing potential 
(CAP) method. Themelis and Nicolaides [42] 
adopted ab initio theory to compute the 
complex energy of multielectron atomic 
states. Their approach is based on the state-
specific construction of a non-Hermitian 
matrix according to the form of the decaying-
state eigenfunction which emerges from the 
complex eigenvalue Schrodinger equation 
(CESE) theory. Meng et al [40] has 



98

For comparison the analogous results, ob-
tained on the basis of the CAP, CESE, B-CR 
methods [40,42,45] are presented. Analysis of 
the data shows that the positions (energies) of 
the Stark resonances in the present calculation 
are in a physically reasonable agreement with 
theoretical data obtained by other, in particular, 
CESE and B-CR methods.  However, the results 
for the width of resonance differ more signifi-
cantly from each other. For example, the CAP 
calculation for the width of the 2s state at strength 
F< 0.0060 a.u. gives systematically larger val-
ues than obtained by the CESE, B-CR and our 
methods. The resonance width values are higher 
than the corresponding B-CR data and corre-
spondingly a little less than the values, obtained 
within the CESE method for all strengths of the 
electric field under consideration. Concerning 
the widths of resonances it should paid to at-
tention on convergence aspect for the CAP and 
CESE method. As it has been underlined in [40], 
in the case of a weak electric field (naturally the 
widths of resonances became very small), the 
methods have difficulties in obtaining a stable 
value of a width. In order to obtain the well-con-
verged results, it is necessary to use larger basis 
size. Naturally, in a limit of a weak electric field 
the well-known quasiclassical WKB approxi-
mation and standard PT [1,2] calculation will be 
more appropriate. One of the advantages of the 
B-CR method is possibility to apply in the case 
of increasing field strengths without a signifi-
cant computational effort growth, however, the 
convergence of the width  G to obtain reliable 
complex eigenvalues should be carefully carried 
out. In the CAP method, there is no systematic 
way of choosing a scaling factor in an quite ar-
tificial complex potential, which is added to the 
original atomic Hamiltonian.  One of the serious 
advantages of the modified OPT method is that 
an increasing a field strength does not lead to an 
increase of computational effort and there is no 
a convergence problem.

References
1. Glushkov, A.V. Atom in an electro-

magnetic field. KNT: Kiev, 2005. 
2. Glushkov, A.V. Relativistic Quantum 

theory. Quantum mechanics of atomic 
systems. Astroprint: Odessa, 2008. 

3. Lisitsa, V.S. New results on the Stark 
and Zeeman effects in the hydrogen 
atom. Sov. Phys. Usp. 1987, 30, 927-
960.

4. Ivanov, L.N.; Letokhov, V.S. Selec-
tive ionization of atoms by a light and 
electric field. Quant. Electr.(in Rus-
sian) 1975,  2, 585-590.

5. Glushkov, A.V.  Operator Perturba-
tion Theory for Atomic Systems in a 
Strong DC Electric Field. In Advances 
in Quantum Methods and Applications 
in Chemistry, Physics, and Biology, 
Series: Progress in Theoretical Chem-
istry and Physics; Hotokka, M., Brän-
das, E., Maruani, J., Delgado-Barrio, 
G., Eds.; Springer: Cham, 2013; Vol. 
27, pp 161–177.  

6. Glushkov, A.V. Advanced Relativistic 
Energy Approach to Radiative De-
cay Processes in Multielectron Atoms 
and Multicharged Ions. In Quantum 
Systems in Chemistry and Physics: 
Progress in Methods and Applica-
tions, Series: Progress in Theoretical 
Chemistry and Physics; Nishikawa, 
K., Maruani, J., Brandas, E., Delgado-
Barrio, G., Piecuch, P., Eds.; Springer: 
Dordrecht, 2012; Vol. 26, pp 231–252.

7. Moiseyev, N. Quantum theory of res-
onances: calculating energies, widths 
and cross-sections by complex scaling 
Phys. Rep. 1998, 302, 211-293

8. Rao, J.; Liu, W.;  Li, B. Theoretical 
complex Stark energies of hydrogen 
by a complex-scaling plus B-spline 
approach. Phys. Rev. A. 1994, 50, 
1916-1919 (1994).

9. Rao, J.; Li, B. Resonances of the hy-
drogen atom in strong parallel mag-
netic and electric fields. Phys. Rev. A. 
1995, 51, 4526-4530.

10. Hehenberger, M.; McIntosh, H.V.; 
Brändas, E. Weyl’s theory applied to 
the Stark effect in the hydrogen atom. 
Phys. Rev. A 1974, 10 (5), 1494-1506. 



99

11. Glushkov, A; Khetselius, O; Svinaren-
ko, A.; Buyadzhi, V. Spectroscopy of 
autoionization states of heavy atoms 
and multiply charged ions. Odessa: 
TEC, 2015.

12. Buyadzhi, V.V. Laser multiphoton 
spectroscopy of atom embedded in 
Debye plasmas: multiphoton reso-
nances and transitions. Photoelectron-
ics. 2015, 24, 128-133.

13. Khetselius, O.Yu. Quantum structure 
of electroweak interaction in heavy fi-
nite Fermi-systems.  Astroprint: Odes-
sa, 2011.

14. Khetselius, O.Yu. Spectroscopy of 
cooperative electron-gamma-nuclear 
processes in heavy atoms: NEET ef-
fect. J. Phys.: Conf. Ser. 2012, 397, 
012012

15. Glushkov, A.V. Spectroscopy of coop-
erative muon-gamma-nuclear process-
es: Energy and spectral parameters J. 
Phys.: Conf. Ser. 2012, 397, 012011 

16. Glushkov A.V.; Ivanov, L.N. DC 
strong-field Stark effect: consistent 
quantum-mechanical approach. J. 
Phys. B: At. Mol. Opt. Phys. 1993, 26, 
L379-386. 

17. Glushkov, A.V. Spectroscopy of atom 
and nucleus in a strong laser field: 
Stark effect and multiphoton reso-
nances. J. Phys.: Conf. Ser. 2014, 548, 
012020

18. Buyadzhi, V.V.; Glushkov, A.V.; Lo-
vett, L. Spectroscopy of atom and 
nucleus in a strong laser field: Stark 
effect and multiphoton resonances. 
Photoelectronics. 2014, 23, 38-43.

19. Glushkov, A.V.;  Dan’kov, S.V.; Pre-
pelitsa, G.P.; Polischuk, V.N.; Efimov, 
A.E.  Qed theory of nonlinear interac-
tion of the complex atomic systems 
with laser field multi-photon reso-
nances. J. Techn. Phys. 1997, 38(2), 
219-222.

20. Ignatenko, A.V. Probabilities of the ra-
diative transitions between Stark sub-
levels in spectrum of atom in an DC 

electric field: New approach. Photo-
electronics, 2007, 16, 71-74.

21. Glushkov, A.V.; Ambrosov, S.V.; Ig-
natenko, A.V. Non-hydrogenic atoms 
and Wannier-Mott excitons in a DC 
electric field: Photoionization, Stark 
effect, Resonances in ionization con-
tinuum and stochasticity. Photoelec-
tronics, 2001, 10, 103-106.

22. Glushkov, A.V.; Malinovskaya S.V. 
Co-operative laser nuclear processes: 
border lines effects  In New Projects 
and New Lines of Research in Nuclear 
Physics. Fazio, G., Hanappe, F., Eds.; 
World Scientific: Singapore, 2003, 
242-250. 

23. Stambulchik, E.; Maron, Y. Stark ef-
fect of high-n hydrogen-like transi-
tions: quasi-contiguous approxima-
tion. J. Phys. B: At. Mol. Opt. Phys. 
2008, 41, 095703.  

24. Dunning, F.B.; Mestayer, J.J.; Rein-
hold, C.O.; Yoshida S.; Burgdörfer, 
J. Engineering atomic Rydberg states 
with pulsed electric fields. J. Phys. B: 
At. Mol. Opt. Phys. 2009, 42, 022001.

25. Glushkov, A.V.; Ambrosov, S.V.; Ig-
natenko, A.V.; Korchevsky, D.A. DC 
strong field stark effect for nonhydro-
genic atoms: Consistent quantum me-
chanical approach. Int. Journ. Quant. 
Chem. 2004, 99, 936-939.

26. Ivanov, L.N.; Ivanova, E.P. Atomic 
ion energies for Na-like ions by a 
model potential method Z = 25–80. 
Atom. Data Nucl. Data Tabl. 1979, 24, 
95-109

27. Glushkov, A.V.; Gurskaya, M.Yu.; Ig-
natenko, A.V.; Smirnov, A.V.; Serga, 
I.N.; Svinarenko, A.A.; Ternovsky, 
E.V. Computational code in atomic 
and nuclear quantum optics: Ad-
vanced computing multiphoton reso-
nance parameters for atoms in a strong 
laser field. J. Phys.: Conf. Ser. 2017, 
905, 012004.

28. Glushkov, A. Multiphoton spectros-
copy of atoms and nuclei in a laser 



100

field: relativistic energy approach 
and radiation atomic lines moments 
method// Adv. Quant.Chem. (El-
sevier), 2018, 78, doi.org/10.1016/
bs.aiq.2018.06.004 

29. Khetselius, O.  Optimized relativistic 
many-body perturbation theory cal-
culation of wavelengths and oscilla-
tor strengths for li-like multicharged 
ions// Adv. Quant. Chem. (Elsevier) , 
2018, 78,

1. doi.org/10.1016/bs.aiq.2018.06.001.
30. Glushkov, A.V.; Ivanov, L.N. Radia-

tion decay of atomic states: atomic 
residue polarization and gauge non-
invariant contributions. Phys. Lett. A 
1992, 170, 33-36.

31. Ivanova, E.P.; Glushkov, A.V. Theo-
retical investigation of spectra of mul-
ticharged ions of F-like and Ne-like 
isoelectronic sequences. J. Quant. 
Spectr. Rad. Transfer. 1986, 36, 127-
145.

32. Glushkov, A.V.; Ivanov, L.N.; Iva-
nova, E.P. Autoionization Phenomena 
in Atoms. Moscow University Press, 
Moscow, 1986, 58-160

33. Khetselius, O.Yu. Relativistic pertur-
bation theory calculation of the hy-
perfine structure parameters for some 
heavy-element isotopes. Int. Journ.
Quant.Chem. 2009, 109, 3330-3335. 

34. Glushkov, A.V. Negative ions of inert 
gases. JETP Lett. 1992, 55, 97-100.

35. Glushkov, A.V. Relativistic and Cor-
relation Effects in Spectra of Atomic 
Systems; Astroprint: Odessa, 2006.

36. Khetselius, O.Yu. Hyperfine structure 
of radium. Photoelectronics. 2005, 14, 
83-85.

37. Glushkov, A.V.; Malinovskaya, S.V.; 
Loboda, A.V.; Shpinareva, I.M.; Pre-
pelitsa, G.P. Consistent quantum ap-
proach to new laser-electron-nuclear 
effects in diatomic molecules. J.Phys.: 
Conf. Ser. 2006, 35, 420-424.

38. Glushkov, A.V.; Malinovskaya, S.V.; 
Loboda, A.V.; Shpinareva, I.M.; Gur-

nitskaya, E.P.; Korchevsky, D.A. Di-
agnostics of the collisionally pumped 
plasma and search of the optimal plas-
ma parameters of x-ray lasing: calcula-
tion of electron-collision strengths and 
rate coefficients for Ne-like plasma. J. 
Phys.: Conf. Ser. 2005, 11, 188-198.

39. Glushkov, A.V. Energy approach to 
resonance states of compound super-
heavy nucleus and EPPP in heavy nu-
clei collisions In Low Energy Antipro-
ton Physics;  Grzonka, D.,   Czyzykie-
wicz, R., Oelert,W., Rozek, T., Winter, 
P., Eds.; AIP: New York,  AIP Conf. 
Proc. 2005, 796, 206-210. 

40. Meng, H.-Y.; Zhang, Y.-X.; Kang, S.;  
Shi, T.-Y.; Zhan, M.-S.  Theoretical 
complex Stark energies of lithium by a 
complex scaling plus the B-spline ap-
proach. J. Phys. B: At. Mol. Opt. Phys. 
2008, 41, 155003.

41. Glushkov, A.V.; Malinovskaya, S.V.; 
Prepelitsa, G.P.; Ignatenko, V. Mani-
festation of the new laser-electron 
nuclear spectral effects in the thermal-
ized plasma: QED theory of co-oper-
ative laser-electron-nuclear processes. 
J. Phys.: Conf. Ser. 2005, 11, 199-206.

42. Themelis, S.I.; Nicolaides, C.A. Com-
plex energies and the polyelectronic 
Stark problem: II. The Li n = 4 levels 
for weak and strong fields  2001 J. 
Phys. B: At. Mol. Opt. Phys. 2001, 34, 
2905-2926.    

43. Glushkov, A.V.; Ambrosov, S.V.; Ig-
natenko, A.V.; Korchevsky, D.A. DC 
strong field stark effect for nonhydro-
genic atoms: Consistent quantum me-
chanical approach. Int. Journ. Quant. 
Chem. 2004, 99, 936-939.

44. Khetselius, O.Yu. Relativistic Energy 
Approach to Cooperative Electron-γ-
Nuclear Processes: NEET Effect In 
Quantum Systems in Chemistry and 
Physics, Series: Progress in Theo-
retical Chemistry and Physics; Ni-
shikawa, K., Maruani, J., Brändas, E., 
Delgado-Barrio, G., Piecuch, P., Eds.; 



101

Springer: Dordrecht, 2012; Vol. 26, 
pp 217-229. 

45. Sahoo, S.; Ho, Y. K. Stark effect on 
the low-lying excited states of the hy-
drogen and the lithium atoms. J. Phys. 
B: At. Mol. Opt. Phys. 2000, 33, 5151.

46. Glushkov, A.V.; Ternovsky, V.B.; Bu-
yadzhi, V.V.; Prepelitsa, G.P. Geom-
etry of a Relativistic Quantum Chaos: 
New approach to dynamics of quan-
tum systems in electromagnetic field 
and uniformity and charm of a chaos. 
Proc. Intern. Geom. Center. 2014, 
7(4), 60-71.

47. Kuznetsova, A.A.; Glushkov, A.V.; 
Ignatenko, A.V.; Svinarenko, A.A.;  
Ternovsky V.B. Spectroscopy of mul-
tielectron atomic systems in a DC 
electric field. Adv. Quant. Chem. (El-
sevier) 2018, 78,  

2. doi.org/10.1016/bs.aiq.2018.06.005
48. Khetselius, O.Yu. Optimized Pertur-

bation Theory for Calculating the 
Hyperfine Line Shift and Broaden-
ing of Heavy Atoms in a Buffer Gas. 
In Frontiers in Quantum Methods 
and Applications in Chemistry and 
Physics, Series: Progress in Theo-
retical Chemistry and Physics; Nas-
cimento, M., Maruani, J., Brändas, 
E., Delgado-Barrio, G., Eds.; Spring-
er: Cham, 2015; Vol. 29, pp. 55-76.  

49. Khetselius, O.Yu. Atomic parity non-
conservation effect in heavy atoms 
and observing P and PT violation us-
ing NMR shift in a laser beam: To pre-
cise theory. J. Phys.: Conf. Ser. 2009, 
194, 022009.

50. Buyadzhi, V.V.; Chernyakova, Yu.G.; 
Smirnov, A.V.; Tkach, T.B. Electron-
collisional spectroscopy of atoms and 
ions in plasma: Be-like ions. Photo-
electronics. 2016, 25, 97-101.

51. Buyadzhi, V.V.; Chernyakova, Yu.G.; 
Antoshkina, O.A.; Tkach, T.B. Spec-
troscopy of multicharged ions in plas-
mas:  Oscillator strengths of Be-like 
ion Fe. Photoelectronics. 2017, 26, 
94-102.

52. Glushkov, A.V.; Kondratenko, P.A.; 
Buyadgi, V.V.; Kvasikova, A.S.; Sakun 
T.N.; Shakhman, A.S. Spectroscopy of 
cooperative laser electron-γ-nuclear 
processes in polyatomic molecules. J. 
Phys.: Conf. Ser. 2014, 548, 012025.

53. Svinarenko, A.A. Study of spectra 
for lanthanides atoms with relativistic 
many- body perturbation theory: Ry-
dberg resonances. J. Phys.: Conf. Ser. 
2014, 548, 012039.

54. Khetselius, O.Yu. Hyperfine structure 
of atomic spectra. Astroprint: Odessa, 
2008. 

This article has been received in August 2018

PACS 31.15.A-  

A.  A. Kuznetsova, A. A. Buyadzhi, M. Yu. Gurskaya, A. O. Makarova

SPECTROSCOPY OF MULTIELECTRON ATOM IN A DC ELECTRIC FIELD: 
MODIFIED OPERATOR PERTURBATION THEORY APPROACH 

TO STARK RESONANCES

Summary
It is presented a new modified method to calculation of the Stark resonances energies character-

istics (energies and widths) for the multielectron  atomic systems in a DC electric field. The method 
is based on the modified operator perturbation theory. The latter allows an accurate, consistent 
treatment of a strong field DC Stark effect and includes the physically reasonable distorted-waves 
approximation in the frame of the formally exact quantum-mechanical procedure. As illustration, 
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some  test data for the  Stark resonances energies and widths in the lithium atom spectrum are pre-
sented and compared with  results of calculations  within the alternative consistent sophisticated 
methods.   

Keywords: multielectron atom in a dc electric field – modified operator perturbation theory – 
Stark resonances
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А. А. Кузнецова, А. А. Буяджи, М. Ю. Гурская, А. О. Макарова

СПЕКТРОСКОПИЯ МНОГОЭЛЕКТРОННОГО АТОМА В DC ЭЛЕКТРИЧЕСКОМ 
ПОЛЕ: МОДИФИЦИРОВАННЫЙ МЕТОД ОПЕРАТОРНОЙ ТЕОРИИ 
ВОЗМУЩЕНИЙ ДЛЯ ОПИСАНИЯ ШТАРКОВСКИХ РЕЗОНАНСОВ

Резюме
Представлен новый модифицированный метод расчета характеристик энергий штарков-

ских резонансов (энергии и ширины) для многоэлектронных атомных систем в электриче-
ском поле. Метод основан на модифицированной операторной теории возмущений, которая 
обеспечивает последовательное, корректное описнаие эффекта Штарка в сильном поле для 
многоэлектронных атомов и базируется на использовании физически обоснованного при-
ближения искаженных волн в рамках формально точной квантово-механической процедуры. 
В качестве иллюстрации представлены некоторые тестовые данные для энергий и ширин 
резонансов Штарка в спектре атомов лития, которые сравниваются с результатами расчетов 
в рамках альтернативных последовательных теоретических методов. 

Ключевые слова:  Многоэлектронный атом в электрическом поле – модифицированная 
операторная теория возмущений – штарковские резонансы
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СПЕКТРОСКОПІЯ БАГАТОЕЛЕКТРОННОГО АТОМА В DC ЕЛЕКТРИЧНОМУ 
ПОЛІ: МОДИФІКОВАНИЙ МЕТОД ОПЕРАТОРНОЇ ТЕОРІЇ ЗБУРЕНЬ ДЛЯ 

ОПИСУ ШТАРКIВСЬКИХ РЕЗОНАНСІВ

Резюме
Представлений новий модифікований метод розрахунку характеристик енергій штарків-

ських резонансів (енергії і ширини) для багатоелектронних атомних систем в електричному 
полі. Метод заснований на модифікованій операторної теорії збурень, яка забезпечує послі-
довний, коректний опис  ефекту Штарка в сильному полі для багатоелектронних атомів і ба-
зується на використанні фізично обґрунтованого наближення перекручених хвиль в рамках 
формально точної квантово-механічної процедури. В якості ілюстрації представлені деякі 
тестові дані для енергій і ширин резонансів Штарка в спектрі атомів літію, які порівнюються 
з результатами розрахунків в рамках альтернативних послідовних теоретичних методів.

Ключові слова: багатоелектронний атом у електричному полі – модифікована оператор-
на теорія збурень – штарківські резонанси
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