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SPECTROSCOPY OF MULTIELECTRON ATOM IN A DC ELECTRIC FIELD:
MODIFIED OPERATOR PERTURBATION THEORY APPROACH
TO STARK RESONANCES

It is presented a new modified method to calculation of the Stark resonances energies characteristics (energies and
widths) for the multielectron atomic systems in a DC electric field. The method is based on the modified operator
perturbation theory. The latter allows an accurate, consistent treatment of a strong field DC Stark effect and includes
the physically reasonable distorted-waves approximation in the frame of the formally exact quantum-mechanical
procedure. As illustration, some test data for the Stark resonances energies and widths in the lithium atom spectrum
are presented and compared with results of calculations within the alternative consistent sophisticated methods.

1. Introduction

At last years it attracts a great interest especially
in the multielectron atoms that is stimulated by a
whole range of interesting phenomena to be stud-
ied (such as quasi-discrete state mixing, a zoo of
Landau- Zener anticrossings, autoionization in the
multielectron atoms, the effects of potential barri-
ers (shape resonances), new kinds of resonances
above threshold etc) and by many applications on
atoic, laser and plasmas physics [1-54].

An external electric field shifts and broad-
ens the bound state atomic levels. The stan-
dard quantum-mechanical approach relates the
complex eigenenergies (EE) and
complex eigenfunctions (EF) to the shape res-
onances. The field effects drastically increase
upon going from one excited level to another.
The highest levels overlap forming a “new con-
tinuum” with lowered boundary.

The calculation difficulties inherent to the
standard quantum mechanical approach are
well known. Here one should mention the
well-known Dyson phenomenon. The Wentzel-
Kramers-Brillouin (WKB) approximation over-
comes these difficulties for the states lying far
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from the “ new continuum” boundary. Some
modifications of the WKB method (see review
in Ref. [1]) are introduced by Stebbings and
Dunning, Kondratovich and Ostrovsky, Popov
et al. Ivanov-Letokhov [5] have fulfilled the
first estimations of the effectiviness of the se-
lective ionization of the Rydberg atom using a
DC electric and laser fields within the quasiclas-
sical model. Different calculational procedures
are used in the Pade and then Borel summation
of the divergent Rayleigh-Schrodinger perturba-
tion theory (PT) series (Franceschini et al 1985,
Popov et al 1990) and in the sufficiently exact
numerical solution of the difference equations
following from expansion of the wave function
over finite basis (Benassi ans Grecchi 1980,
Magquet et al 1983, Kolosov 1987, Telnov 1989,
Anokhin-Ivanov  1994), complex-coordinate
method, quantum defect approximation etc (see
review in Ref. [1]).

Hehenberger, Mclntosh and E. Bréndas [10]
have applied the Weyl’s theory to the Stark ef-
fect in the hydrogen atom.

Themelis and Nicolaides [42] adopted an ab
initio theory to compute the complex energy



of multielectron atomic states. Their approach
is based on the state-specific construction of
a non-Hermitian matrix according to the form
of the decaying-state EF which emerges from
the complex eigenvalue Schrodinger equation
(CESE) theory. Sahoo and Ho [45] carried out
the calculation the Stark resonances energies
and widths in the lithium atom on the basis of
the complex absorbing potential (CAP) formal-
ism. Jianguo Rao et al and Hui-Yan Meng et al
[40] have presented the B-spline-based coordi-
nate rotation method plus the model potential
approach and applied it to investigate the com-
plex energies of low-lying resonances of the hy-
drogen and lithium atoms in an electric field.

In Refs.[5,16] it has been presented a consis-
tent uniform quantum approach to the solution
of the non-stationary state problems including
the DC (Direct Current) strong-field Stark effect
and also scattering problem It is based on the
operator form of the perturbation theory (OPT)
for the Schrodinger equation of an atom in a
strong DC electric field. &

In this work we present a new modified ver-
sion of the OPT method for the non-H atomic
systems and test it by studying the Stark reso-
nances parameters for some lithium atom states
in a DC electric field. Besides, a relativistic gen-
eralization is presented too. The Stark resonanc-
es parameters energies and widths are calculated
and compared with the data of calculations on
the basis of the alternative sophisticated com-
plex eigenvalue approaches [40,42,45].

2.Modified operator perturbation theory
to Stark resonances for atoms in a DC elec-
tric field

As usually [16,47], the Schrodinger equation
for the electron function taking into account the
uniform electric field and field of the nucleus
(Coulomb units are used: for length, 1 unit is
h?/Ze*m; for energy 1 unit is mz%e*/h*) is:

[-(1-N/Z) | r+V(r) + €z -12A-E ] w=0, (1)

where E is the electron energy, Z is the nucleus
charge, N is the number of electrons in the atom-

ic core (for the hydrogen atom: Z=1, N=0), V_is
a model potential that describes interaction with
the electron shells for multi-electron atom (for
the hydrogen atom V_=0). Firstly, we only deal
with the Coulomb part of the electron-atomic
residue interaction. The non-Coulomb part, as
well as relativistic effects, can be approximately
accounted for next step. The separation of vari-
ables in the parabolic coordinates:

&= (&) g(m(& )™
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exp(im@)/(2m) )

transforms it to the system of two equations for
the functions f, g:

FrelmI+L 2 112 (B -N/Z 1t-1/4e (£t 1F=0

t
3)
4

coupled through the constraint on the separa-
tion constants:

g"+wg'+[1/2E+ﬂ2 lt+1/4e(t) t]1g=0,
t

)

Here and below variable ¢ denotes the argu-
ment common for the whole differential equa-
tions system (4). For the uniform electric field
£(t)= & . Potential energy in equation (4) has
the barrier. Two turning points for the classical
motion along the axis, and , ata given
energy E are the solutions of the quadratic equa-
tion ( ):

2 12
L={[ E0-4e(1-p)] Ey}/e, ©6)

n={[E -4e(1-P) - Eo}la, 1<ty (7)

To simplify the calculational procedure, the

uniform electric field in (3) and (4) should be
substituted by the function [16]:

e(t)=1e[(l«_7) 474 4+T:|
t T+t (8)

with sufficiently large ¢ (¢/=1.5¢,). The motiva-
tion of a choice of the £(¢) and some physical
features of electron motion along the /-axis are
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presented in Refs. [1,2,16]. Here we only under-
line that the function g(t) practically coincides
with the constant in the inner barrier motion
region, i.e. < and disappears at > . It is
important that the final results do not depend on
the parameter ¢. It is carefully checked in the nu-
merical calculation. The scattering states energy
spectrum now spreads over the range (- ¢ /2,+ )
, compared with (-oo,+ o) in the uniform field.
In contrast to the case of a free atom in scatter-
ing states in the presence of the uniform electric
field remain quantified at any energy E, i.e. only
definite values of  are possible. The latter are
determined by the confinement condition for
the motion along the 4-axis. The same is true in

our case, but only for £ = (—%g + %g j . Ulti-

mately, such a procedure provides construction
of realistic functions of the bound and scattering
states. In a certain sense, this completely corre-
sponds to the advantages of the distorted-wave
approximation known in scattering theory [2].
The total Hamiltonian # (¢, v, ¢) does not
possess the bound stationary states. According
to OPT [16]), one has to define the zero order
Hamiltonian H,, so that its spectrum reproduces
qualitatively that of the initial one. To calcu-
late the width G of the concrete quasistation-
ary state in the lowest PT order one needs only
two zeroth—order EF of H: bound state func-
tion ¥, (s, 5, ¢) and scattering state function
¥, (&, 1, ) with the same EE. It can be solved
a more general problem: a construction of the
bound state function along with its complete
orthogonal complementary of scattering func-
tions with E < C——g + ooJ. First, one has
to define the EE of th e%pected ound state. It is
the well-known problem of states quantification
in the case of the penetrable barrier [16]. The
system (3) and (4) with the total Hamiltonian
is solved under the conditions:

fiy»>0att= o, 9)

ox(B, E)/ 0E =0 with
X(B.B)=lim [ (1) + {g'(0 /&1 4" (10)
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These two conditions quantify the bound en-
ergy E and separation constant . Further one
should solve the system of the ordinary differen-
tial equations (3) and (4) with probe pairs of E,

. The corresponding EF:

Wb (& 11, @) = fen (O gz ()& )™
exp (imp)2n)™"?, (11)

where £, () is the solution of (3) ( with the
just determined E, ) at < (0,.0) and g, () is
the solution of (4) (with the same E, ) at
(inside barrier) and g(¢)=0 otherwise.

These bound state EE, eigenvalue and
EF for the zero-order Hamiltonian coincide
with those for the total Hamiltonian at =
, where all the states can be classified due to
the quantum numbers (principal,
parabolic, azimuthal) connected with E, , m
by the well-known expressions. The scattering
state functions:

ves (1. 9) =fes(Q) ges () (E )™
exp (imp)(2m)"” (12)
is orthogonal to the above defined bound state
function and to each other. In addition, these
functions must describe the motion of the eject-
ed electron, i.e. . must satisfy the equation
(4) asymptotically. Following the OPT ideology
[16], we choose the next form of
ges(t) =g1 () -22"g(t)  (13)
with and g (¢) satisfying the differential
equations (3) and (4). The function g,(¢) satis-
fies the non-homogeneous differential equation,
which differs from (4) only by the right-hand
term, disappearing at — . The total equation
system, determining the scattering function,
reads

ot o BB NIZY 114 £ (0]
t

fE’s =0,
" |m|+1 ' ' ! =
"+ o [ 12E+3'/t +1/4 & ()] g1=0,
t

@+ M o (1B By It +1/4 (t)g=2g s,
! (14)



(" " ). At the given ', the only quan-
tum parameter ' is determined by the natural
boundary condition: fi PO at ¢ b ¥. Of course:
", fm=f, at ' ; only this case is
needed in the particular problem we deal with
here. The coefficient ' ensures the orthogonal-

ity condition:
(¥, |¥,)=0. (15)

The imaginary part of state energy in the
lowest PT order is as follows:

ImE = G/2 =p|<Y,, [H|Y, > (16)
with the total Hamiltonian . The state func-
tions w, and v, are assumed to be normalized
to 1 and by the §(k - k') condition, accordingly.
The matrix elements (¥, |H¥,,) entering the
high- order PT corrections can be determined in
the same way. They can be expressed through
the set of one-dimensional integrals, described
in details in Refs. [1,16].

In contrast to the hydrogen atom, the non-
relativistic Schrodinger equation for an electron
moving in the field of the atomic core in many-
electron atom (in particular, an alkali element)
and a uniform external electric field does not al-
low separation of variables in the parabolic co-
ordinates X, h, j [2].One of the ways this problem
could be related to the use of effective potentials,
chosen in such a way (for example, in the Mill-
er-Green approximation; look review in ref [2])
that to achieve the separation of variables in the
Schrodinger equation. Here the model potential
approach [2] is used. One may introduce the ion
core charge  for the multielectron atom. Ac-
cording to standard quantum defect theory, the
relation between quantum defect value , elec-
tron energy E and principal quantum number 7
is: g =0 —z"(-2E)"*. The quantum defect in
the parabolic coordinates &§(n,n,m) is connected
to the quantum defect value of the free (¢=0)
atom by the following relation [25,47]:

n-1

S(nnym) = (1/n)Y (2L +1(Crl )’ 15

I=m

(17)

Using the quantum defect approximation al-
lows to modify the OPT method for the non-H
atoms. All calculations are performed on the ba-
sis of the numeral code Superatom-ISAN (ver-
sion 93). The details of the used method can be
found in the references [1,2,16,25,47].

3. Results and Conclusions

We have applied the developed computational
approach to calculating the complex energy ei-
genvalues representing the shifted and broadened
2s state of lithium atom as a function of electric
field strength. Sahoo and Ho [45] performed the
calculation on the basis of a complex absorbing
potential (CAP) method. Themelis and Nicolaides
[42] adopted ab initio theory to compute the com-
plex energy of multielectron atomic states. Their
approach is based on the state-specific construc-
tion of a non-Hermitian matrix according to the
form of the decaying-state eigenfunction which
emerges from the complex eigenvalue Schro-
dinger equation (CESE) theory. Meng et al [40]
has elaborated the B-spline based coordinate ro-
tation (B-CR) approach. In Table 1 we present
our data on the eigenvalues EE (in atomic units:
a.u.) representing the shifted and broadened 2s
state of lithium atom as a function of electric field
strength (in a.u.).

Table 1.

Complex eigenvalues for the shifted and

broadened 2s state of lithium atom as a func-

tion of the field strength, calculated by differ-
ent methods (see text)

Li2s | B-CR | B-CR CAP CAP
[40] [40] [45] [45]
¢(aun)| E (au.) |2 (au)| E (au.) [[/2 (a.u)
0.0050—-0.20009] - —0.20019(7.20[-9]
0.0100[—0.20642(4.50[—5]|—0.20651 4.77[-5]
0.0125-0.21147|4.76]—4]|—0.21155 4.68[—4]
0.0175-0.22393[4.03[—3]|—0.22397 4.06[ 3]
Li2s | CESE | WKB This This
[42] [42] work work
€ (auw)|I'2 (au)| /2 (auw)| E (a.u.) [[/2 (a.u)
0.0050 - 4.6[—11][-0.20012 [7.80[—9]
0.0100|5.50[—5 J[1.72[—4 ]| —0.20645 4.81[—5]
0.0125]5.46[—4 1|2.95[—3 ]| —0.21149 4.96[—4]
0.0175]4.35[—3 ]|6.35[—2 ]| —0.22394 4.24[-3]
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For comparison the analogous results, ob-
tained on the basis of the CAP, CESE, B-CR
methods [40,42,45] are presented. Analysis of
the data shows that the positions (energies) of
the Stark resonances in the present calculation
are in a physically reasonable agreement with
theoretical data obtained by other, in particular,
CESE and B-CR methods. However, the results
for the width of resonance differ more signifi-
cantly from each other. For example, the CAP
calculation for the width of the 2s state at strength
F< 0.0060 a.u. gives systematically larger val-
ues than obtained by the CESE, B-CR and our
methods. The resonance width values are higher
than the corresponding B-CR data and corre-
spondingly a little less than the values, obtained
within the CESE method for all strengths of the
electric field under consideration. Concerning
the widths of resonances it should paid to at-
tention on convergence aspect for the CAP and
CESE method. As it has been underlined in [40],
in the case of a weak electric field (naturally the
widths of resonances became very small), the
methods have difficulties in obtaining a stable
value of a width. In order to obtain the well-con-
verged results, it is necessary to use larger basis
size. Naturally, in a limit of a weak electric field
the well-known quasiclassical WKB approxi-
mation and standard PT [1,2] calculation will be
more appropriate. One of the advantages of the
B-CR method is possibility to apply in the case
of increasing field strengths without a signifi-
cant computational effort growth, however, the
convergence of the width I to obtain reliable
complex eigenvalues should be carefully carried
out. In the CAP method, there is no systematic
way of choosing a scaling factor in an quite ar-
tificial complex potential, which is added to the
original atomic Hamiltonian. One of the serious
advantages of the modified OPT method is that
an increasing a field strength does not lead to an
increase of computational effort and there is no
a convergence problem.
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A. A. Kuznetsova, A. A. Buyadzhi, M. Yu. Gurskaya, A. O. Makarova

SPECTROSCOPY OF MULTIELECTRON ATOM IN A DC ELECTRIC FIELD:
MODIFIED OPERATOR PERTURBATION THEORY APPROACH
TO STARK RESONANCES

Summary

It is presented a new modified method to calculation of the Stark resonances energies character-
istics (energies and widths) for the multielectron atomic systems in a DC electric field. The method
is based on the modified operator perturbation theory. The latter allows an accurate, consistent
treatment of a strong field DC Stark effect and includes the physically reasonable distorted-waves
approximation in the frame of the formally exact quantum-mechanical procedure. As illustration,
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some test data for the Stark resonances energies and widths in the lithium atom spectrum are pre-
sented and compared with results of calculations within the alternative consistent sophisticated
methods.

Keywords: multielectron atom in a dc electric field — modified operator perturbation theory —
Stark resonances
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CIIEKTPOCKOIINA MHOT'OQJIEKTPOHHOI'O ATOMA B DC QJIEKTPUYECKOM
MOJIE: MOV ®UIIMPOBAHHBIA METO/I OIIEPATOPHOM TEOPUU
BO3MYIIEHUM JIJISI OMMCAHUS IITAPKOBCKHUX PE3OHAHCOB

Pesrome

ITpencraBieH HOBBIM MOAN(UIIMPOBAHHBIA METOJ] pacyeTa XapaKTepUCTHK SHEPTUil IITapKOB-
CKUX PE30HAHCOB (PHEPrUU U IIMPUHBI) JUJIsI MHOTORJIEKTPOHHBIX ATOMHBIX CUCTEM B 3JIEKTpHUYE-
CKOM 1oj1e. MeTo 0CHOBaH Ha MOM(ULIMPOBAHHOM ONEPATOPHOM TEOPUU BO3MYILEHUH, KOTOPast
obecrieunBaeT Mocie10BaTelIbHOE, KOppeKkTHOe onrcHaue 3(dexra Llltapka B CHIBHOM 1OJI€ JUIS
MHOTORJIEKTPOHHBIX aTOMOB U 0a3MpyeTcsl Ha UCIOJIb30BaHUU (DPU3UYECKH 0OOCHOBAHHOTO TMpPHU-
OMDKEHUSI MCKa)KEHHBIX BOJIH B paMKaX (pOpMaJIbHO TOYHON KBAHTOBO-MEXaHUUYECKON IPOLETYPHI.
B kayecTBe WIIIIOCTpalMK NPEACTABICHBI HEKOTOPBIE TECTOBBIE JAaHHBIC Ul DHEPTUi U IMIMPUH
pe3oHaHcoB IllTapka B criekTpe aTOMOB JIMTHS, KOTOPBIE CPABHUBAIOTCS C PE3YJIbTaTaMU PacueToOB
B pPaMKax aJbTEPHATUBHBIX I1OCIEA0BATEIbHBIX TEOPETUYECKUX METOOB.

KuiroueBble cjioBa: MHOTO3IEKTPOHHBIN aTOM B 3J€KTPUYECKOM I10J1€ — MOAU(UIIMPOBAHHAS
OIlepaTOpHas TEOPHs BO3MYILECHUM — IITAPKOBCKUE PE30OHAHCHI

PACS 31.15.A-

I O. Kysneyosa, I A. bysoacu, M. IO. I'ypcoxa, O. O. Maxaposa

CHHEKTPOCKOIIISI BATATOEJEKTPOHHOI'O ATOMA B DC EJJEKTPUUHOMY
OJII: MOJIMPIKOBAHUI METO/I OITIEPATOPHOI TEOPII 3BYPEHbB JJISI
OIINCY HITAPKIBCBKUX PE3OHAHCIB

Pe3rome

[IpencraBnenuii HOBUM MOAN(PIKOBAHUN METOJ PO3PAXyHKY XapaKTEPUCTUK €HEepriil mTapKiB-
CHKUX PE30HAHCIB (€Heprii 1 MUPHUHN) JUIT OaraToeNeKTPOHHUX aTOMHHUX CHCTEM B €JIEKTPUUHOMY
noJii. Meros 3acHOBaHUI Ha MOAM(IKOBaHIN OMepaTOpHOi Teopii 30ypeHs, sika 3ade3neuye nocii-
JIOBHUH, KOpekTHHI onuc edekTy [llTapka B cHiabHOMY 1011 1T OaratoeIeKTPOHHUX aToMiB i 6a-
3y€ThCSl Ha BUKOPUCTaHHI (Di3MYHO OOTPYHTOBAHOTO HAOIMKEHHS MIEPEKPYyUEHUX XBHIIb B PAMKax
(dbopMabHO TOYHOI KBAaHTOBO-MEXaHIYHOI Mpoueaypu. B sKocTi LtrocTpanii nmpeacTaBieHl JesKi
TECTOBI JaHi JyIs eHepriil 1 mupuH pe3onanciB [lTapka B ciekTpi aTOMIB JIITiFO, K1 TOPIBHIOIOTHCS
3 pe3ysbTaTaMi pO3pPaxyHKIB B paMKax aJbTEPHATUBHUX MOCITIIOBHUX TEOPETUYHUX METO/IIB.

Kuro4oBi cjioBa: 6aratoenekTpoHHUI aToM y eIeKTPUYHOMY o1 — MoaudiKoBaHa ONepaTop-
Ha Teopist 30ypeHb — MTAPKIBChbKi PE30HAHCH
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