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RELATIVISTIC OPERATOR PERTURBATION THEORY IN SPECTROSCOPY 
OF MULTIELECTRON ATOM IN AN ELECTROMAGNETIC FIELD

We present the theoretical basis of a new relativistic operator perturbation theory (OPT) approach to multielectron 
atom in an electromagnetic field combined with a relativistic many-body perturbation theory (RMBPT) formalism for 
a free multielectron atom. As illustration of application of the presented formalism, the results of energy and spectral 
parameters for a number of atoms are presented. The relativistic  OPT  method is tested for the multielectron systems 
such as Fr and Tm.  New approach is elaborated for an accurate, consistent treatment of a strong field Stark effect in 
multielectron atoms.    
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1.  Introduction
An investigation of spectra, optical and spec-

tral, radiative and autoionization characteristics 
for  the rare-earth elements (isotopes) and cor-
responding ions is traditionally of a great inter-
est for further development quantum optics and 
atomic spectroscopy and different applications 
in the plasma chemistry, astrophysics, laser 
physics, quantum and nano-electronics  etc. (see 
Refs. [1–42]).  

The calculation difficulties in description of the 
multielectron atoms in electromagnetic (electric) 
field inherent to the standard  quantum mechani-
cal approach are well known. Here one should 
mention the well-known Dyson phenomenon for 
a Strong Filed AC, DC Stark effect. Besides, in 
contrast to the hydrogen atom, the non-relativis-
tic Schrödinger and relativistic Dirac equations  
for an electron moving in the field of the atomic 
core in many-electron atom  and a uniform ex-
ternal electric field does not allow separation of 
variables in the parabolic coordinates. 

The Wentzel-Kramers-Brillouin (WKB) ap-
proximation overcomes these difficulties for 

the states lying far from the “ new continuum” 
boundary. The detailed review of a modern 
states of art for spectroscopy of multielectron 
atoms in an electric (laser) field is presented in 
Refs. [8,16]. 

In this paper we present the theoretical ba-
sis of a new relativistic operator perturbation 
theory (OPT) approach to multielectron atom in 
an electromagnetic field combined with a relativ-
istic many-body perturbation theory (RMBPT) 
formalism for a free multielectron atom. The 
relativistic  OPT  approach is tested for the mul-
tielectron systems such as francium Fr and thul-
lium Tm. 

The relativistic density-functional approxima-
tion with the Kohn-Sham potential is taken as 
the zeroth approximation in the RMBPT formal-
ism. There have taken into account all exchange-
correlation corrections of the second order and 
dominated classes of the higher orders diagrams 
(polarization interaction, quasiparticles screen-
ing, etc.). New form of the multi-electron polar-
ization functional has been used. 
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As illustration of application of the presented 
formalism, new data on the energy and spec-
tral parameters for two complex multielectron 
atoms in a electrioc (electromagnetic) field are 
presented.  

2. Relativistic operator perturbation theo-
ry for multielectron atoms in an electromag-
netic field

Here we  present a new relativistic quantum  
approach to modeling the chaotic dynamics of 
atomic systems in a dc electric and ac electro-
magnetic fields, based on the theory of quasi-
stationary quasienergy states, optimized opera-
tor perturbation theory, method of model-poten-
tial, a complex rotation coordinates algorithm 
method [16,43]. The  universal chaos-geometric 
block will be used further to treat the chaotic 
ionization characteristics for a number of heavy 
atomic systems. 

Let us remind that in the case of the electro-
magnetic field atomic Hamiltonian is usually as 
follows:
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The field is periodic, of course one should 
use the Floquet theorem; then the eigen  Floquet 
states and quasienergies Ej are de-
fined as the eigen functions and eigen values of 
the Floquet Hamiltonian ∂ . In the 
general form with using the method of complex 
coordinates the problem reduces to the solution 
of stationary Schrödinger equation, which is as 
follows in the model potential approximation: 

at Ψ=Ψ+++∇⋅- w (2)

i.e. to the stationary eigen value and eigen vec-
tors task for some matrix A (with the consider-
ation of several Floquet zones): ( A – EjB)|Ej>=0. 
As a decomposition basis, system of the Sturm 
functions of the operator perturbation theory ba-
sis is used. 

In our new theory we start from the Dirac 
Hamiltonian (in relativistic units): 
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Here a field strength intensity is expressed 
in the relativistic units (Frel= a5/2Fat.un.; a is the 
fine structure constant). One could see that a 
relativistic wave function in the Hilbert space is 
a bi-spinor. Using the formal transformation of 
co-ordinates  exp( θirr→ in the Hamilto-
nian (11), one could get:  
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In comparison with an analogous non-rela-

tivistic theory, here there is arisen a technical 
problem. In formulae (11) there is term b, which 
can not be simply transformed. One of the solv-
ing receptions os a limitation of a sub-space of 
the Hamiltonian eigen-functions by states of the 
definite symmetry  (momentum  J and parity Р). 
Thes states can be described by the following 
functions:
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Here  l (l’) and spin  ½ in the coupling scheme 
give a state with the total momentum J and  its 
projection  MJ=M. Action of the Hamiltonian (11) 
on the functions (13) with definite J results in:
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drdripr )/)(/1(-= , , s – the Pauli 
matrices; parameter  w=-1, if l=J-1/2 and w=1, 
if l=J+1/2. 

In order to further  diagonalize the 
Hamiltonian (6), we need to choose the correct 
basis of functions in the subspace (5), in 
particular, by choosing the following functions 
(the sitter or water-like type):                                                       
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It is easy to see that the matrix elements (6) 
will be no-zeroth only between the states with 
the same MJ. In fact this moment is a single limi-
tation of the whole approach. 

Transformation of co-ordinates in the Pauli 
Hamiltonian (in comparison with the Schrod-
inger equation Hamiltonian it contents additional 
potential term of a magnetic dipole in an external 
field) can be performed by the analogous way. 
However, procedure in this case is significantly 
simplified. They can be expressed through the set 
of one-dimensional integrals, described in details 
in Refs. [8,14,47]. 

In contrast to the hydrogen atom, the non-
relativistic Schrödinger equation for an electron 
moving in the field of the atomic core in many-
electron atom (in particular, an alkali element) 
and a uniform external electric field does not 
allow separation of variables in the parabolic 
coordinates x, h, j [14].One of the ways this 
problem could be related to the use of effective 
potentials, chosen in such a way (for example, 
in the Miller-Green approximation (see [1,2]) 
that to achieve the separation of variables in the 
Schrödinger equation. Here the model potential 
approach or the quantum defect approximation 
can be used. One may introduce the ion core 
charge  for the multielectron atom. Accord-
ing to standard quantum defect theory, the rela-
tion between quantum defect value , electron 
energy E and principal quantum number n is: 

( ) 21
1 2 -∗ --= Ezòm . The quantum defect in the 

parabolic coordinates ( )mnn 21d  is connected to 
the quantum defect value of the free ( )0=e  atom 
by the following relation [43]: 

∑ )(12()/1()(
n

ml
l

JM
mlmMJClnmnn md                                  

                                                                    (9)

Such a scheme provides a general receipt to 
combine the OPT method with the RMBPT in 
spherical coordinates for a free atom. The de-
tails of the used method can be found in the ref-
erences [8,16,43]. 

3. Method of relativistic many-body per-
turbation theory

Generally speaking, the energy spectra for 
the majority of complex atomic systems (natu-
rally including the rare-earth elements) are char-
acterized by a great density. Moreover, these 
spectra have essentially relativistic properties.  
So, correct theoretical method of their studying 
can be based on the convenient field procedure, 
which includes computing the energy shifts DE 
of the degenerate electron states. More exactly, 
speech is about constructing secular matrix M 
(with using the Gell-Mann and Low adiabatic 
formula for DE), which is already complex in 
the relativistic theory, and its further diagonal-
ization [26-32]. In result one could compute 
the energies and decay probabilities of a non-
degenerate excited state for a complex atomic 
system [26].   The secular matrix elements can 
be further expanded into a PT series on the inter-
electron interaction. Here the standard Feynman 
diagrammatic technique is usually used.

Generally speaking, the secular matrix M can 
be represented as follows:  

... kMMMMMM +++++=  (10)

where ( )0M  is the contribution of the vacuum 
diagrams of all PT orders (this contribution de-
termines only the general levels spectrum shift); 

( )1M , ( )2M , ( )3M  are contributions of the 1-, 2- 
and 3- quasiparticle (QP) diagrams respectively. 
The matrix ( )1M  can be presented as a sum of the 
independent one-QP contributions. Substituting 
these quantities into (1) one could have sum-
marized all the one-QP diagrams contributions. 
In the empirical methods here one could use the 
experimental values of one-electron energies, 
however, the necessary experimental quantities 
(especially for the rare-earth and other elements) 
are not often available. The detailed procedure 
for computing ( )2Re M  is presented, for example, 
in Ref. [3]. 

We will describe an atomic multielectron 
system by the relativistic Dirac Hamiltonian 
(the atomic units are used) as follows [41-43]: 
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∑∑ ijjiij
i

ii /rárirZccpH )1)(||exp(}/{ 2 awβa
   

(11)
where Z is a charge of nucleus, ai ,aj are the Dirac 
matrices, wij is the transition frequency, c – the 
velocity of light. The interelectron interaction 
potential (second term in (3)) takes into account 
the retarding effect and magnetic interaction in 
the lowest order on parameter of the fine struc-
ture constant. In the  PT zeroth approximation it 
is used ab initio mean-field  potential:

 
        )]|()()([)( arVrVrVrV CX

D
Coul

DKS ++= ,   (12)

with the standard Coulomb, exchange Kohn-
Sham VX and correlation Lundqvist-Gunnarsson 
Vc potentials (look details in Refs. [46-49]). 
An effective approach to accounting the multi-
electron polarization contributions is described 
earlier and based on using the effective two-QP 
polarizable operator, which is included into the 
PT first order matrix elements. 

In order to calculate the radiation decay prob-
abilities and autoionization energies and widths 
a gauge invariant relativistic energy approach 
(version [43]) is used. In particular, a width of 
the state, connected with an autoionization de-
cay, is determined by a coupling with the con-
tinuum states and calculated as square of the 
matrix element [43]:

1 2 4 3 1 2 3 4; (2 1)(2 1)(2 1)(2 1)j j j jV
β β β β = + + + +

( ) 1 3 2 4

1 3 2 4

            
x 1
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∑

 

      ( )1 1 1 2 2 2 4 4 4 3 3 3x ;aQ n l j n l j n l j n l j
         (13)

Here = Qul
aQ + Br

aQ , where Qul
aQ , Br

aQ cor-
respond to the Coulomb and Breit parts of the 
relativistic interelectron potential in (3) and 
express through Slater-like radial integrals and 
standard angle coefficients. Other details can be 
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Table 1.
The widths Г (cm-1) of autoionization states 
of the Tm 4f-13

7/26s1/2(3)ns,np, which are mixed 
with resonances of opposite parity for differ-

ent DC electric fields

F(V/cm) 4f13
7/26s1/2(3)ns[5/2]

n=26               n=30

Г F=0 1.13D-5       6.12D-6

Г F =50 1.11D-04     5.88D-5

Г F =100 4.05D-04     2.15D-4

Г F =150 8.15D-04     4.13D-4

F(V/cm) 4f13
7/26s1/2(3)np3/2[3/2]
n=26        n=30

Г F=0 4.22D-5   2.42D-5

Г F =50 4.07D-4   2.36D-4

Г F =100 1.56D-3   8.88D-4

Г F =150 3.08D-3   1.76D-3

F(V/cm) 4f13
5/26s1/2(2)np1/2[3/2]

n=26          n=30

Г F=0 2.36D-5   1.27D-5

Г F =50 2.23D-4   1.22D-4

Г F =100 8.37D-3   4.28D-4

Г F =150 1.64D-3   8.63D-3

Note: 1.13D-5=1.13×10-5;       

From these data one could see that in this 
case there is the effect of a giant broadening of 
the resonance widths.  For the first time, for Tm, 
the possibility of such an effect was foreseen 
in the papers by Glushkov-Ivanov-Letokhov, 
which was later confirmed in the known ISAN 
experiments by V.S. Letokhov etal (look details 
in Refs. [3,8]). Similar data are obtained for Yb, 
for which we first detected the effect of strong 
amplification of the AU .

We also present our results of numerical 
modelling  ionization dynamics for Rydberg 
atoms Rb, Cs, Fr (Rb: n=50-80; Cs, Fr: n=60-
80) in a microwave field  (F=(1.2-3.2)×10-9 a.u.; 
w/2p=8.87, 36 HGz). The preliminary estimate 
a dependence of the Rb ionization probabil-
ity Р upon the F, interaction time “atom-field” 

and comparison with available data by Krug-
Buchleitner [19] and Glushkov-Ternovsky etal 
[49] shows that all listed data are in a reasonable 
agreement with experiment, however, the best 
accuracy is provided by relativistic theory. In 
Table 2 we firstly present new data on depend-
ence of the Fr ionization probability upon the 
F value, interaction time “atom-field”. Unfortu-
nately, here there are no any alternative theoreti-
cal or experimental data.

Table 2. 
Our data for  ionization probability P for Fr 
( l0=0, m0=0, n0=76-80) in dependence on n0 
F (at.units; field parameters: t = 327× 2p/w; 

frequency wc=w/2p=36 GHz, 8.87 GHz)

n0
↓

Our data Our data Our
 data

Our 
data

F=

ωc=

2.8×
10-9

36GHz

3.1×
10-9

36GHz

2.8×
10-9

8.87GHz

3.1×
10-9

8.87GHz

77 0.47 0.50 0.43 0.46

80 0.58 0.61 0.54 0.56

83* 0.56 0.60 0.51 0.53

86 0.67 0.69 0.62 0.66

In whole, our modeling relativistic dynamics 
of ionization Rb, Cs, Fr Rydberg states in the 
electromagnetic field shows that there are the 
local violations of probability smooth  growth 
associated with the complex Floquet spectrum, 
link between  the quasi-stationary states and a 
continuum, the growing influence of multipho-
ton resonances. The picture becomes  by more 
complicated  due to the single-photon near-res-
onance transitions with quasi-random detuning 
from resonance and quantum phase shift due to 
scattering Rydberg electron on the atomic core.
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RELATIVISTIC OPERATOR PERTURBATION THEORY IN SPECTROSCOPY 
OF MULTIELECTRON ATOM IN AN ELECTROMAGNETIC FIELD

Summary
We present the theoretical basis of a new relativistic operator perturbation theory (OPT) ap-

proach to multielectron atom in an electromagnetic field combined with a relativistic many-body 
perturbation theory (RMBPT) formalism for a free multielectron atom. As illustration of applica-
tion of the presented formalism, the results of energy and spectral parameters for a number of atoms 
are presented. The relativistic  OPT  method is tested for the multielectron systems such as Fr and 
Tm.  New approach is elaborated for an accurate, consistent treatment of a strong field Stark effect 
in multielectron atoms.    

Keywords: multielectron atom in a dc electric field – modified operator perturbation theory – 
Stark resonances
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РЕЛЯТИВИСТСКАЯ ОПЕРАТОРНАЯ ТЕОРИЯ ВОЗМУЩЕНИЙ В 
СПЕКТРОСКОПИИ МНОГОЭЛЕКТРОННОГО АТОМА 

В ЭЛЕКТРОМАГНИТНОМ ПОЛЕ

Резюме
Изложены теоретические основы нового аппарата релятивистской операторной теории 

возмущений (ОТВ) в спектроскопии многоэлектронного атома в электромагнитном поле, 
объединенного с формализмом релятивистской многочастичной теории возмущений  для 
свободного многоэлектронного атома. В качестве иллюстрации тестирования представлен-
ного подхода представлены результаты оценки энергетических и спектральных параметров 
для ряда атомов. Релятивистский метод OPT тестируется для таких многоэлектронных си-
стем  как Fr и Tm. Новый подход разработан для последовательного описания  эффекта 
Штарка в многоэлектронных атомах в сильном внешнем электромагнитном поле. 

Ключевые слова:  Многоэлектронный атом в электрическом поле - модифицированная 
операторная теория возмущений – штарковские резонансы
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РЕЛЯТИВІСТСЬКА ОПЕРАТОРНА ТЕОРІЯ ЗБУРЕНЬ В СПЕКТРОСКОПІЇ 
БАГАТОЕЛЕКТРОННОГО АТОМА В ЕЛЕКТРОМАГНІТНОМУ ПОЛІ

Резюме
Викладені теоретичні основи нового апарату релятивістської операторної теорії збурень 

(ОТЗ) в спектроскопії багатоелектронного атома в електромагнітному полі, об’єднаного з 
формалізмом релятивістської багаточастинкової теорії збурень для вільного багатоелектрон-
ного атома. В якості ілюстрації можливостей представленого підходу представлені результа-
ти оцінки деяких енергетичних і спектральних параметрів для ряду атомів. Релятивістський 
метод OPЗ тестується для таких багатоелектронних систем як Fr і Tm. Новий підхід роз-
роблений для послідовного опису ефекту Штарка в багатоелектронних атомах в сильному 
зовнішньому електромагнітному полі.

Ключові слова: багатоелектронний атом у електричному полі - модифікована операторна 
теорія збурень – штарківські резонанси
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