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SPECTROSCOPY OF THE COMPLEX AUTOIONIZATION RESONANCES IN 
SPECTRUM OF BERYLLIUM 

We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined 
with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham 
zeroth approximation and accounting for the exchange-correlation, relativistic corrections to studying  
autoionization resonances in the beryllium Be spectrum, in particular, we predicted the energies and 
widths of the number of the 2pns resonances. There are presented the results of comparison of our 
theory data for the autoionization resonances 2pnl  with the available experimental data and those 
results of other theories, including, methods  by  Greene, by Tully-Seaton-Berrington and by Kim-
Tayal-Zhou-Manson etc.

1. Introduction
Here we continue our investigations of study-

ing the autoionization state and AR in spectra of 
a few electron complex atoms and ions. Let us 
note [1-5] that theoretical methods of calculation 
of the spectroscopic characteristics for heavy at-
oms and ions are usually divided into a few main 
groups [1-21]. Let us remind At first, one should 
mention the well known, classical multi-config-
uration Hartree-Fock method (as a rule, the rela-
tivistic effects are taken into account in the Pauli 
approximation or Breit hamiltonian etc.) allowed 
to get a great number of the useful spectral in-
formation about light and not heavy atomic sys-
tems, but in fact it provides only qualitative de-
scription of spectra of the heavy atoms and ions. 
Another more consistent method  is given by the 
known multi-configuration Dirac-Fock (MCDF) 
approach. Besides, different methods such as 
various forms of the R-matrix method, the multi-
configuration Tamm-Dancoff approximation, the 
hyperspherical method, a hyperspherical close-
coupling calculation, and a multiconfiguration 
relativistic random-phase approximation have 
been employed [3].

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the beryllium   atom. 
The method wich has been used is in details pre-
sented in our prwvius papers (see, for example, 
[4]). LHere we remind that the new elements of the 
approach include  the combined the generalized 
energy approach and the gauge-invariant QED 
many-QP PT with the Dirac-Kohn-Sham (DKS) 
“0” approximation (optimized 1QP  representa-
tion) and an accurate accounting for relativistic, 
correlation and others  effects. The generalized 
gauge-invariant version of the energy approach 
has been further developed in Refs. [12,13]. 

2. Relativistic approach in autoionization 
spectroscopy of beryllium atom

In refs. [11-15, 17-20] it has been in details pre-
sented, so here we give only the fundamental as-
pects.  In relativistic case the Gell-Mann and Low 
formula expressed an energy shift DE through the 
QED scattering matrix including the interaction 
with as the photon vacuum field as the laser field. 
The first case is corresponding to definition of the 
traditional radiative and autoionization character-
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istics of multielectron atom. The wave function 
zeroth basis is found from the Dirac equation with 
a potential, which includes the ab initio (the op-
timized model potential or DF potentials, electric 
and polarization potentials of a nucleus) [5]. Gen-
erally speaking, the majority of complex atomic 
systems possess a dense energy spectrum of inter-
acting states with essentially relativistic proper-
ties. Further one should realize a field procedure 
for calculating the energy shifts DE of degenerate 
states, which is connected with the secular matrix 
M diagonalization [8-12]. The secular matrix ele-
ments are already complex in the second order of 
the PT. Their imaginary parts are connected with 
a decay possibility. A total energy shift of the state 
is presented in the standard form:

                                           

Re Im Im 2E i E EDΕ= D + D D =-G ,
                                                                     (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G . The whole calculation of 
the energies and decay probabilities of a non-de-
generate excited state is reduced to the calculation 
and diagonalization of the M. The complex  secu-
lar matrix M is represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +                                                                      (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. The diagonal matrix ( )1M  can be 
presented as a sum of the independent 1QP con-
tributions. For simple systems (such as alkali 
atoms and ions) the 1QP energies can be taken 
from the experiment. Substituting these quanti-
ties into (2) one could have summarized  all the 
contributions of the 1QP diagrams of all orders 
of the formally exact QED PT. The optimized 
1-QP representation is the best one to determine 
the zeroth approximation. In the second order, 
there is important kind of diagrams: the ladder 
ones. These contributions have been summarized 
by a modification of the central potential, which 
must now include the screening (anti-screening) 
effect  of each particle by two others. The ad-
ditional potential modifies the 1QP orbitals and 

energies. Let us remind that in the QED theory, 
the photon propagator D(12) plays the role of this 
interaction. Naturally, an analytical form of D de-
pends on the gauge, in which the electrodynamic 
potentials are written. In general, the results of all 
approximate calculations depended on the gauge. 
Naturally the correct result must be gauge invari-
ant. The gauge dependence of the amplitudes of 
the photoprocesses in the approximate calcula-
tions is a well known fact and is in details inves-
tigated by Grant, Armstrong, Aymar-Luc-Koenig, 
Glushkov-Ivanov [1,2,5,9]. Grant has studied  the 
gauge connection with the limiting non-relativ-
istic form of the transition operator and has for-
mulated the conditions for approximate functions 
of the states, in which the amplitudes are gauge 
invariant (so called Grant’s theorem). These re-
sults remain true in an energy approach as the fi-
nal formulae for the probabilities coincide in both 
approaches. In ref. [16] it has been developed a 
new version of the approach to conserve gauge 
invariance. Here we applied it to get the gauge-
invariant procedure for generating the relativistic 
DKS orbital bases (abbreviator of our method: 
GIRPT). A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
Г ∞ |V ( b1b2 ,  b3k ) | 2 . The total width is given by 
the expression: 

            
where the coefficients C are determined in [4].                     

The matrix element of the relativistic inter-
particle interaction 

      ( ) ( ) ijiijijji ráá1riùexprrV /)( -⋅=     (4)
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Coulomb and Breit parts of the interlparticle in-
teraction (6). The Coulomb part Qul

lQ  is expressed 
in the radial integrals Rl , angular coefficients Sl  
as follows:
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is reduced to the solution of a system of  differen-
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When integrating the master system, the func-
tion is calculated simultaneously:      
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5 77.(10) 78 76 73 78
6 47.(3) 42 - - 51
7 29.(3) 22 - - 33
8 16.(3) - - - 18
9 3(5) - - - 5
10 3(5) - - - 4
11 - - - 4
12 - - - 3

In the Table 2 we present the comparison of 
our data on the the resonance energies and widths 
for the AR 2pnd resonances in the beryllium spec-
trum.

Table 2. 
Theoretical data for positions (eV) of the Be 
2pnd resonances compared to previously pub-

lished resonance positions (see text)

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are devel-
oped specifically for the study helium and can 
not be easily generalized to the case of the heavy 
multi-electron atoms) the definite advantage of 
the presented approach. Let us note that in ref. 
[14] (see also [5,12]) it had been predicted a new 
optics and spectroscopy  effect of the giant chang-
ing of the AS width in a sufficiently weak electric 
field (for two pairs of the Tm, Gd AR). Naturally  
any two states of different parity can be mixed 
by the external electric field. The mixing leads 
to redistribution of the autoionization widths. In 
a case of the heavy elements such as lanthanide 
and actinide atoms the respective redistribution 
has a giant effect. In the case of degenerate or 

In Tables 1 we present the resonance energies 
and widths for the 2pns resonances in the beryl-
lium spectrum. The experimental (by Wehlitz-
Lukic-Bluett, WLB; by Mehlman-Balloffet-Este-
va, ME; by Esteva-Mehlman-Balloffet-Romand, 
EMR) and alternative theoretical data by Chi-
Huang- Cheng (CHC), Tully-Seaton-Berrington 
(TSB) and by Kim-  Tayal-Zhou-Manson (KTZM) 
are taken from Ref. [3]. 
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The energy position E, width Гof the Be 2pns 

resonances (see text)

Table 1b. 
The energy position E, width Гof the Be 2pns 

resonances (see text)

The width Гof the resonance (meV)
n Exp,

WLB
Th,

(TSB)
Th,

Green
Th,

KTZM
Our 
data

3 531.
(10)

606 530 473 473

4 174.
(10)

180 168 162 176
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Tully-Seaton-Berrington (TSB) and by Kim-
Tayal-Zhou-Manson (KTZM) are taken from 
Ref. [3]. 
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The energy position E (eV)
n Exp,

WLB
Exp,

(EMR)
(ME)

Th,
(TSB)

Th,
(CHC)

Th,
KTZM

Our 
data

3 10.889 10.933
10.71

10.915 10.63 10.910 10.903

4 12.112 12.096
11.97

12.102 12.09 12.092 12.098

5 12.571 12.572
12.53

12.571 12.64 12.558 12.570

6 12.812 12.811
12.78

12.800 12.91 12.791 12.806

7 12.944 12.945
12.92

12.932 13.06 12.924 12.952

8 13.022 13.029
13.01

- 13.15 13.007 13.028

9 13.078 13.083 - 13.21 13.062 13.092
10 13.123 13.121 - 13.25 13.101 13.130
11 13.143 13.152 - - 13.129 13.152
12 13.178 13.170 - - - 13.180
13 - - - - - 13.213
14 - - - - - 13.248
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In the Table 2 we present the comparison of our 
data on the the resonance energies and widths

for the AR 2pnd resonances in the beryllium 
spectrum.

Table 2. Theoretical data for positions (eV) of 
the Be 2pnd resonances compared to previously 
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The energy position E (eV)
n Exp,
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(EMR)
(ME)

Th,
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Th,
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Th,
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Our 
data

3 11.840
(6)
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11.840 12.03 12.831 11.848

4 12.460
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12.503
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12.448 12.61 12.437 12.458

5 12.742
(6)

12.789
12.757

12.735 12.89 12.727 12.746

6 - 12.952
12.919

12.893 13.05 12.886 12.908

7 - - - - - 13.092
8 - - - - - 13.262

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are 
developed specifically for the study helium and 
can not be easily generalized to the case of the 
heavy multi-electron atoms) the definite 
advantage of the presented approach. Let us note 
that in ref. [14] (see also [5,12]) it had been 
predicted a new optics and spectroscopy  effect 
of the giant changing of the AS width in a 
sufficiently weak electric field (for two pairs of 
the Tm, Gd AR). Naturally  any two states of 
different parity can be mixed by the external 
electric field. The mixing leads to redistribution 
of the autoionization widths. In a case of the 
heavy elements such as lanthanide and actinide 
atoms the respective redistribution has a giant 
effect. In the case of degenerate or near-
degenerate resonances this effect becomes 
observable even at a moderately weak field. We 
have tried to discover the same new spectral 
effect in a case of the Be Rydberg autoionization  
states spectrum using the simplified version of 
the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant 
broadening effect for the helium case, except for 
minor changes of the corresponding widths, 
which are well known in the standard atomic 
spectroscopy. In whole an detailed analysis 
shows quite physically reasonable agreement
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predicted a new optics and spectroscopy  effect 
of the giant changing of the AS width in a 
sufficiently weak electric field (for two pairs of 
the Tm, Gd AR). Naturally  any two states of 
different parity can be mixed by the external 
electric field. The mixing leads to redistribution 
of the autoionization widths. In a case of the 
heavy elements such as lanthanide and actinide 
atoms the respective redistribution has a giant 
effect. In the case of degenerate or near-
degenerate resonances this effect becomes 
observable even at a moderately weak field. We 
have tried to discover the same new spectral 
effect in a case of the Be Rydberg autoionization  
states spectrum using the simplified version of 
the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant 
broadening effect for the helium case, except for 
minor changes of the corresponding widths, 
which are well known in the standard atomic 
spectroscopy. In whole an detailed analysis 
shows quite physically reasonable agreement
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near-degenerate resonances this effect becomes 
observable even at a moderately weak field.  We 
have tried to discover the same new spectral ef-
fect in a case of the Be Rydberg autoionization  
states spectrum using the simplified version of 
the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant broad-
ening effect for the helium case, except for mi-
nor changes of the corresponding widths, which 
are well known in the standard atomic spectros-
copy. In whole an detailed analysis shows quite 
physically reasonable agreement between the pre-
sented theoretical and experimental results. But 
some difference, in our opinion, can be explained 
by different accuracy of estimates of the radial 
integrals, using the different type basis’s (gauge 
invariance conservation or a degree of accounting 
for the exchange-correlation effects) and some 
other additional computing approximations. In 
our theory there are used gauge-optimized basis’s 
of the relativistic and such basis has advantage in 
comparison with the standard DF type basis’s. 
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Abstract
We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined 

with the relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham ze-
roth approximation and accounting for the exchange-correlation, relativistic corrections to studying  
autoionization resonances in the beryllium Be spectrum, in particular, we predicted the energies and 
widths of the number of the Rydberg resonances. There are presented the results of comparison of our 
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СПЕКТРОСКОПИЯ СЛОЖНЫХ АВТОИОНИЗАЦИОННЫХ РЕЗОНАНСОВ В 
СПЕКТРЕ БЕРИЛЛИЯ

Резюме
Обобщенный энергетический подход (S-матричный формализм Гелл-Мана и Лоу) и реляти-

вистская теория возмущений с дирак-кон-шэмовским нулевым приближением и учетом обмен-
но-корреляционных и релятивистских поправок применены к изучению автоионизационных 
резонансов в атоме бериллия, в частности, предсказаны энергии и ширины ряда ридберговых 
резонансов.  Представлены результаты сравнения данных нашей теории, в частности, для ав-
тоионизацийного резонанса 2pnl с имеющимися экспериментальными данными и результатами 
других теорий, в том числе, теорий Greene, Tully-Seaton-Berrington, Kim-Tayal-Zhou-Manson и т.д. 

Ключевые слова: спектроскопия автоионизационных резонансов, релятивистский энергети-
ческий подход, бериллий



33

УДК 539.183

А. В. Смірнов, В. В. Буяджи, Г. В. Ігнатенко, О. В. Глушков, А. А. Свинаренко

СПЕКТРОСКОПІЯ СКЛАДНИХ АВТОІОНІЗАЦІЙНИХ РЕЗОНАНСІВ В СПЕКТРІ 
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Резюме
Узагальнений енергетичний підхід (S-матричний формалізм Гелл-Мана та Лоу) и реляти-

вістська теорія збурень з дірак-кон-шемівським нульовим наближенням та урахуванням   об-
мінно-кореляційних і релятивістських поправок застосований  до вивчення автоіонізаційних 
резонансів у атомі берилію, зокрема, передбачені енергії та ширини ряду рідбергових резонан-
сів.  Представлені результати порівняння даних нашої теорії, зокрема, для автоіонізаційного 
резонансу 2pnl з наявними експериментальними даними і результатами інших теорій, у тому 
числі, теорій Greene, Tully-Seaton-Berrington, Kim-Tayal-Zhou-Manson і т.д. 

Ключові слова: спектроскопія автоіонізаційних резонансів, релятивістський енергетичний 
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