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THE HYPERFINE STRUCTURE AND OSCILLATOR STRENGTHS PARAMETERS FOR 
SOME HEAVY ELEMENTS ATOMS AND IONS: REVIEW OF DATA BY RELATIVISTIC 

MANY-BODY PERTURBATION THEORY CALCULATION

The energies and hyperfine structure constants for some heavy Li-like multicharged ions are calculated 
within the relativistic many-body perturbation theory formalism with a correct and effective taking 
into account the exchange-correlation, relativistic, nuclear and radiative corrections. The magnetic 
inter-electron interaction is accounted for in the lowest order on α2 (α is the fine structure constant) 
parameter. The Lamb shift polarization part is taken into account in the modified Uehling-Serber 
approximation. The Lamb shift self-energy part is accounted for effectively within the generalized 
Ivanov-Ivanova non-perturbative procedure. The combined relativistic energy approach and relativistic 
many-body perturbation theory with the zeroth order optimized one-particle approximation are used 
for computing the Li-like ions (Z=11-42,69,70) and Cs energies and oscillator strengths, in particular, 
of radiative transitions from the ground state to the low-excited and Rydberg states 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12) in the Li-like ions. A comparison of the calculated oscillator strengths with 
available theoretical and experimental data is performed.   

1.  Introduction
The research on the spectroscopic and struc-

tural properties of the heavy neutral and highly 
ionized atoms has a fundamental importance in 
many fields of atomic physics (spectroscopy, 
spectral lines theory), astrophysics, plasma phys-
ics, laser physics and so on  (see, for example, 
refs. [1-22]). One could also mention here the 
important astrophysical applications. The experi-
ments on the definition of hyperfine splitting also 
enable to refine the deduction of nuclear mag-
netic moments of different isotopes and to check 
an accuracy of the various computational  models 
employed for the theoretical description of the 
nuclear effects. 

The multi-configuration relativistic Hartree-
Fock (RHF) and Dirac-Fock (DF) approaches 
(see, for example, refs. [3-5, 8-18] are the most 
reliable versions of calculation for multi-electron 
systems with a large nuclear charge. Usually, in 
these calculations the one- and two-body rela-
tivistic effects are taken into account practically 

precisely. It should be given the special attention 
to three very general and important computer 
systems for relativistic and QED calculations 
of atomic and molecular properties developed 
in the Oxford and German-Russian groups etc 
(“GRASP”, “Dirac”; “BERTHA”, “QED”, “Di-
rac”) (see refs. [3-5, 8-18] and references there). 
The useful overview of the relativistic electronic 
structure theory is presented in refs. [12, 13,17-
20] from the QED point of view. 

In the present paper the combined relativistic 
energy approach and relativistic many-body per-
turbation theory with the zeroth order optimized 
one-particle approximation are used for comput-
ing the Li-like ions (Z=11-42,69,70) and Cs en-
ergies and oscillator strengths, in particular, of 
radiative transitions from the ground state to the 
low-excited and Rydberg states 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12) in the Li-like ions. Re-
view of data and a comparison of the calculated 
oscillator strengths with different available theo-
retical and experimental data is presented.
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2. Relativistic method to computing hyper-
fine structure parameters of atoms and multi-
charged ions

Let us describe the key moments of the ap-
proach (more details can be found in refs. [11, 
14, 20-23]). The electron wave functions (the 
PT zeroth basis) are found from solution of the 
relativistic Dirac equation with potential, which 
includes ab initio mean-field potential, electric, 
polarization potentials of a nucleus. The charge 
distribution in the Li-like ion is modelled within 
the Gauss model. The nuclear model used for the 
Cs isotope is the independent particle model with 
the Woods-Saxon and spin-orbit potentials (see 
refs. [24]). Let us consider in details more simple 
case of the Li-like ion. We set the charge distribu-
tion in the Li-like ion nucleus r(r) by the Gauss-
ian function: 

            ( ) ( ) ( )223 exp4 rRr g-pg=ρ              (1)
where g=4/pR2 and R is the effective nucleus ra-
dius. The Coulomb potential for the spherically 
symmetric density r( r ) is:
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Consider the DF type equations for a three-
electron system 1s2nlj. Formally they fall into 
one-electron Dirac equations for the orbitals 1s 
and nlj with the potential:

       ( ) ( ) ( ) ( ) ( )RrVrVnljrVsrVrV ex +++= 12     (3)
V(r|R) includes the electrical and the polarization 
potentials of the nucleus; the components of the 
Hartree potential (in the Coulomb units):
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Here ( )irρ  is the distribution of the elec-
tron density in the state | i >, Vex is the exchange 
inter-electron interaction. The main exchange 
effect will be taken into account if in the equa-
tion for the valent electron orbital we assume 
( ) ( ) ( )nljrVcorerVrV +=  and in the equation for the nlj 

orbital ( ) ( )corerbVrV ,2=  (here b is the optimization 
parameter; see below). The rest of the exchange 

and correlation effects will be taken into account 
in the first two orders of the PT by the total inter-
electron interaction [11, 12,15]. A procedure of 
taking into account the radiative QED corrections 
is in details given in the refs. [11,14,20-22]. Re-
garding the vacuum polarization effect let us note 
that this effect is usually taken into consideration 
in the first PT theory order by means of the Ue-
hling-Serber potential. This potential is usually 
written as follows:
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where g=r/(aZ). In our calculation we use more 
exact approach [22]. The Uehling potential, de-
termined as a quadrature (6), may be approxi-
mated with high precision by a simple analytical 
function. The use of new approximation of the 
Uehling potential permits one to decrease the cal-
culation errors for this term down to 0.5 – 1%. 
A method for calculation of the self-energy part 
of the Lamb shift is based on an idea by Ivanov-
Ivanova (see refs. [11]). It is supposed that for any 
ion with nlj electron over the core of closed shells 
the sought value may be presented in the form:
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The parameter x=(ER)1/4, ER is the relativistic 
part of the bounding energy of the outer electron; 
the univer sal function ( )nljf ,ξ  does not depend 
on the composition of the closed shells and the ac-
tual potential of the nucle us. The energies of elec-
tric quadruple and magnetic dipole interactions 
are defined by a standard way with the hyperfine 
structure constants, usually expressed through the 
standard radial integrals [27]: 

   A={[(4,32587)10-4Z2cgI]/(4c2-1)}(RA)-2,                          
                                                                 
B={7.2878 10-7 Z3Q/[(4c2-1)I(I-1)} (RA)-3,                        
                                                                     (7)

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2, (RA)-3 are 
the radial integrals usually defined as follows:
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and magnetic dipole interactions are defined 
by a standard way with the hyperfine 
structure constants, usually expressed 
through the standard radial integrals [27]: 
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(7)

Here gI is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); (RA)-2,
(RA)-3 are the radial integrals usually defined 
as follows:
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of the relativistic Dirac equation with 
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permits one to decrease the calculation errors 
for this term down to 0.5 – 1%. A method for 
calculation of the self-energy part of the 
Lamb shift is based on an idea by Ivanov-
Ivanova (see refs. [11]). It is supposed that 
for any ion with nlj electron over the core of 
closed shells the sought value may be 
presented in the form:

( ) ( ) ( )1
3

4
,027148.0, −ξ

ξ
= cmnljf

n
nljZESE

(6)
The parameter ξ=(ER)1/4, ER is the relativistic 
part of the bounding energy of the outer 
electron; the universal function ( )nljf ,ξ
does not depend on the composition of the 
closed shells and the actual potential of the 
nucleus. The energies of electric quadruple 
and magnetic dipole interactions are defined 
by a standard way with the hyperfine 
structure constants, usually expressed 
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The radial parts F and G of  the Dirac function 
two components for electron, which moves in the 
potential V(r,R)+U(r,R), are determined by solu-
tion of the Dirac equations. To define the hyper-
fine interaction potentials U(1/rn,R), we use the 
method by Ivanov et al [11]. The key elements 
of the optimized relativistic energy approach to 
computing oscillator strengths are  presented in 
[1,15,29].   Let us remind that an initial  general 
energy formalism combined with an empirical 
model potential method has been developed by 
Ivanov-Ivanova et al [11],  further more general 
ab initio gauge-invariant  relativistic approach 
has been presented in [12], where the calibra-
tion of the single model potential parameter b 
has been performed on the basis of the special 
ab initio procedure within relativistic energy ap-
proach [12] (see also [1529,30]). All calculations 
are performed on the basis of the numeral code 
Superatom-ISAN (version 93). The details of 
the used method can be found in the references 
[1,11,14,21-24].  

4. Results and Conclusions
Firstly we present the results of computing  the 

oscillator strengths of transitions in spectra of the 
Li-like ions (Z=11-42,69,70). There are considered 
the radiative transitions from ground state to the 
low-excited and Rydberg states, particularly, 2s1/2 

– np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). To test the ob-
tained results, we compare our calculation results 
of the oscillator strengths values for some Li-like 
ions with the known theoretical and tabulated re-
sults [29,31]. As an example, in table 1 we pres-
ent the computed oscillator strength values for the 
2s1/2 – 2p1/2,3/2 transitions in Li-like ions S13+, Ca17+,  
Fe23+ , Zn27+, Zr37+ , Mo39+ , Sn47+ , Tm66+ , Yb67+ . The 
DF calculation data by Zilitis [31b] and the “best” 
compillated (experimental) data [31a] for the low-
Z Li-like ions are listed in table 1 for comparison 
too.  Note that the experimental data on the oscilla-
tor strengths for many (especially, high-Z) Li-like 
ions are missing.

Overall, there is a physically reasonable agree-
ment of the listed data. The important 

features of the approach used are using the op-
timized one-particle representation and account 
for polarization effects. It should be noted that an 
estimate of the gauge-non-invariant contributions 
(the difference between the oscillator strengths 
values calculated with using the transition op-
erator in the form of “length” and “velocity”) is 
about 0.3%, i.e., the results obtained with dif-
ferent photon propagator gauges (Coulomb, Ba-
bushkon, Landau) are practically equal. In Table 
2 we present our results (RMPT) of computing 
the reduced matrix elements (atomic units) of 
different radiative transitions in the 133Cs spec-
trum [1,30b]. The experimental (Еxp) and other 
theoretical (SD- the results of computing within 
the relativistic DF single-double approximation 
[4a]; DF, RHFc – the Dirac-Fock and relativistic 
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Yb67+ 0.0067 0.1170 – – 0.0069 0.1167
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Oscillator strengths of the 2s1/2 – 2p1/2,3/2 transitions in Li-like ions
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Hartree —Fock method data with accounting for 
the second order correlation corrections; QDA- 
the data by the perturbation theory with the quan-
tum defect approximation) [4,21,29,30] data are 
listed too. 

In table 3 we present the calculated data of 
the hyperfine structure constants for some Li-like 
ions. There are presented results for the  param-
eters: A=Z3gI A  and )(

)12(
1

3
-

-
= cmB

II
QZB . 

In table 4 the experimental (AExp) and theo-
retical data of the magnetic dipole constant A 
(MHz) for the valent states of 133Cs atom (I=7/2, 
gi=0.7377208) are presented (from Ref. [1,5,29]). 
The theoretical results are obtained on the basis 
of the standard RHF (ARHF) calculation, the RHF 
(ARHF+dA) calculation with taking into account 
the PT second and higher corrections (look Refs. 
[5,15,29] and references therein) and the RMPT  
(АRMPT) calculation (our data). The analysis shows 

matrix elements (atomic units) of different 
radiative transitions in the 133Cs spectrum
[1,30b]. The experimental (Еxp) and other 
theoretical (SD- the results of computing 
within the relativistic DF single-double 
approximation [4a]; DF, RHFc – the Dirac-
Fock and relativistic Hartree —Fock method 

data with accounting for the second order 
correlation corrections; QDA- the data by the 
perturbation theory with the quantum defect 
approximation) [4,21,29,30] data are listed 
too. 

Table 2. The reduced dipole matrix elements (a.u.) of some transitions in the Cs (see text)

Tran-
Sition

SD
[4a]

Scaled
[4a]

DF
[4b]

RHF
[4c]

RHF[4
d]

QDA
[21c]

RMPT
[1,30b]

Exp.

6p1/2-6s
6p3/2-6s
7p1/2-6s
7p3/2-6s
8p1/2-6s
8p1/2-6s
6p1/2-7s
6p3/2-7s
7p1/2-7s
7p3/2-7s

4.482
6.304
0.297
0.601
0.091
0.232
4.196
6.425

10.254
14.238

4.535
6.382
0.279
0.576
0.081
0.218
4.243
6.479

10.310
14.323

4.510
6.347
0.280
0.576
0.078
0.214
4.236
6.470

10.289
14.293

4.494
6.325
0.275
0.583

-
-

4.253
6.507

10.288
14.295

-
-

0.2825
0.582

-
-

4.237
6.472

10.285
14.286

4.282
5.936
0.272
0.557
0.077
0.212
4.062
6.219
9.906

13.675

4.486
6.320
0.283
0.582
0.087
0.225
4.231
6.478

10.308
14.322

4.4890(7)
6.3238(7)
0.284(2)
0.583(9)

-
-

4.233(22)
6.479(31)

10.308(15)
14.320(20)

In table 3 we present the calculated data of 
the hyperfine structure constants for some Li-
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Table 3. The hyperfine structure constants of some Li-like ions: A=Z3gI A (cm-1) and 
)(
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QZB

nlj Z 20 69 79 92
3s A 26 –03 51 –03 63 –03 90 –03
4s A 15 –03 19 –03 24 –03 36 –03

2p1/2 A 25 –03 56 –03 71 –03 105 –02
3p1/2 A 81 –04 16 –03 20 –03 31 –03
4p1/2 A 32 –04 72 –04 91 –04 11 –03
2p3/2 A 50 –04 67 –04 71 –04 72 –04

B 9 –04 13 –04 15 –04 17 –04
3p3/2 A 13 –04 19 –04 21 –04 22 –04

B 31 –05 51 –05 55–05 62 –05
4p3/2 A 62 –05 89 –05 92 –05 8 –04

B 10 –05 20 –05 22 –05 26 –05
3d3/2 A 88 –05 10 –04 11 –04 12 –04

B 51 –06 9 –05 10 –05 11 –05
4d3/2 A 35 –05 51 –05 55 –05 58 –05

B 12 –06 44 –06 50 –06 56 –06
3d5/2 A 36 –05 48 –05 50 –05 52 –05

B 21 –06 38 –06 39 –06 40 –06
4d5/2 A 15 –05 19 –05 20 –05 21 –05

B 59 –07 15 –06 16 –06 17 –06
4f5/2 A 06–05 12 –05 13 –05 14 –05

B 16 –07 53 –07 58 –07 63 –07

Table 2 
The reduced dipole matrix elements (a.u.) of some transitions in the Cs (see text)
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that taking into account the correlation and QED 
corrections is important to reach the physically 
reasonable agreement between theoretical and 
experimental data.

The fundamental reason of physically reason-
able agreement between theory and experiment 
is connected with the correct taking into account 
the inter-electron correlation effects, nuclear (due 
to the finite size of a nucleus), relativistic and ra-
diative corrections. The key difference between 
the results of the RHF, RMPT methods calcula-
tions is explained by using the different schemes 
of taking into account the inter-electron correla-
tions. The contribution of the PT high order ef-
fects and nuclear contribution may reach the units 
and even dozens of MHz and should be correctly 
taken into account. So, it’s necessary to take into 
account more correctly the spatial distribution of 
the magnetic moment inside a nucleus (the Bohr-
Weisskopf effect), the nuclear-polarization cor-
rections etc too. 
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In table 4 the experimental (AExp) and 
theoretical data of the magnetic dipole 
constant A (MHz) for the valent states of 
133Cs atom (I=7/2, gi=0.7377208) are 
presented (from Ref. [1,5,29]). The 
theoretical results are obtained on the basis of 
the standard RHF (ARHF) calculation, the 
RHF (ARHF+dA) calculation with taking into 

account the PT second and higher corrections 
(look Refs. [5,15,29] and references therein) 
and the RMPT  (АRMPT) calculation (our 
data). The analysis shows that taking into 
account the correlation and QED corrections 
is important to reach the physically 
reasonable agreement between theoretical 
and experimental data.

Table 4. The values (in MHZ) of the hyperfine structure constant A for valent states of the 
133Cs isotope: AExp - experiment; ARHF - the RHF calculation data; ARHF+dARHF - the RHF

calculation data with taking into account the PT second and higher orders contributions [5]; 
ARMPT – the RMPT calculation data [29] (look details in Refs.[5,15,29]).

State ARHF

[5]
dA
[5]

ARHF+dA
[5]

dARMPT

[29]
АRMPT

[29]
AExp

6s1/2 1426,81 864,19 2291,00 870,96 2294,45 2298,16
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The fundamental reason of physically 
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experiment is connected with the correct 
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correlation effects, nuclear (due to the finite 
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distribution of the magnetic moment inside a 
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nuclear-polarization corrections etc too. 
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THE HYPERFINE STRUCTURE AND OSCILLATOR STRENGTHS PARAMETERS FOR 
SOME HEAVY ELEMENTS ATOMS AND IONS: REVIEW OF DATA BY RELATIVISTIC 

MANY-BODY PERTURBATION THEORY CALCULATION

Abstract
The energies and hyperfine structure constants for some heavy Li-like multicharged ions are calcu-

lated within the relativistic many-body perturbation theory formalism with a correct and effective tak-
ing into account the exchange-correlation, relativistic, nuclear and radiative corrections. The magnetic 
inter-electron interaction is accounted for in the lowest order on a2 (a is the fine structure constant) 
parameter. The Lamb shift polarization part is taken into account in the modified Uehling-Serber 
approximation, the Lamb shift self-energy part - within the generalized Ivanov-Ivanova procedure. 
The combined relativistic energy approach and many-body perturbation theory with the zeroth order 
optimized one-particle approximation are used for computing the Li-like ions (Z=11-42,69,70) and Cs 
energies and oscillator strengths, in particular, of radiative transitions from the ground state to the low-
excited and Rydberg states 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12) in the Li-like ions. A comparison of 
the calculated oscillator strengths with available theoretical and experimental data is performed.
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О. Ю. Хецелиус, П. А. Заичко, В. Ф. Мансарлийский, О. А. Антошкина 

СВЕРХТОНКАЯ СТРУКТУРА И СИЛЫ ОСЦИЛЛЯТОРОВ РАДИАЦИОННЫХ  
ПЕРЕХОДОВ ДЛЯ РЯДА АТОМОВ И ИОНОВ ТЯЖЕЛЫХ ЕЛЕМЕНТИВ: ОБЗОР 

ДАННЫХ ВЫЧИСЛЕНИЙ НА ОСНОВЕ РЕЛЯТИВИСТСКОЙ МНОГОЧАСТИЧНОЙ 
ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме
Энергии и константы сверхтонкой структуры для некоторых тяжелых Li-подобных много-

зарядных ионов вычислены в рамках релятивистской многочастичной теории возмущений с 
эффективным с учетом обменно-корреляционных, релятивистских, ядерных и радиационных 
поправок. Магнитное межэлектронное взаимодействие учитывается в низшем порядке на a2 (a 
постоянная тонкой структуры) параметру. Поляризационная часть сдвига Лэмба учитывается 
в модифицированном приближении Юлинга-Сербера, собственно-энергетическая часть сдвига 
Лэмба - эффективно в рамках обобщенной непертурбативной процедуры Иванова-Ивановой. 
Обобщенный релятивистский энергетический подход и многочастичная теории возмущений 
с оптимизированным нулевым приближением  использованы для определения энергий, сил 
осцилляторов переходов в спектрах Cs, Li-подобных ионов (Z = 11-42,69,70) и, в частности, 
радиационных переходов из основного состояния в низшие  возбужденные и ридберговские 



55

2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12) состояния в Li-подобных ионах. Проведено сравнение экс-
периментальных данных и результатов расчетов на основе различных теоретических методов.

Ключевые слова:  Сверхтонкая структура, Силы осцилляторов, Релятивистская теория воз-
мущений 
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НАДТОНКА СТРУКТУРА І СИЛИ ОСЦИЛЯТОРІВ РАПДІАЦІЙНИХ ПЕРЕХОДІВ 
ДЛЯ ДЕЯКИХ АТОМІВ ТА ІОНІВ ВАЖКИХ ЕЛЕМЕНТІВЖ ОГЛЯД ДАНИХ 

ОБЧИСЛЕНЬ НА ОСНОВІ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ 
ЗБУРЕНЬ 

Резюме
Енергії і константи надтонкої структури для деяких важких Li-подібних багатозарядних 

іонів обчислені в рамках релятивістської Багаточасткові теорії збурень з ефективним з ура-
хуванням обмінно-кореляційних, релятивістських, ядерних і радіаційних поправок. Магнітна 
міжелектроннао взаємодія враховується в нижчому порядку на a2 (a -стала тонкої структури) 
параметру. Поляризаційна частина зсуву Лемба враховується в модифікованому наближенні 
Юлінга-Сербера, власно-енергетична частина зсуву Лемба - ефективно в рамках узагальненої 
непертурбатівної процедури Іванова-Іванової. Узагальнений релятивістський енергетичний 
підхід і багаточастинкова теорії збурень з оптимізованим “0” наближенням використані для ви-
значення енергій і сил осциляторів переходів в спектрах Cs, Li-подібних іонів (Z = 11-42,69,70), 
зокрема, радіаційних переходів з основного стану в нижчі збуджені і ридберговскi 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12) стани у Li-подібних іонах. Проведено порівняння експериментальних 
даних і даних обчислень на основі різних теоретичних методів.

Ключові слова: Надтонка структура, Сили осциляторів, Релятивістська теорія збурень  


