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RELATIVISTIC THEORY OF SPECTRA OF HEAVY PIONIC ATOMIC SYSTEMS WITH 
ACCOUNT OF  STRONG PION-NUCLEAR INTERACTION EFFECTS: 

93Nb, 173Yb,  181Ta , 197Au

It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the Klein-
Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. There are presented data 
of calculation of the energy and spectral parameters for pionic atoms of the 93Nb, 173Yb,  181Ta, 
197Au, with accounting for the radiation (vacuum polarization), nuclear (finite size of a nucleus ) 
and the strong pion-nuclear  interaction corrections. The measured values of the Berkley, CERN and 
Virginia laboratories and alternative data based on other versions of the Klein-Gordon-Fock theories 
with taking into account for a finite size of the nucleus in the model uniformly charged sphere and the 
standard Uhling-Serber radiation correction and optical atomic theory  are listed too. 

1.  Introduction
In papers [1-3] we have developed a new rela-

tivistic method of the Klein-Gordon-Fock equa-
tion with an generalized pion-nuclear potential 
to determine transition energies in spectroscopy 
of light, middle and heavy pionic atoms with ac-
counting for the strong interaction effects. In this 
paper, which goes on our studying on spectros-
copy of pionic atoms, we firstly applied method 
[1-3] to calculating calculation of the energy and 
spectral parameters for pioninc atoms of the 93Nb, 
173Yb,  181Ta , 197Au, with accounting for the the ra-
diation (vacuum polarization), nuclear (finite size 
of a nucleus ) and the strong pion-nuclear  inter-
action corrections..

Following [1-3], let us remind that  spectros-
copy of hadron atoms has been used as a tool for 
the study of particles and fundamental properties 
for a long time. Exotic atoms are also interesting 
objects as they enable to probe aspects of atomic 
and nuclear structure that are quantitatively dif-
ferent from what can be studied in electronic or 
“normal” atoms. At present time one of the most 
sensitive tests for the chiral symmetry breaking 
scenario in the modern hadron’s physics is pro-
vided by studying the exotic hadron-atomic sys-
tems. Nowadays the transition energies in pionic 

(kaonic, muonic etc.) atoms are measured with an 
unprecedented precision and from studying spec-
tra of the hadronic atoms it is possible to investi-
gate the strong interaction at low energies meas-
uring the energy and natural width of the ground 
level with a precision of few meV [1-10].  The 
strong interaction is the reason for a shift in the 
energies of the low-lying levels from the purely 
electromagnetic values and the finite lifetime of 
the state corresponds to an increase in the ob-
served level width. For a long time the similar 
experimental investigations have been carried out 
in the laboratories of Berkley, Virginia (USA), 
CERN (Switzerland). The most known theoreti-
cal models to treating the hadronic (pionic, ka-
onic, muonic, antiprotonic etc.) atomic systems 
are presented in refs. [1-5,7,8]. The most difficult 
aspects of the theoretical modeling are reduced 
to the correct description of pion-nuclear strong 
interaction [1-3] as the electromagnetic part of the 
problem is reasonably accounted for. 

2.  Relativistic approach to pionic atoms 
spectra

As the basis’s of a new method has been pub-
lished, here we present only the key topics of an 
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approach [1-3]. All available theoretical models 
to treating the hadronic (kaonic, pionic) atoms are 
naturally based on the using the Klein-Gordon-
Fock equation [2,5], which can be written as fol-
lows :
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where c is a speed of the light, h is the Planck con-
stant, and Ψ0(x) is the scalar wave function of the 
space-temporal coordinates. Usually one consid-
ers the central potential [V0(r), 0] approximation 
with the stationary solution:

             )(	)/=Ψ xt jexp(-iE  (x) ,              (2)

where )(xj is the solution of the stationary equa-
tion:
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy e0). 
In principle, the central potential V0 naturally in-
cludes the central Coulomb potential, the vacu-
um-polarization potential, the strong interaction 
potential. 

The most direct approach to treating the strong  
interaction is provided by the well known optical 
potential model (c.g. [2]). Practically in all papers 
the central potential V0  is the sum of the following 
potentials. The nuclear potential for the spherical-
ly symmetric density ( )Rrρ  is [6,13]:
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The most popular Fermi-model approxima-
tion the charge distribution in the nucleus ( )rρ  
(c.f.[11]) is as follows:  

             )]}/)exp[(1/{)( 0 acrñrñ -+= ,      (5)

where the parameter a=0.523 fm, the parameter с 
is chosen by such a way that it is true the follow-
ing condition for average-squared radius: 

<r2>1/2=(0.836×A1/3+0.5700)fm.

The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of the 
following system of the differential equations: 
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with the corresponding boundary conditions.  An-
other, probably, more consistent approach is in 
using the relativistic mean-field (RMF) model, 
which been designed as a renormalizable meson-
field theory for nuclear matter and finite nuclei 
[13].To take into account the radiation correc-
tions, namely, the effect of the vacuum polariza-
tion we have used the generalized  Ueling-Serber 
potential with modification to take into account 
the high-order radiative corrections [5,12]. 

The most difficult aspect is an adequate ac-
count for the strong interaction. On order to de-
scribe the strong p-N interaction we have used the 
optical potential model in which the generalized 
Ericson-Ericson potential is as follows:

                       (9)                                                       

                                                                    (10)

                                                                    (11)

Here ( )rnp,ρ  – distribution of a density of the 
protons and neutrons, respectively, ξ – parameter 
( 0=ξ  corresponds to case of “no correlation”, 

1=ξ , if anticorrelations between nucleons);  re-
spectively isoscalar and isovector parameters b0, 
c0 , B0, b1,c1 , C0  B1, C1 –are corresponding to the 
s-wave and p-wave (repulsive and attracting po-
tential member) scattering length in the combined 
spin-isospin space with taking into account the 
absorption of pions (with different channels at p-p 
pair ( )ppB0  and  p-n  pair  ( )pnB0 ),  and isospin and  
spin dependence of an amplitude  p-N scattering  

 
 
 
 
 
 

As the basis’s of a new method has 
been published, here we present only the key 
topics of an approach [1-3]. All available 
theoretical models to treating the hadronic 
(kaonic, pionic) atoms are naturally based on 
the using the Klein-Gordon-Fock equation 
[2,5], which can be written as follows :                                         

)(})]([1{)( 222
02

22 xreVi
c

xcm t                                                                        

                                                      (1) 
 
where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
                                                        
              xt exp(-iE  (x) ,              (2) 
 
where x is the solution of the stationary 
equation: 
  

                                              

0)(})]([1{ 22222
02  xcmreVE

c
                              

(3) 
 
Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential.  

The most direct approach to treating 
the strong  interaction is provided by the well 
known optical potential model (c.g. [2]). 
Practically in all papers the central potential 
V0  is the sum of the following potentials. The 
nuclear potential for the spherically 
symmetric density  Rr  is [6,13]: 

                                            

     




 









r

r
nucl RrrdrRrrdrrRrV '''

0

'2''1                      

(4) 
The most popular Fermi-model 

approximation the charge distribution in the 
nucleus  r  (c.f.[11]) is as follows:   

 
)]}/)exp[(1/{)( 0 acrρrρ  ,                                            

                                                                   (5) 
 
where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
true the following condition for average-
squared radius:  
 

<r2>1/2=(0.836A1/3+0.5700)fm. 
 
The effective algorithm for its 

definition is used in refs. [12] and reduced to 
solution of the following system of the 
differential equations:  

                                    

         RryrRrrdrrRrnuclV
r

,1,1, 2

0

'2''2'  

,                         (6) 
   RrrRry ,,' 2 ,                                                    

                                                                    (7) 
                                  

2
0 )]}/)exp[(1]{/)exp[()/()(' acracraρrρ                            

(8) 
with the corresponding boundary conditions.  
Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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with the corresponding boundary conditions.  
Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  
The most difficult aspect is an adequate 
account for the strong interaction. On order 
to describe the strong -N interaction we 
have used the optical potential model in 
which the generalized Ericson-Ericson 
potential is as follows: 
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where c is a speed of the light, h is the Planck 
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0). In principle, the central potential V0 
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The most direct approach to treating 
the strong  interaction is provided by the well 
known optical potential model (c.g. [2]). 
Practically in all papers the central potential 
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account for the strong interaction. On order 
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Here  rnp,  – distribution of a density of the 
protons and neutrons, respectively,  – 
parameter ( 0  corresponds to case of “no 
correlation”, 1 , if anticorrelations 
between nucleons);  respectively isoscalar 
and isovector parameters b0, c0 , B0, b1,c1 , C0  
B1, C1 –are corresponding to the s-wave and 
p-wave (repulsive and attracting potential 
member) scattering length in the combined 
spin-isospin space with taking into account 
the absorption of pions (with different 
channels at p-p pair  ppB0  and  p-n  pair  

 pnB0 ),  and isospin and  spin dependence of 

an amplitude  -N scattering   
(         rrbrbrb np   100 , 

the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 

function. In whole the energy of the hadronic 
atom is represented as the sum:   

          ;KG FS VP NE E E E E                                                               
                                                              (12) 

Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atoms of the 
93Nb, 173Yb,  181Ta , 197Au are presented. The 
measured values of the Berkley, CERN and 
Virginia laboratories and alternative data 
based on other versions of the Klein-Gordon-
Fock theories with taking into account for a 
finite size of the nucleus in the model 
uniformly charged sphere and the standard 
Uhling-Serber radiation correction  [5, 15] 
and optical atomic theory [17,18] are listed 
too.  

 
Table 1. Transition energies (keV) in the spectra of some heavy pionic atoms (see text) 

-A Trans. Berkley 
EEXP 

CERN 
EEXP 

EKGF+EM 
[5, 15] 

EKGF-EM 
[16, 17] 

EN 
[5] 

EN 
[14, 18] 

EN, 
Our data 

93Nb 5g-4f - 307.79 0.02 - - - - 307.85 
173Yb 5g-4f - - - - - - 412.26 
181Ta 5g-4f 453.1 0.4 453.90 0.20 453.06 453.78 - 453.52 

453.62 
453.71 

197Au 5g-4f 532.5 0.5 533.16 0.20 528.95 - 532.87 531.88 533.08 
93Nb 4f-3d - 140.3 0.1 - - - - 140.81 

173Yb 4f-3d - - - - - - 838.67 
181Ta 4f-3d - 1008.4 1.3 - - - 992.75 1008.80 
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(Dirac equation) and the pionic wave 

function. In whole the energy of the hadronic 
atom is represented as the sum:   
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Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atoms of the 
93Nb, 173Yb,  181Ta , 197Au are presented. The 
measured values of the Berkley, CERN and 
Virginia laboratories and alternative data 
based on other versions of the Klein-Gordon-
Fock theories with taking into account for a 
finite size of the nucleus in the model 
uniformly charged sphere and the standard 
Uhling-Serber radiation correction  [5, 15] 
and optical atomic theory [17,18] are listed 
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an amplitude  -N scattering   
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the Lorentz-Lorentz effect in the p-wave 
interaction. For the pionic atom with 
remained  electron shells the total wave-
function is a product of the product Slater 
determinant of the electrons subsystem 
(Dirac equation) and the pionic wave 

function. In whole the energy of the hadronic 
atom is represented as the sum:   
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Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon-Fock equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
 
In table 1 our data on the 4f-3d, 5g-4f 

transition energies for pionic atoms of the 
93Nb, 173Yb,  181Ta , 197Au are presented. The 
measured values of the Berkley, CERN and 
Virginia laboratories and alternative data 
based on other versions of the Klein-Gordon-
Fock theories with taking into account for a 
finite size of the nucleus in the model 
uniformly charged sphere and the standard 
Uhling-Serber radiation correction  [5, 15] 
and optical atomic theory [17,18] are listed 
too.  
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( ( ) ( ) ( ) ( ){ }rrbrbrb np ρρρρ -+→ 100 ,

the Lorentz-Lorentz effect in the p-wave interac-
tion. For the pionic atom with remained  electron 
shells the total wave-function is a product of the 
product Slater determinant of the electrons sub-
system (Dirac equation) and the pionic wave 
function. In whole the energy of the hadronic 
atom is represented as the sum:  

          ;KG FS VP NE E E E E≈ + + +                (12)

Here KGE -is the energy of a pion in a nucle-
us ( ),Z A  with the point-like charge (dominative 
contribution in (12)), FSE  is the contribution due 
to the nucleus finite size effect,  VPE is the radia-
tion correction due to the vacuum-polarization 
effect, NE  is the energy shift due to the strong 
interaction NV .

The strong pion-nucleus interaction contribu-
tion can be found from the solution of the Klein-
Gordon-Fock equation with the corresponding 
pion-nucleon potential.

3.  Results and conclusions
In table 1 our data on the 4f-3d, 5g-4f transi-

tion energies for pionic atoms of the 93Nb, 173Yb,  

181Ta , 197Au are presented. The measured values 
of the Berkley, CERN and Virginia laboratories 
and alternative data based on other versions of the 
Klein-Gordon-Fock theories with taking into ac-
count for a finite size of the nucleus in the model 
uniformly charged sphere and the standard Uh-
ling-Serber radiation correction  [5, 15] and opti-
cal atomic theory [17,18] are listed too. 

The analysis of the presented data indicate on 
the importance of the correct accounting for the 
radiation (vacuum polarization) and the strong pi-
on-nuclear  interaction corrections. Obviously, it 
is clear that that the contributions provided by the 
finite size effect should be accounted in a precise 
theory. Besides, taking into account the increas-
ing accuracy of the X-ray pionic atom spectros-
copy experiments, it can be noted  that knowl-
edge of the exact electromagnetic theory data will 
make more clear the true values for parameters 
of the pion-nuclear potentials and correct the dis-
advantage of widely used parameterization of the 
potentials (9)-(11). 
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It is presented a consistent  relativistic theory of spectra of the pionic atoms on the basis of the 

Klein-Gordon-Fock with a generalized radiation and strong pion-nuclear potentials. There are pre-
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РЕЛЯТИВИСТСКАЯ ТЕОРИЯ СПЕКТРОВ ПИОННЫХ АТОМНЫХ СИСТЕМ С 
УЧЕТОМ ЭФФЕКТОВ СИЛЬНОГО ПИОН-ЯДЕРНОГО ВЗАИМОДЕЙСТВИЯ: 93Nb, 

173Yb,  181Ta , 197Au 

Резюме
Представлена последовательная релятивистская теория спектров пионных атомов на основе 

уравнения Клейна-Гордона-Фока с обобщенными радиационным и сильным  пион-ядерным 
потенциалом.  Выполнен расчет энергетических и спектральных параметров для пионных ато-
мов 93Nb, 173Yb,  181Ta , 197Au, с учетом радиационных (поляризация вакуума), ядерных (конеч-
ный размер ядра) эффектов и поправки на сильное пион-нуклонное взаимодействие.  Также 
для сравнения представлены данные измерений в лабораториях Berkley, ЦЕРН и Вирджиния 
и теоретические результаты, полученные на основе альтернативных теорий Клейна-Гордона-
Фока с учетом конечного размера ядра в модели равномерно заряженной сферы и стандартной 
Юлинг-Сербер поправки.   
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ВАННЯМ ЕФЕКТІВ СИЛЬНОЇ ПІОН-ЯДЕРНОЇ ВЗАЄМОДІЇ: 93Nb, 173Yb,  181Ta , 197Au

Резюме
Представлена послідовна релятивістська теорія спектрів півоній атомів на основі рівняння 

Клейна-Гордона-Фока з узагальненими радіаційним і сильним півонія-ядерним потенціалом. 
Виконано розрахунок енергетичних і спектральних параметрів для піоних атомів 93Nb, 173Yb,  

181Ta , 197Au, з урахуванням радіаційних (поляризація вакууму), ядерних (кінцевий розмір ядра 
) ефектів та поправки на сильну піон-нуклонну взаємодію. Також для порівняння представлені 
дані вимірювань в лабораторіях Berkley, ЦЕРН і Вірджинія і теоретичні результати, отримані 
на основі альтернативних теорій Клейна-Гордона-Фока з урахуванням кінцевого розміру ядра в 
моделі рівномірно зарядженої сфери і стандартної Юлінг-Сербер поправки..
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