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NEW NONLINEAR ANALYSIS, CHAOS THEORY AND INFORMATION TECHNOLOGY
APPROACH TO STUDYING DYNAMICS OF CHAIN OF QUANTUM AUTOGENERATORS

A chaos-geometric approach [7-11] that consistently includes a number of new or improved known methods
of analysis (the correlation integral, the fractal analysis, algorithms of the average mutual information, and false
nearest neighbors, the Lyapunov exponents analysis, the Kolmogorov entropy, the method of surrogate data,
a set of the spectral methods, a neural network algorithms, etc. .) is used to solve the problem of quantitative
modeling and analysis of chaotic dynamics of a chain of two quantum autogenerators. There are theoretically
studied a chaos scenario generation and obtained quantitative data on the dynamic and topological invariants of

the system in the chaotic regime.

1 Introduction

In many papers (see, for example, [1-18]) it
has been noted that a chaos is alternative of ran-
domness and occurs as in very simple determin-
istic systems as quite complex ones. Although
chaos theory places fundamental limitations for
long-rage prediction (see e.g. [1-9] ), it can be
used for short-range prediction since ex facte
random data can contain simple deterministic re-
lationships with only a few degrees of freedom.
Chaos theory establishes that apparently complex
irregular behaviour could be the outcome of a
simple deterministic system with a few dominant
nonlinear interdependent variables. The past dec-
ade has witnessed a large number of studies em-
ploying the ideas gained from the science of chaos
to characterize, model, and predict the dynamics
of various systems phenomena (see e.g. [1-13]).
The outcomes of such studies are very encourag-
ing, as they not only revealed that the dynamics
of the apparently irregular phenomena could be
understood from a chaotic deterministic point of
view but also reported very good predictions us-
ing such an approach for different systems.

In a modern quantum electronics and laser
physics etc there are many systems and devices
(such as multi-element semiconductors and gas
lasers etc), dynamics of which can exhibit cha-
otic behaviour. These systems can be considered

in the first approximation as a grid of autogenera-
tors (quantum generators), coupled by different
way [2,14,15].

In this paper a chaos-geometric approach [7-
11] that consistently includes a number of new or
improved known methods of analysis (the corre-
lation integral, the fractal analysis, algorithms of
the average mutual information, and false near-
est neighbors, the Lyapunov exponents analysis,
the Kolmogorov entropy, the method of surrogate
data, a set of the spectral methods, a neural net-
work algorithms, etc.; see details in Refs. [1-34])
is used to solve the problem of quantitative mod-
eling and analysis of chaotic dynamics of a chain
of two quantum autogenerators. There are theo-
retically studied a chaos scenario generation and
obtained quantitative data on the dynamic and
topological invariants of the system in the chaotic
regime

2. Methods of studying dynamics of the la-
ser systems

As used non-linear analysis, chaos theory
and information technology methods to study-
ing non-linear dynamics of the laser systems
have been earlier in details presented [1-20] here
we are limited only by the key ideas. As usu-
ally, we formally consider scalar measurements
s(n) = s(t, + nDt) = s(n), where ¢ is the start
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time, Dt is the time step, and is # the number of
the measurements. Packard et al. [18] introduced
the method of using time-delay coordinates to re-
construct the phase space of an observed dynami-
cal system. The direct use of the lagged variables
s(n +t), where t is some integer to be determined,
results in a coordinate system in which the struc-
ture of orbits in phase space can be captured. First
approach to compute t is based on the linear auto-
correlation function. The second method is an ap-
proach with a nonlinear concept of independence,
e.g. the average mutual information. Briefly, the
concept of mutual information can be described as
follows [5,7,13]. One could remind that the auto-
correlation function and average mutual informa-
tion can be considered as analogues of the linear
redundancy and general redundancy, respectively,
which was applied in the test for nonlinearity. If a
time series under consideration have an n-dimen-
sional Gaussian distribution, these statistics are
theoretically equivalent as it is shown in Ref. [22].

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space R? large
enough so that the set of points d, can be unfolded
without ambiguity. There are several standard ap-
proaches to reconstruct the attractor dimension
(see, e.g., [1,7,23]), but let us consider in this study
two methods only. The correlation integral analy-
sis is one of the widely used techniques to inves-
tigate the signatures of chaos in a time series. The
analysis uses the correlation integral, C(r), to dis-
tinguish between chaotic and stochastic systems.
To compute the correlation integral, the algorithm
of Grassberger and Procaccia [23] is the most com-
monly used approach. According to this algorithm,
the correlation integral is

€)= lim s ;H(H vi-y,1)

(1<i<j<N) ( 1 )
where H is the Heaviside step function with
H(u) =1 for u> 0 and H(u) = 0 for u £ 0, r is the
radius of sphere centered on 'y, or y, and N is the
number of data measurements. If the time series
is characterized by an attractor, then the integral
C(r) is related to the radius » given by

d = 1imi2gc)
i logr

2)
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates
log C(r) versus log r by a least-squares fit of a
straight line over a certain range of 7, called the
scaling region.

There are certain important limitations in the
use of the correlation integral analysis in the
search for chaos. To verify the results obtained
by the correlation integral analysis, we use sur-
rogate data method. The method of surrogate data
[1,7,19] is an approach that makes use of the sub-
stitute data generated in accordance to the proba-
bilistic structure underlying the original data.
Advanced version is presented in [7-9].

The next step is computing the Lyapunov’s ex-
ponents (LE). The LE are the dynamical invari-
ants of the nonlinear system. A negative exponent
indicates a local average rate of contraction while
a positive value indicates a local average rate of
expansion. In the chaos theory, the spectrum of LE
is considered a measure of the effect of perturbing
the initial conditions of a dynamical system. Note
that both positive and negative LE can coexist in
a dissipative system, which is then chaotic. Since
the LE are defined as asymptotic average rates,
they are independent of the initial conditions, and
therefore they do comprise an invariant measure
of attractor. In fact, if one manages to derive the
whole spectrum of the LE, other invariants of
the system, i.e. Kolmogorov entropy and attrac-
tor’s dimension can be found. The Kolmogorov
entropy, K, measures the average rate at which
information about the state is lost with time. An
estimate of this measure is the sum of the posi-
tive LE. The inverse of the Kolmogorov entropy
is equal to an average predictability.

Estimate of dimension of the attractor is pro-
vided by the Kaplan and Yorke conjecture. There
are a few approaches to computing the LE. One of
them computes the whole spectrum and is based
on the Jacobi matrix of system [27]. In the case
where only observations are given and the system
function is unknown, the matrix has to be estimat-
ed from the data. In this case, all the suggested
methods approximate the matrix by fitting a local
map to a sufficient number of nearby points.

In our work we use the method with the lin-
ear fitted map proposed by Sano and Sawada [27]
added by the neural networks algorithm [7-10].



3. Chaotic elements in dynamics of the grid
of two autogenerators and conclusions

Here we present results of non-linear analysis
of the chaotic oscillations in a grid of two autogen-
erators. Dynamics of this systems has intensively
studied from the viewpoint of the corresponding
differential equations solutions (e.g. [2,14,15]).
In Refs.[2,14,15] the time series for the character-
istic vibration amplitude are presented in a case
of two semiconductors lasers connected through
general resonator. We have studied the time se-
ries in a regime of the hyper chaos (input data
contain 4096 points). Firstly we have computed
the variations of the autocorrelation coefficient
for the amplitude level. Autocorrelation function
exhibits some kind of exponential decay up to a
lag time of about 100 time units. Such an ex-
ponential decay can be an indication of the pres-
ence of chaotic dynamics in the process of the
level variations. On the other hand, the autocor-
relation coefficient failed to achieve zero, i.e. the
autocorrelation function analysis not provides us
with any value of t. Such an analysis can be cer-
tainly extended to values exceeding 1000, but it
is known that an attractor cannot be adequately
reconstructed for very large values of t. The cor-
relation dimension is computed on the basis of the
correlation integral scheme.

To verify the results obtained by the correla-
tion integral analysis, we use surrogate data meth-
od. The method of surrogate data is an approach
that makes use of the substitute data generated in
accordance to the probabilistic structure underly-
ing the original data. This means that the surro-
gate data possess some of the properties, such as
the mean, the standard deviation, the cumulative
distribution function, the power spectrum, etc.,
but are otherwise postulated as random, gener-
ated according to a specific null hypothesis. We
have evaluated the percentage of false nearest
neighbours that was determined for the amplitude
level series, for phase-spaces reconstructed with
embedding dimensions from 1 to 20. In Table
1 we list the computed values of the correlation
dimension d,, embedding dimension d, which
are computed on the basis of the false nearest
neighbouring points algorithm with noting (%) of
false points for different values of the lag time t.
Accordingly in Table 2 we list the computed val-

ues of the Kaplan-York attractor dimension (d,),
LE (1, i=1-3) and the Kolmogorov entropy (K_ ).

Table 1
The correlation dimension d, , embedding di-
mension d_, which are computed on the basis
of the false nearest neighbouring points algo-
rithm with noting (%) of false points for differ-

ent values of the lag time t

T d, (dy)

64 7.9 10 (12)

10 7.1 8(1.2)

12 7.1 8(1.2)
Table 2

The Kaplan-York attractor dimension (d, ), LE (1,
i=1-3) and the Kolmogorov entropy (K_ ) for the
system of two semiconductors lasers connected
through general resonator (the hyperchaos regime)

7\'1 }\'2 7\'3 dL entr
0.515 0.198 -0.146 6.9 | 0.745
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NEW NONLINEAR ANALYSIS, CHAOS THEORY AND INFORMATION
TECHNOLOGY APPROACH TO STUDYING DYNAMICS OF CHAIN OF QUANTUM
AUTOGENERATORS

Abstract

Chaos-geometric approach that consistently includes a number of new or improved known meth-
ods of analysis (the correlation integral, the fractal analysis, algorithms of the average mutual infor-
mation, and false nearest neighbors, the Lyapunov exponents analysis, the Kolmogorov entropy, the
method of surrogate data, a set of the spectral methods, a neural network algorithms, etc. .) is used to
solve the problem of quantitative modeling and analysis of chaotic dynamics of a chain of two quan-
tum autogenerators. There are theoretically studied a chaos scenario generation and obtained quantita-
tive data on the dynamic and topological invariants of the system in the chaotic regime.
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I I1. Ilpenenuysa, C. B. bpycenyesa, A. B. [{yoopes, O. IO. Xeyenuyc, I1. I bawkapvos

HOBBIN TOJXO0J HA OCHOBE HEJIMHEWMHOI'O AHAJIN3A, TEOPUU XAOCA U
NHO®OPMANMOHHbBIX TEXHOJIOI'MU K U3YYEHUIO JUHAMHWKHU KBAHTOBbIX
I'EHEPATOPOB U JIABEPHBIX CUCTEM

Pe3rome

Xaoc-reoMeTpu4eCcKuil MoX0/1, KOTOPBIA €IMHOOOPa3HO BKJIHOYAET Psii HOBBIX MJIM YCOBEPILEH-
CTBOBAHHBIX M3BECTHBIX METOJIOB aHaIH3a (KOPPEIAIMOHHBIN HHTETpasl, (GpakTaIbHBIA aHATU3, aJl-
TOPUTMBI CpeIHEN B3aUMHON MH(OpPMAILINHU, JIOKHBIX OMMKAWIINX coceneid, mokaszarenu JIsmyHoBa,
3HTp0HI/15[ KOJIMOFOpOBa, METOI cypporaTme JaHHBbIX, CHeKTpaJIBHBIe METOAbI, HCprOCCTeBBIe aJl-
TOPUTMBI U T.J.) UCTIOJB30BaH JJIsi PEIICHUS 3a7a4u KOJIWYECTBEHHOTO MOJCIMPOBAHUS M aHATN3a
Xa0TUYECKOM JUHAMUKH LEMOYKH JABYX KBAaHTOBBIX aBTOT€HEPATOPOB. TeopeTHueCcKr U3yUyeH ClIeHa-
pPIfI reHepam/H/I Xxaocau HOJIy‘ICHI)I KOJIMYCCTBCHHBIC JAHHBIC 110 JUHAMUYCCKHUM U TOIMIOJIOTUYCCKHUM
WHBapUaHTaM CHCTEMBI B XaOTHYECKOM PEKUME.

KurroueBble cj10Ba: 11enoyka KBAHTOBBIX aBTOI'€HEPATOPOB, IMHAMUKA, Xa0C, HETMHEWHBIN aHAIIU3
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I I1. Ilpenenuysa, C. B. bBpycenyesa, A. B. [{yoopes, O. IO. Xeyenuyc, I1. I bawkapvos

HOBMH MIJAXIT HA OCHOBI HEJIIHIMHOT'O AHAJII3Y, TEOPIi XAOCY TA
IHOOPMAIIMHUX TEXHOJIOI'TK 10 BUBYEHHSA JTUHAMIKHA JIAHIIOKKA
KBAHTOBUX ABTOI'EHEPATOPIB

Pesrome

Xaoc-reoOMeTpUYHHUH MiAX1, 0 OHOMAHITHO BKJIIOYA€ HU3KY HOBHX a00 YIOCKOHAJEHUX BiJIO-
MHUX METOJIIB aHaJIi3y (KOpeIAiHHUH iHTerpal, ppakTanbHU aHali3, aITOPUTMH CEPETHBOI B3aEMHOT
iHpopMarii, XuOHUX HAMOMMKINX CyCiiB, Moka3Huku JlamyHoBa, entpornis Koinmoroposa, cyporar-
HUX JJaHUX, HEJIIHIMHUNA IPOrHO3, CIEKTPaJIbHI METOAM, HEHPOMEPEKEBI AITOPUTMH TOILI0) BUKOPHUC-
TaHUN JJI BUPIMICHHA 3a/lad KUIbKICHO MOJIEJIOBAHHS Ta aHaji3y XaOTHYHOI JUHAMIKHU JIAHIIOKKA
KBaHTOBUX aBTOTeHeparopiB. TeopeTHuHO BUBUCHUH cLieHapiil reHepalii xaocy, OTpuMaHi KiIbKiCHI
JIaH1 10 TMHAMIYHUM Ta TOTOJIOTTYHUM 1HBapiaHTaM CUCTEMHU Y XaOTHIHOMY PEIKUMI.

Kuro4oBi cj10Ba: aHIIOKOK KBAaHTOBUX aBTOT€HEPATOPIB, TMHAMIKA, Xa0C, HEMHIMHUN aHaATI3
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