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NEW NONLINEAR ANALYSIS, CHAOS THEORY AND INFORMATION TECHNOLOGY 
APPROACH TO STUDYING DYNAMICS OF CHAIN OF QUANTUM AUTOGENERATORS

A chaos-geometric approach [7-11] that consistently includes a number of new or improved known methods 
of analysis (the correlation integral, the fractal analysis, algorithms of the  average mutual information, and false 
nearest neighbors,  the Lyapunov exponents analysis, the Kolmogorov entropy, the method of surrogate data, 
a set of the spectral methods, a neural network algorithms, etc. .) is used to solve the problem of quantitative 
modeling and analysis of chaotic dynamics of a chain of two quantum autogenerators. There are theoretically 
studied a chaos scenario generation and obtained quantitative data on the dynamic and topological invariants of 
the system in the chaotic regime.

1 Introduction
In many papers  (see, for example, [1-18]) it 

has been noted that a chaos is alternative of ran-
domness and occurs as in very simple determin-
istic systems as quite complex ones. Although 
chaos theory places fundamental limitations for 
long-rage prediction (see e.g. [1-9] ), it can be 
used for short-range prediction since ex facte 
random data can contain simple deterministic re-
lationships with only a few degrees of freedom. 
Chaos theory establishes that apparently complex 
irregular behaviour could be the outcome of a 
simple deterministic system with a few dominant 
nonlinear interdependent variables. The past dec-
ade has witnessed a large number of studies em-
ploying the ideas gained from the science of chaos 
to characterize, model, and predict the dynamics 
of various systems phenomena (see e.g. [1-13]). 
The outcomes of such studies are very encourag-
ing, as they not only revealed that the dynamics 
of the apparently irregular phenomena could be 
understood from a chaotic deterministic point of 
view but also reported very good predictions us-
ing such an approach for different systems. 

In a modern quantum electronics and laser 
physics etc there are many systems and devices 
(such as multi-element semiconductors and gas 
lasers etc), dynamics of which can exhibit  cha-
otic behaviour. These systems can be considered 

in the first approximation as a grid of autogenera-
tors (quantum generators), coupled by different 
way [2,14,15]. 

In this paper a chaos-geometric approach [7-
11] that consistently includes a number of new or 
improved known methods of analysis (the corre-
lation integral, the fractal analysis, algorithms of 
the  average mutual information, and false near-
est neighbors,  the Lyapunov exponents analysis, 
the Kolmogorov entropy, the method of surrogate 
data, a set of the spectral methods, a neural net-
work algorithms, etc.; see details in Refs. [1-34]) 
is used to solve the problem of quantitative mod-
eling and analysis of chaotic dynamics of a chain 
of two quantum autogenerators. There are theo-
retically studied a chaos scenario generation and 
obtained quantitative data on the dynamic and 
topological invariants of the system in the chaotic 
regime 

2. Methods of studying dynamics of the la-
ser systems

As used non-linear analysis, chaos theory 
and information technology methods to study-
ing non-linear dynamics of the laser systems 
have been earlier in details presented [1-20] here 
we are limited only by the key ideas. As usu-
ally, we formally consider scalar measurements 
s(n) = s(t0 + nDt) = s(n), where t0 is the start 
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time, Dt is the time step, and is n the number of 
the measurements. Packard et al. [18] introduced 
the method of using time-delay coordinates to re-
construct the phase space of an observed dynami-
cal system. The direct use of the lagged variables 
s(n + t), where t is some integer to be determined, 
results in a coordinate system in which the struc-
ture of orbits in phase space can be captured. First 
approach to compute t is based on the linear auto-
correlation function. The second method is an ap-
proach with a nonlinear concept of independence, 
e.g. the average mutual information. Briefly, the 
concept of mutual information can be described as 
follows [5,7,13]. One could remind that the auto-
correlation function and average mutual informa-
tion can be  considered as analogues of the linear 
redundancy and general redundancy, respectively, 
which was applied in the test for nonlinearity. If a 
time series under consideration have an n-dimen-
sional Gaussian distribution, these statistics are 
theoretically equivalent as it is shown in Ref. [22]. 

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded 
without ambiguity. There are several standard ap-
proaches to reconstruct the attractor dimension 
(see, e.g., [1,7,23]), but let us consider in this study 
two methods only. The correlation integral analy-
sis is one of the widely used techniques to inves-
tigate the signatures of chaos in a time series. The 
analysis uses the correlation integral, C(r), to dis-
tinguish between chaotic and stochastic systems. 
To compute the correlation integral, the algorithm 
of Grassberger and Procaccia [23] is the most com-
monly used approach. According to this algorithm, 
the correlation integral is 
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where H is the Heaviside step function with 
H(u) = 1 for u > 0 and H(u) = 0 for u £ 0, r is the 
radius of sphere centered on yi or yj, and N is the 
number of data measurements. If the time series 
is characterized by an attractor, then the integral 
C(r) is related to the radius r given by 
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where d is correlation exponent that can be de-
termined as the slop of line in the coordinates 
log C(r) versus log r by a least-squares fit of a 
straight line over a certain range of r, called the 
scaling region. 

There are certain important limitations in the 
use of the correlation integral analysis in the 
search for chaos. To verify the results obtained 
by the correlation integral analysis, we use sur-
rogate data method. The method of surrogate data 
[1,7,19] is an approach that makes use of the sub-
stitute data generated in accordance to the proba-
bilistic structure underlying the original data. 
Advanced version is presented in [7-9].

The next step is computing the Lyapunov’s ex-
ponents (LE). The LE are the dynamical invari-
ants of the nonlinear system. A negative exponent 
indicates a local average rate of contraction while 
a positive value indicates a local average rate of 
expansion. In the chaos theory, the spectrum of LE 
is considered a measure of the effect of perturbing 
the initial conditions of a dynamical system. Note 
that both positive and negative LE can coexist in 
a dissipative system, which is then chaotic. Since 
the LE are defined as asymptotic average rates, 
they are independent of the initial conditions, and 
therefore they do comprise an invariant measure 
of attractor. In fact, if one manages to derive the 
whole spectrum of the LE, other invariants of 
the system, i.e. Kolmogorov entropy and attrac-
tor’s dimension can be found. The Kolmogorov 
entropy, K, measures the average rate at which 
information about the state is lost with time. An 
estimate of this measure is the sum of the posi-
tive LE. The inverse of the Kolmogorov entropy 
is equal to an average predictability. 

Estimate of dimension of the attractor is pro-
vided by the Kaplan and Yorke conjecture. There 
are a few approaches to computing the LE. One of 
them computes the whole spectrum and is based 
on the Jacobi matrix of system [27]. In the case 
where only observations are given and the system 
function is unknown, the matrix has to be estimat-
ed from the data. In this case, all the suggested 
methods approximate the matrix by fitting a local 
map to a sufficient number of nearby points. 

In our work we use the method with the lin-
ear fitted map proposed by Sano and Sawada [27] 
added by the neural networks algorithm [7-10].   
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3. Chaotic elements in dynamics of the grid 
of two autogenerators and conclusions

Here we present results of non-linear analysis 
of the chaotic oscillations in a grid of two autogen-
erators. Dynamics of this systems has intensively 
studied from the viewpoint of the corresponding 
differential equations solutions (e.g. [2,14,15]). 
In Refs.[2,14,15] the time series for the character-
istic vibration amplitude are presented in a case 
of two semiconductors lasers connected through 
general resonator. We have studied the time se-
ries in a regime of the hyper chaos (input data 
contain 4096 points).  Firstly we have computed  
the variations of the autocorrelation coefficient 
for the amplitude level. Autocorrelation function 
exhibits some kind of exponential decay up to a 
lag time of about 100 time units.  Such an ex-
ponential decay can be an indication of the pres-
ence of chaotic dynamics in the process of the 
level variations. On the other hand, the autocor-
relation coefficient failed to achieve zero, i.e. the 
autocorrelation function analysis not provides us 
with any value of t. Such an analysis can be cer-
tainly extended to values exceeding 1000, but it 
is known that an attractor cannot be adequately 
reconstructed for very large values of t. The cor-
relation dimension is computed on the basis of the 
correlation integral scheme.

To verify the results obtained by the correla-
tion integral analysis, we use surrogate data meth-
od. The method of surrogate data is an approach 
that makes use of the substitute data generated in 
accordance to the probabilistic structure underly-
ing the original data. This means that the surro-
gate data possess some of the properties, such as 
the mean, the standard deviation, the cumulative 
distribution function, the power spectrum, etc., 
but are otherwise postulated as random, gener-
ated according to a specific null hypothesis. We 
have evaluated the percentage of false nearest 
neighbours that was determined for the amplitude 
level series, for phase-spaces reconstructed with 
embedding dimensions from 1 to 20.  In Table 
1 we list the computed values of the correlation 
dimension d2, embedding dimension  dN, which 
are computed on the basis of the false nearest 
neighbouring points algorithm with noting (%) of 
false points for different values of the lag time t. 
Accordingly in Table 2 we list the computed val-

ues of the Kaplan-York attractor dimension (dL), 
LE (lI, i=1-3) and the Kolmogorov entropy (Kentr).  

Table 1 
The correlation dimension d2 , embedding di-
mension  dN , which are computed on the basis 
of the false nearest neighbouring points algo-
rithm with noting (%) of false points for differ-

ent values of the lag time t

t d2 (dN)
64 7.9 10 (12)
10 7.1 8 (1.2)
12 7.1 8 (1.2)

Table 2 
The Kaplan-York attractor dimension (dL), LE (lI, 
i=1-3) and the Kolmogorov entropy (Kentr) for the 
system of  two semiconductors lasers connected 
through general resonator (the hyperchaos regime)

l1 l2 l3 dL Kentr

0.515 0.198 -0.146 6.9 0.745
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НОВЫЙ ПОДХОД НА ОСНОВЕ НЕЛИНЕЙНОГО АНАЛИЗА, ТЕОРИИ ХАОСА И 
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ К ИЗУЧЕНИЮ ДИНАМИКИ КВАНТОВЫХ 

ГЕНЕРАТОРОВ И ЛАЗЕРНЫХ СИСТЕМ

Резюме
Хаос-геометрический подход, который единообразно  включает ряд новых или усовершен-

ствованных известных методов анализа (корреляционный интеграл, фрактальный анализ, ал-
горитмы средней взаимной информации, ложных ближайших соседей, показатели Ляпунова, 
энтропия Колмогорова, метод суррогатных данных,  спектральные методы, нейросетевые ал-
горитмы и т.д.) использован для решения задачи количественного моделирования и анализа 
хаотической динамики цепочки двух квантовых автогенераторов. Теоретически изучен сцена-
рий генерации хаоса и  получены количественные данные по динамическим и топологическим 
инвариантам  системы в хаотическом режиме.

Ключевые слова: цепочка квантовых автогенераторов, динамика, хаос, нелинейный анализ
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НОВИЙ ПІДХІД НА ОСНОВІ НЕЛІНІЙНОГО АНАЛІЗУ, ТЕОРІЇ ХАОСУ ТА 
ІНФОРМАЦІЙНИХ ТЕХНОЛОГІЙ ДО ВИВЧЕННЯ ДИНАМІКИ ЛАНЦЮЖКА  

КВАНТОВИХ АВТОГЕНЕРАТОРІВ 

Резюме
Хаос-геометричний підхід, що одноманітно включає низку нових або удосконалених відо-

мих методів аналізу (кореляційний інтеграл, фрактальний аналіз, алгоритми середньої взаємної 
інформації, хибних найближчих сусідів, показники Ляпунова, ентропія Колмогорова, сурогат-
них даних, нелінійний прогноз, спектральні методи, нейромережеві алгоритми тощо) викорис-
таний для вирішення задач кількісно моделювання та аналізу хаотичної динаміки ланцюжка 
квантових автогенераторів. Теоретично вивчений сценарій генерації хаосу, отримані кількісні 
дані по динамічним та топологічним інваріантам системи у хаотичному режимі. 
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