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NONLINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE
INAUTOMODULATION AND CHAOTIC REGIME WITH ACCOUNTING
THE EFFECTS WAVES REFLECTION, SPACE CHARGE FIELD
AND DISSIPATION

It has been performed quantitative modelling, analysis, forecasting dynamics relativistic backward-
wave tube (RBWT) with accounting relativistic effects, dissipation, a presence of space charge etc.
There are computed the temporal dependences of the normalized field amplitudes (power) in a wide
range of variation of the controlling parameters which are characteristic for distributed relativistic
electron-waved self-vibrational systems: electric length of an interaction space N, bifurcation
parameter L and relativistic factor y0. The computed temporal dependence of the field amplitude
(power) are very well correlated with the results by Ryskin-Titov, who give the detailed studying the
RBWT dynamics with accounting the reflection effect, but without accounting dissipation effect and
space charge field influence etc. The analysis techniques including multi-fractal approach, methods of
correlation integral, false nearest neighbour, Lyapunov exponent’s, surrogate data, is applied analysis of
numerical parameters of chaotic dynamics of RBWT. There are computed the dynamic and topological
invariants of the RBWT dynamics in auto-modulation(AUM)/chaotic regimes, correlation dimensions
values), embedding, Kaplan-York dimensions, Lyapunov’s exponents (LE: +,+) Kolmogorov entropy.

1. Introduction

The backward-wave tube is an electronic de-
vice for generating electromagnetic vibrations
of the superhigh frequencies range. In refs.[1-
14] there have been presented the temporal de-
pendences of the output signal amplitude, phase
portraits, statistical quantifiers for a weak chaos
arising via period-doubling cascade of self-mod-
ulation and for developed chaos at large values of
the dimensionless length parameter. The authors
of [1-14] solved the different versions of system
of equations of nonstationary nonlinear theory for
the O type backward-wave tubes with and with-
out account of the spatial charge, without energy
losses etc. It has been shown that the finite-di-
mension strange attractor is responsible for cha-
otic regimes in the backward-wave tube.

In our work it has been performed quantitative
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
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ing relativistic effects (g,>1), dissipation, a pres-
ence of a space charge field etc. There are com-
puted the temporal dependences of the normalized
field amplitudes (power) in a wide range of varia-
tion of the controlling parameters which are char-
acteristic for distributed relativistic electron-waved
self-vibrational systems: electric length of an inter-
action space N, bifurcation parameter L one and
relativistic factor g,. The computed temporal de-
pendence of the field amplitude (power) are very
well correlated with the results by Ryskin-Titov
[7], who give the detailed studying the RBWT dy-
namics with accounting the reflection effect, but
without accounting dissipation effect and space
charge field influence etc.

2. Method and Results

As the key ideas of our technique for nonlinear
analysis of chaotic systems have been in details
presented in refs. [ 13-28], here we are limited only



by brief representation. The first important step is
a choice of the model of the RBWT dynamics.
We use the standard non-stationary theory [3-7],
however, despite the cited papers we take into ac-
count a number of effects, namely, influence of
space charge, dissipation, the waves reflections
at the ends of the system and others [12,13]. Usu-
ally relativistic dynamics is described system of
equations for unidimensional relativistic electron

phase ¢(z0e,) (which moves in the interaction
space with phase ¢, (¢,I[0; 2p]) and has a coor-
dinate z at time moment t) and field unidimen-
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with the corresponding boundary and initial con-
ditions. In is important to note that the system
studied has a few controlling parameters which
are characteristic for distributed relativistic elec-
tron-waved self-vibrational systems: electric
length of an interaction space N, bifurcation pa-

rameter L =228 /y, (here C- isthe known Piers

parameter) and relativistic factor 7, = (1-/5,)""
. As input parameters there were taken following
initial values: relativistic factor g =1.5 (further
we will increase g, in 2 and 4 times), electrical

length of the interaction space N =kl { 27)=10,
electrons speed v,=0.75c, vrp=0.250, dissipation
parameter D = 5Db, starting reflection param-

eters: s = 0.5, r=0.7, 0<@ <2p . A choice of j due
to the fact that the dependence upon it is periodic.
The influence of reflections leads to the fact that
bifurcational parameter L begins to be dependent
on the phase j of the reflection parameter (see
discussion regarding it in [7,8]).

Since processes resulting in the chaotic behav-
iour are fundamentally multivariate, it is neces-

sary to reconstruct phase space using as well as
possible information contained in the dynami-
cal parameter s(n), where n the number of the
measurements. Such a reconstruction results in a
certain set of d-dimensional vectors y(#n) replac-
ing the scalar measurements. Packard et al. [19]
introduced the method of using time-delay coor-
dinates to reconstruct the phase space of an ob-
served dynamical system. The direct use of the
lagged variables s(n + t), where t is some integer
to be determined, results in a coordinate system
in which the structure of orbits in phase space can
be captured. Then using a collection of time lags
to create a vector in d dimensions, y(n) = [s(n),
s(n +t), s(n + 2t),....,s(n + (d-1)t)], the required
coordinates are provided. In a nonlinear system,
the s(n + jt) are some unknown nonlinear com-
bination of the actual physical variables that
comprise the source of the measurements. The
dimension d is called the embedding dimension,
d,. According to Mafi¢ and Takens [24,25], any
time lag will be acceptable is not terribly useful
for extracting physics from data. The autocorre-
lation function and average mutual information
can be applied here. The first approach is to com-
pute the linear autocorrelation function C,(d) and
to look for that time lag where C,(d) first passes
through zero (see [18]). This gives a good hint of
choice for t at that s(n + jt) and s(n + (j + 1)t) are
linearly independent. a time series under consid-
eration have an n-dimensional Gaussian distribu-
tion, these statistics are theoretically equivalent
(see [15]). The goal of the embedding dimension
determination is to reconstruct a Euclidean space
R?large enough so that the set of points d, can be
unfolded without ambiguity. In accordance with
the embedding theorem, the embedding dimen-
sion, d,, must be greater, or at least equal, than
a dimension of attractor, d , i.e. d, > d . In other
words, we can choose a fortiori large dimension
d,, e.g. 10 or 15, since the previous analysis pro-
vides us prospects that the dynamics of our sys-
tem is probably chaotic. However, two problems
arise with working in dimensions larger than real-
ly required by the data and time-delay embedding
[5,6,18]. First, many of computations for extract-
ing interesting properties from the data require
searches and other operations in R? whose com-
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putational cost rises exponentially with d. Sec-
ond, but more significant from the physical point
of view, in the presence of noise or other high-D
contamination of the observations, the extra di-
mensions are not populated by dynamics, already
captured by a smaller dimension, but entirely by
the contaminating signal. There are several stand-
ard approaches to reconstruct the attractor dimen-
sion (see, e.g., [3-6,15]). The correlation integral
analysis is one of the widely used techniques to
investigate the signatures of chaos in a time se-
ries. The analysis uses the correlation integral,
C(r), to distinguish between chaotic and stochas-
tic systems. To compute the correlation integral,
the algorithm of Grassberger and Procaccia [10]
is the most commonly used approach. If the time
series is characterized by an attractor, then the in-
tegral C(r) is related to the radius r as

d =1im €€ 2
i logr

where d is correlation exponent.The saturation
value of correlation exponent is defined as the
correlation dimension (d,) of attractor. The Lya-
punov exponents are the dynamical invariants of
the nonlinear system. In a general case, the orbits
of chaotic attractors are unpredictable, but there
is the limited predictability of chaotic physical
system, which is defined by the global and local
Lyapunov exponents. Since the Lyapunov expo-
nents are defined as asymptotic average rates,
they are independent of the initial conditions, and
therefore they do comprise an invariant measure
of attractor. In fact, if one manages to derive the
whole spectrum of Lyapunov exponents, other in-
variants of the system, i.e. Kolmogorov entropy
and attractor’s dimension can be found. The Kol-
mogorov entropy, K, measures the average rate
at which information about the state is lost with
time. An estimate of this measure is the sum of
the positive Lyapunov exponents. There are sev-
eral approaches to computing the Lyapunov ex-
ponents (see, e.g., [5,6,15-18]).

In figure 1 we list the data on the time de-
pendence of normalized field amplitude

AN A 2
F (&O)_E/(zaOUC ) (our data subject dissipa-

tion, the influence of space charge, the effect of
reflections waves) at the values of the bifurcation
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parameter L:(a) — 3.5, (b) — 3.9 (other parameters:
g=1.5, N =10,5=0.5,1=0.7, #=1.3p).
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Figure 1. Data on the time dependence of normal-
ized field amplitude F(z,t )(our data with account-
ing dissipation, the influence of space charge and
an effect of wave reflections) at the values of the
bifurcation parameter L: (a) — 3.5, (b) — 3.9 (other
parameters: g =1.5, N =10, s=0.5, r=0.7, ¢ =1.3p).

Figures 1a,b are corresponding to the regimes
of quasi-periodical automodulation (a) and essen-
tially chaotic regime (b). Importantly, our results
obtained are very well correlated with the results
by Ryskin-Titov in Ref. [7], where it has been in
details studied the RBWT dynamics with account-
ing the reflection effect, but without accounting
dissipation effect and space charge field influence
etc. In table 1 we list our data on the correlation
dimension d,, embedding dimension, determined
on the basis of false nearest neighbours algorithm
(d,) with percentage of false neighbours (%). cal-
culated for different values of lag t (data on figlb,
regime of a chaos).



Table 1.

Correlation dimension d,, embedding dimen-

sion, determined on the basis of false nearest

neighbours algorithm (d,) with percentage of

false neighbours (%) calculated for different
values of lag t

T T d, (dy)

60 68 8.1 10 (12)
6 9 6.4 8(2.1)
8 12 6.4 8(2.1)

In Table 2 we list our computing data on the Lya-
punov exponents (LE), the dimension of the Kaplan-
York attractor, the Kolmogorov entropy K_ .

Table 2.
The Lyapunov exponents (LE), the
dimension of the Kaplan-York attractor, the
Kolmogorov entropy K . (our data)

A A A A K

1 2 3 4

0.507 | 0.198 | -0.0001 | —-0.0003 | 0.71

For studied series there are the positive and
negative LE values. he resulting dimension Ka-
plan York in both cases are very similar to the cor-
relation dimension (calculated by the algorithm
by Grassberger-Procachia). More important is
the analysis of the RBWT nonlinear dynamics in
the plane “relativistic factor — bifurcation param-
eter.” Actually in this context a three-parametric
relativistic nonlinear dynamics is fundamentally
different from processes in non-relativistic BWT
dynamics.

Conclusions

In this work we have performed quantitative
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
ing relativistic effects (g,>1), dissipation, a pres-
ence of space charge, reflection of waves at the
end of deceleration system etc. There are com-
puted the temporal dependences of the normal-
ized field amplitudes (power) in a wide range of

variation of the controlling parameters which are
characteristic for distributed relativistic electron-
waved self-vibrational systems: electric length of
an interaction space N, bifurcation parameter L
(the automodulation and chaotic regimes) rela-
tivistic factor g,=1.5-6.0). There are computed
the dynamic and topological invariants of the
RBWT dynamics in auto-modulation/chaotic
regimes, correlation dimensions values, embed-
ding, Kaplan-York dimensions, LE(LE:+,+) Kol-
mogorov entropy. In the further work we will try
to present the bifurcation diagrams with defini-
tion of the dynamics self-modulation/chaotic ar-
eas in planes: «L-g», «D-L», predict emergence
of highly-d chaotic attractor, which evolves at a
much complicated scenario.
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NON-LINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE IN SELF-
MODULATION AND CHAOTIC REGIME WITH ACCOUNTING THE WAVES
REFLECTION, SPACE CHARGE FIELD AND DISSIPATION EFFECTS

Abstract
It has been performed quantitative modelling, analysis of dynamics relativistic backward-wave
tube (RBWT) with accounting relativistic effects, dissipation, a presence of space charge etc. There
are computed the temporal dependences of the normalized field amplitudes in a wide range of variation
of the controlling parameters which are characteristic for distributed relativistic electron-waved self-
vibrational systems: electric length of an interaction space N, bifurcation parameter L and relativistic

factor Y0. The computed temporal dependence of the field amplitude is in a good agreement with
theoretical data by Ryskin-Titov regarding the RBWT dynamics with accounting the reflection effect,
but without accounting dissipation effect and space charge field influence etc. The analysis techniques
including multi-fractal approach, methods of correlation integral, false nearest neighbour, Lyapunov
exponent’s, surrogate data, is applied analysis of numerical parameters of chaotic dynamics of
RBWT. There are computed the dynamic and topological invariants of the RBWT dynamics in auto-
modulation, chaotic regimes, correlation dimensions values), embedding, Kaplan-York dimensions,
LE(+,*) Kolmogorov entropy.
Key words: relativistic backward-wave tube, chaos, non-linear methods
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C. B. bpycenyesa, A. B. Inywrxos, A. U. Jlenux, B. b. Tepnosckuii

HEJUHEWHASI JTMHAMMKA PEJIITUBUCTCKOM JIAMITBI OBPATHOI BOJIHBI B
ABTOMOAYJISIIIUOHHOM U XAOTUYECKOM PEXKHUMAX C YYETOM D®DPEKTOB
OTPAKEHHSI BOJIH, BJUSTHUS T1OJISI IPOCTPAHCTBEHHOT O 3APSIJIA U
JTUCCUIALIAU

Pesrome
IIpuBeneHbl pe3ynbTaTbl MOAEIMPOBAaHUS, aHAIW3a JUHAMUKU NPOIECCOB B PEISITUBUCTCKON
namrne oOparHoil BomHbl (PJIOB) ¢ ywera penstuBUCTCKUX 3(PQEKTOB, AUCCUNAIMU, HATHMUUSI
IIPOCTPAHCTBEHHOIO 3apsia M T.J. BblunMcieHsl  BpeMEHHBbIE 3aBUCMMOCTH HOPMHUPOBAHHOMN
aMIUIATYABI MOJISI B HIMPOKOM JIMANa30HE M3MEHEHUs YIPaBIIAIOIIUX [1apaMETPOB: JIEKTPUUECKasl
JUIMHA MIPOCTpaHCTBa B3auMoseiicTBusa N, Oudypkannonnslii napamerp L u pensituBuctckuii pakrop

Y0. BerauciieHHast 3aBUCUMOCTb aMILIUTY/IbI IIOJI1 HAXOAUTCS B XOPOILIEM COITIACHH C TEOPETUUECKUMU
naHHbIMH Pricknna-TutoBa o nuHamuke PJIOB ¢ yyetom addexra orpaskeHus BOJIH, HO Oe3 yueTa
3 QEeKTOB AUcCUNAlMKA U BIUSHHS TOJS MPOCTPAHCTBEHHOTO 3apsija, T.M. TeXHUKa HEIWHEHHOTOo
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aHaN3a, KOTOpasi BKJIIOYAET METO/IbI KOPPESIIMOHHBIX HHTEIPAJIOB, JIOKHBIX ONMKalImx cocenei,
9KCIOHEHT JIsimyHOBa, CypporaTHbIX JaHHBIX, UCIIOJIb30BaHa /I aHAJIM3a YMCIIEHHBIX [1apaMeTpOB
xaoTnueckoro pexuma B PJIOB. Paccuntansl AMHAMHYECKHE M TOIOJIOIMUYECKHE HWHBAapUAHTbI
nuHamuky PJIOB B aBTOMOIYISIIMOHHOM U XaOTHUECKOM PEKHUMAaX, KOpPPENLIMOHHASI pa3MEPHOCTb,
pasmepHocTH Boxenus, Kannan-Hopka, nokasaremn Jlsmynosa (+, +), suTponus Konmoroposa.
KiroueBble c10Ba: pensTUBUCTCKAs JIaMITbl OOPAaTHOM BOJIHBI, Xa0C, HEIMHEHHBIE METOIbI
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C. B. bpycenyesa, O. B. Inywkos, A. 1. Jlenix, B. b. Teprnoscokuii

HEJITHIMHA TUHAMIKA PEJIITUBICTCBKOI JIAMIIN 3BEPHEHOI XBIJII B
ABTOMOIVJIAIIMHOMY TA XAOTUYHOMY PEXXHUMAX 3 YPAXYBAHHSIM E®EKTIB
BIIJIBEPKAJIEHHS XBWJIb, BILIUBY MOJISA IPOCTOPOBOI'O 3APAY 1 TMCHUITAILIIL

Pesrome
HaBeneni pesynbraté MOAETIOBAHHS, aHaNi3y OUHAMIKH TPOLECIB B PENSATHBICTCHKOI JIaMIIi
3gopotHoi xBwii (PJI3X) 3 ypaxyBaHHSM pensATHUBICTCHKHX e(]eKTiB, AuCHUMalii, HasBHOCTI
MPOCTOPOBOTO 3apAay i T.i. OOUKCIIeH] YacoBi 3aJI€KHOCTI HOPMOBAHOI aMILTITY/IH MOJISl B ITMPOKOMY
Jiarna3oHi 3MiHM KepyIOUUX apaMeTpiB: elIeKTpHYHA TOBKUHA TPocTopy B3aemonii N, OidypramiitHuit

napametp L, 1 pensatuicTebkuii daxrop Y0. OOunciaeHa 3a1eKHICTh aMIUTITYAU T10JIs 3HAXOIUThLCS B
XOpoliii 3rofi 3 TeopeTHUHUMH JaHuMH Puckina-TuroBa mono auHamiku PJI3X 3 ypaxyBaHHIM
eeKTy BiI3epKaJICHHS XBIIb, alie 03 ypaxyBaHHS e()eKTiB TUCHIAL] 1 BIUIUBY IOJISI IPOCTOPOBOTO
3apsiny, Tomo. TexHika HelMiHIHHOTO aHai3Yy, SKa BKJIIOYAa€ METOAN KOPEISIIHHUX IHTErpaliB, XUOHUX
HaONIMKYNX CyCiiB, eKCTIOHEHT JIsImyHOBa, CypOraTHUX JaHUX, BAKOPUCTAHA JIJIS aHAJ3y YHCEIbHUX
napameTpiB xaoTnyHux pexumiB y PJI3X. Po3paxoBani AMHaMiyHiI Ta TOIOJOTIYHI IHBapiaHTH
muHaMmikun PJI3X B aBTOMOIYNAIIIOHOMY 1 XaOTHMYHOMY pEXHMax, KOpelsliiiHa pO3MIpHICTB,
po3mipHocri Bk1anenns, Karmnan-Hopka, mokasauxu JlsmynoBa (+, +), enrpormis KonMoroposa.
Kir04oBi ci10Ba: pensTUBICTCHKA JTaMITH 3BOPOTHOI XBHJIL, Xa0c, HEHIIHI MeTON
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