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The technology of semiconductor crystal processing in the corona discharge has been developed. 
It was established that as a result of this exposure, the samples acquire alternating spectral 
sensitivity. 

The observed phenomenon is explained by the emergence of a saddle of the potential barrier in 
the element surface region the unusual properties which can allow the creation of a new type  device.

It is known that the properties of semiconduc-
tor crystals can vary within wide limits depending 
on the quantity and quality of the formed defects. 
It must have an effect on the contact of the semi-
conductor sample.

In the present work we consider the problem 
about the behavior of the originally ohmic con-
tact to the semiconductor at the appearance in its 
space charge region of charged unevenly distrib-
uted electron traps. Despite the urgency of this 
problem, in the literature it is almost not lit.

The introduction of the trapping centers in 
the crystal contact layer can dramatically change   
this region energy structure. In particular, in the 
case of electronic traps, the formation of the lock-
ing barrier is possible. This significantly changed 
the conditions of current transfer and hasspecific 
effects, similar in nature to the negative photo-
conductivity.

To analyze this situation it is necessary to elimi-
nate the dependencies that describes the kind of  
arising barrier  in the conduction band, as in the 
dark and in the light. As well as depending of the 
parameters of this barrier, its width, height, the  
maximum coordinate, the wall slopes – on the 
properties of trap – theirs energy depth, initial con-
centration and distribution in the sample depth.

The aim of this work is to show that the 
charged unevenly distributed of electron traps are 

able to form a locking barrier in ohmic contact 
space  charge region. Its parameters are associ-
ated uniquely with the parameters of the traps and 
thus can manage  technologically. In this case 
thank  to the resulting barrier the sensor based on 
semiconductor crystal acquires new properties, 
including anomalous.

The change of photoconductivity, caused by 
the processing of cadmium chalcogenides mono-
crystal samples in the gas discharge was studied 
by authors   [1-3]. The technology of this treat-
ment is as follows. The element was placed in a 
vacuum 

1. The effect of traps on the barrier structure
If the contact is formed for high-resistance 

semiconductor, due to the considerable differ-
ences of transmissibility prectically all the space  
charge region (SCR) is in its contact layer.

Let’s in such a semiconductor were introduced 
electron traps Nt, which concentration  decreases 
from the surface deep into the volume according 
to the law

                          
0

0

x

t tN N e
-

= 

                    (3)
 

where Nt0 - the concentration on a geometric sur-
face, and l0 -  a characteristic length that indicates 
how far the number of traps decreases in e times.
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The activation energy of the traps (EC–Et). 
Then, just at the contact (region I Fig.1), traps are 
below the Fermi level. Such traps are filled with 
electrons regardless of the free charge concentra-
tion . On the surface their distance from the Fermi 
energy and, consequently, the filling will be at its 
maximum. Therefore, at point x=0 the appearance 
of such  trap concentration of free electrons and 
the energy distribution do not change. Still they 
are described by formulas (1) and (2).

As can be seen from Fig.1, the greater is the 
depth of the traps (EC–Et), the wider is the  region 
1, enriched by electrons, as for large coordinate x 
traps are below the Fermi level and in the region 
of the Fermi level.

And, as will be further shown, the greater the 
initial concentration of traps Nt0, the steeper the 

dependence 
dx
dE  goes up. Both of these factors, 

acting together, should provide greater height of 
the formed barrier.

On the contrary, in the depth of the volume at 
x > L1 the aquarance of electronic trap conditions 
will change significantly. The traps are partially 
filled and are able to capture an additional charge. 
The concentration of free charge, initially account 
n0 (curve 1 Fig.1a) should decrease, which is ac-
companied by increase in the distance from the 
bottom of the conduction band up to the Fermi 
level.

Let’s consider the impurities Nt edge of the 
front of spreading (region III of Fig.1a). The con-
centration of traps in the region x = L1 is small, 
so in general it remains electroneutral. The part 
of free charge goes to the traps. The equation of 
electroneutrality in this case looks like:

        
0

( )

0 0

xE x
kT

d tN n e N e
--+ = +                  (4)

Given the fact that numerically the of ion-

ized donors concentration +
dN  is equal to n0 and 

using the decay exponent in the range from (4) 
obtain

0
0 0

( ) x

t
E xn N e
kT

-

= 

.

From which
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          (5)

Decreasing of the x coordinate to the surface 
side, the value of the energy of the conduction 
band edge increases, although only slightly. If all 
the free charge n0 will move to traps, then (E–Ec) 
~ kT (on the border of areas II and III).

Fig. 1. (a) - structure of the SCR of ohmic contact 
to the high resistance semiconductor: (1) - the ini-
tial state; (2) – after the introduction of the traps; 
(b) - the distribution of the electron traps concen-

tration  in depth of the sample

The studied processes on the edges of the SCR 
are sufficient for predicting the energy distribu-
tion changes. If in the volume depth the energy 
curve Ec(x) is directed upward, and on contact 
with the metal comes to the same point where 
it was without taking into account the traps, the 
overall profile of the SCR should be bell-shaped  
(curve 2 Fig.1a). And its width is controlled only 
by these traps penetration  depth   determined by 
technological factors in the crystal processing.

1. The energy distribution in the crystal 
near-contact layers with traps for electrons

The profile of the barrier in region I of Fig.1a 
can be determined by using the Poisson equation

2 2 2
1

2

4 4( ) ( ) ( )d t
d E e ex N N x n x
d x

p pρ
e e

+ = = - -     (6)
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where  E – the energy, a 
+
dN = n0 << nk. Using 

expressions (2) and (3) formula (6) takes the 
form 

0

22 2
1

02

4 x

t k
d E e aN e n
dx a x

p
e

-  = - -  +   

 .    (7)

Note that negative values of the second de-
rivative indicate the convexity of the function E1 
in the region I.

After integrating

0

2
2 2

1 0 0 1 2
4( ) ln

x

t k
eE x N e n a a x C x Cp

e

- 
= - + + + + 

  





. (8)

The values of the constants C1 and C2 can be 
determined from comparison with the distribution 
(1) for a pure semiconductor.

When using for contact of metals with possi-
bly  small work function the value of the jump at 
the boundary of ∆E(0)→0. In this case, when x=0 
(EC–F)=0 and nk ≈ Nc = 1019сm-3. According to [4] 
value of cadmium concentration on the surface ~ 
1021сm-3. Taking this quantity for 0.1÷1% of the to-
tal values we obtain  that on the surface   Nt0 ≤ nk.

Considering also the calculations described 
in paragraph 1, regarding the filling of the traps 
without the free charge concentration changing, 
would be fair:

    
1

0 0x x
dE dE
dx dx= ==    or from (7) and (1)
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 ,where as 

x=0 is obtained      1 0 02

2
4 t k

kTC N n a
a e

e
p

= - - . (9)

The value of the constant C2 in (8) can be found 
from the condition E1 (0) = 0. From this it follows

                       aanNC kt ln2
0

2
02 -=  .                (10)

Finally (8) with (9) and (10) becomes:
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.(11)

The resulting expression is too cumbersome 
for further analysis. Therefore, we believe that the 

value l0 in the traps distribution is large enough, 
and the point of linkage with the function E2 (x) 
(i.e. the width of region I) lies in the coordinate 
that is smaller than the screening radius a. Then 
expanding in a number of the exponent and the 
logarithm of (11) will obtain the expression:

                  1
2( ) kTE xõ

à
=                         (12)

which, as expected, not influenced by the pa-
rameters l0 and traps Nt0. In the surface layer the 
distribution of the energy barrier represented by 
almost a straight line with a slope 2kT/a. In this 
graph E1(x) lies above the curve 1 Fig. 1a. This 
means that from the beginning with the coordi-
nate increasing the concentration of free charge 
decreases faster than the concentration of traps.

2. The barrier structure in depleted layer
In the central part of the barrier (region II Fig. 

1) free charge virtually absent and the concentra-
tion of electrons on traps significantly exceeds 
the number of ionized donors, since for these dis-
tances x number of traps is still quite large. Then 

+>> dt Nxn )( ; n(x). In this case, the charge den-
sity

( ) ( ) ( ) ( )t tx en x eN x f xρ = - = - ,
where f(x) - the probability of filling traps 

Fermi – Dirac
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In this expression, the first exponent associ-
ated with the activation energy of the traps, with 
the coordinate does not change, and the rate of the 
second exponent depends on x. 

Finally, the Poisson equation has a view

2
0

2
2

2

( ) x E
kTd E x Ae e
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-
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where 
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It is seen that in this region the second deriva-
tive is negative. The curve is concave. Using the 
substitution

4 
 

1
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The value of the constant C2 in (8) can be 
found from the condition E1 (0) = 0. From this it 
follows 
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Finally (8) with (9) and (10) becomes: 
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The resulting expression is too 
cumbersome for further analysis. Therefore, we 
believe that the value l0 in the traps distribution 
is large enough, and the point of linkage with the 
function E2 (x) (i.e. the width of region I) lies in 
the coordinate that is smaller than the screening 
radius a. Then expanding in a number of the 
exponent and the logarithm of (11) will obtain 
the expression: 
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which, as expected, not influenced by the 
parameters l0 and traps Nt0. In the surface layer 
the distribution of the energy barrier represented 
by almost a straight line with a slope 2kT/a. In 
this graph E1(x) lies above the curve 1 Fig. 1a. 
This means that from the beginning with the 
coordinate increasing the concentration of free 
charge decreases faster than the concentration of 
traps. 

3. The barrier structure in depleted layer 

In the central part of the barrier (region II Fig. 
1) free charge virtually absent and the concentration 
of electrons on traps significantly exceeds the 
number of ionized donors, since for these distances 
x number of traps is still quite large. Then 

 dt Nxn )( ; n(x). In this case, the charge 
density 
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where f(x) - the probability of filling traps Fermi – 
Dirac 
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In this expression, the first exponent 
associated with the activation energy of the traps, 
with the coordinate does not change, and the rate of 
the second exponent depends on x.  

Finally, the Poisson equation has a view 
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It is seen that in this region the second 
derivative is negative. The curve is concave. Using 
the substitution 
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Where after integration
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The value of C1 can be obtained at the position 

of the maximum, where  dE
dx

= 0. Then
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On the rising curve where x<x max and E< E 
max is true (see 15)
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For strong enough barriers on the drop-down 
of the value of x and xmax that have the same order, 
and E < Emax . Therefore, this condition remains 
valid here. In general formula (17) takes the form
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In accordance with (11) on the ascending part 
of the curve the derivative is negative. On falling 

apart for all 
0

dE kT
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<


 (i.e. slow decay), it also 

remains in force. Then in (19) should leave the 
sign «–». Where after integration is determined
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Substituting (10) into (16) and simplifying the 
expression, it turns out
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2. Detalization of the explicit form of the 
energy distribution function 

From the equality of the derivatives at the 
point of stitching x0 is obtained 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a>>02
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If the growing part of the barrier sufficiently 
sharp, then the value x0 in (23) is not large com-
pared to a. In this case, from a comparison of 
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As can be seen from (26) in the maximum 
when
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On the rising curve where x<x max and E< E 
max is true (see 15) 
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In accordance with (11) on the ascending 
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In the second term on the right in (24) takes 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 
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On the rising curve where x<x max and E< E 
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In the second term on the right in (24) takes 
into account the dependence (22). Reducing 2kT 

and bringing like, it turns to a02  
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If the growing part of the barrier sufficiently 
sharp, then the value x0 in (23) is not large 

6 
 
compared to a. In this case, from a comparison 

of (23) and (25) follows 1
2

ln 







kT
Aa , 

and finally 

kT
AaC

22  , 

 

 2
0

( ) 2 ln
2

kT AE x x kT x a
kT

 
    

 
 (26) 
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The width of increasing side of the barrier 
and, consequently, the field strength is controlled 
by the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the 
value of the function E2 in maximum: 
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2

AE kT kT
kT

   .(2

8) 

The more the 2l0, the higher the barrier. 
The dependence on the initial concentration 

of traps Nt0 and their activation energy (EC–Et) is 
dened by the value 
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. From (28) it 

follows that with increasing of these parameters, 
the barrier height also increases linearly in 
proportion to (EC – Et) and logarithmically 
proportional to Nt0. 

The total width of the SCR can be 
determined when E2(x)=0: 
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It is considered that for this task the traps 
diffuse on L1 and already at the maximum 
coordinate is xmax > a. Equation (29) does not allow 
to explicitly obtain the dependence of  L2( l0, A), but 
allows to reveal tendencies of this dependence by 
using methods borrowed from the theory of 
numbers. 

Consider (29) in the form 
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The type of traps is not changed (i.e., fixed 
A), but at the expense of technological methods 
increasing l0. In this case, since the right part does 
not change, and the denominator of the first term 
increases, the value of L2 should increase, although 
not proportionally. If  L2  is not changed, the left 
side of (30) is also decreased. This follows from 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 

linear change 
0

2

2
Lу  ,  in general, L2 increases. 

With increasing concentration of the traps on the 
surface of the Nt0 and their activation energy (EC–
Et) of the SCR width increases. 

Note that for this conclusion it is important 
simultaneous increase in both parameters. 
Fundamentally, it is possible when there are few 

deeper traps [  kT
EE tcехр 

 more] on the geometric 
surface (less Nt0). Since the value of Nt0 is 
controlled technologically, this competition can be 
avoided. 
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The width of increasing side of the barrier 
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not change, and the denominator of the first term 
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Conversely, l0=const, and the value of A 
increases. Then the left side in (30) should increase. 
Since the logarithmic function y = lnL2 slower 
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The width of increasing side of the barrier and, 
consequently, the field strength is controlled by 
the parameters of the distribution of traps 2l0. 
Substituting (27) in (26) is determined by the val-
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From (28) it follows that with increasing of these 
parameters, the barrier height also increases lin-
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5. Energy profile of the barrier in the 
bulk of semiconductor 

After stitching at point x0 the function 
E2(x) in the depth of the volume has also been 
found associated with the surface condition (see 
6). 

The standard procedure for suturing in the 
depth of the scope of functions E2(x) and E(x) 
leads to a too complicated system of equations 
that can be solved only by numerical methods. 

Therefore, it was applied workaround [5]. 
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It is seen that the closer to the boundary 

the barrier forms ( xm decreases), the higher it is. 
With increasing concentration of traps Nt0 and 

their depth (EC – Et) (i.e., increases) the barrier also 
increases. This coincides with the previously 
obtained. 

At the point of stitching the barrier function 
E2(x) with the function in the quasi-neutral region E 
≈ kT. Therefore, we can assume that x00 determines 
the overall width of the SCR: x00 = L2. It turns out: 
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The width of the space charge region 
increases with increasing 2l0, which also coincides 
with the previously obtained. 

The technology of sample doping  
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing gas 
discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field it 
is possible to control the process of introduction of 
defects and profile of their distribution. 

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors in 
the fields of order 105 V/m. 

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 
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5. Energy profile of the barrier in the 
bulk of semiconductor 

After stitching at point x0 the function 
E2(x) in the depth of the volume has also been 
found associated with the surface condition (see 
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It is seen that the closer to the boundary 
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The width of the space charge region 
increases with increasing 2l0, which also coincides 
with the previously obtained. 

The technology of sample doping  
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is possible to control the process of introduction of 
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managed process of introducing them into the 
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contributes to the formation of donor on the surface 
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The width of the space charge region 
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In [2], a method of creating electron traps on 

the semiconductor surface due to the processing gas 
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technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field it 
is possible to control the process of introduction of 
defects and profile of their distribution. 

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors in 
the fields of order 105 V/m. 

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
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It is seen that the closer to the boundary the 

barrier forms ( xm decreases), the higher it is. With 
increasing concentration of traps Nt0 and their 
depth (EC – Et) (i.e., increases) the barrier also 
increases. This coincides with the previously ob-
tained.

At the point of stitching the barrier function 
E2(x) with the function in the quasi-neutral region 
E ≈ kT. Therefore, we can assume that x00 deter-
mines the overall width of the SCR: x00 = L2. It 
turns out:

The width of the space charge region increas-
es with increasing 2l0, which also coincides with 
the previously obtained.

The technology of sample doping 
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing 
gas discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field 
it is possible to control the process of introduction 
of defects and profile of their distribution.

In [6] indicates significant migration of the im-
purity ions in wide band gap semiconductors in 
the fields of order 105 V/m.

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge con-
tributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their con-

ductivity. Thus, it becomes possible to make pro-
cessing of crystals with pre-applied contacts and 
in the same cycle to make measurements without 
the presence of air in the chamber.

The sample was a rectangular plate of mono-
crystal cadmium sulfide with a thickness of ~ The 
width of the space charge region increases with 
increasing 2l0, which also coincides with the 
previously obtained.

The technology of sample doping 
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing 
gas discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field 
it is possible to control the process of introduction 
of defects and profile of their distribution.

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors 
in the fields of order 105 V/m.

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 
conductivity. Thus, it becomes possible to make 
processing of crystals with pre-applied contacts 
and in the same cycle to make measurements 
without the presence of air in the chamber.

The sample was a rectangular plate of 
monocrystal cadmium sulfide with a thickness of 
~ 1,5 mm and an area of the front surface of about 
one square centimeter. The crystal was placed in a 
vacuum chamber, which created a vacuum of the 
order of 10-2÷10-3 mm. Hg.

Stable symmetric discharge (Fig. 2.b) 
managed to create [7] when the cathode end was 
attached to the conical form. When an insufficient 
degree of vacuum in a chamber, the discharge 
passed into the avalanche and was twisting, and 
in the working field of high voltage the twisting 
moment was almost independent of the field. All 
the following results are obtained after processing 
in the mode of glow discharge.
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It is seen that the closer to the boundary 

the barrier forms ( xm decreases), the higher it is. 
With increasing concentration of traps Nt0 and 

their depth (EC – Et) (i.e., increases) the barrier also 
increases. This coincides with the previously 
obtained. 

At the point of stitching the barrier function 
E2(x) with the function in the quasi-neutral region E 
≈ kT. Therefore, we can assume that x00 determines 
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The width of the space charge region 
increases with increasing 2l0, which also coincides 
with the previously obtained. 

The technology of sample doping  
In [2], a method of creating electron traps on 

the semiconductor surface due to the processing gas 
discharge is described. The advantages of this 
technique are associated with the presence of an 
electric field during technological operations. By 
varying the magnitude and direction of this field it 
is possible to control the process of introduction of 
defects and profile of their distribution. 

In [6] indicates significant migration of the 
impurity ions in wide band gap semiconductors in 
the fields of order 105 V/m. 

In addition to creating electronic traps and 
managed process of introducing them into the 
volume of semiconductor sensor, the proposed 
method of treatment in a corona discharge 
contributes to the formation of donor on the surface 
of the sample [3]. The same electric field which 
promotes the outflow of these traps, accumulates 
donors in the surface layers, increasing their 
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The best results are obtained when the gap 
width is 8-12 mm. We attribute this to the fact that 
with the insufficient value of the period expiring 
on the electron has not gained enough energy to 
create defects in the structure of the investigated 
crystal.

The high voltage of the order of 4-5 kV was 
created by high-voltage rectifier. In this case, the 
contrast described earlier (see [1-3]) is to use DC 
voltage for processing.

For processing in a gas discharge were selected 
samples, which have symmetrical linear graphs 
like the VAC in the dark and in the light. Has been 
used quite photosensitive crystals. In both cases 
– and in the dark and when illuminated – after 
the manufacturing process, the overall resistance 
of the crystal increased. After the appearance of 
these traps initially low resistivity space-charge 
region of the ohmic contact due to formation of the 
barrier significantly increases its resistance. The 
base resistance in the dark was ~ 5∙104 Ohm, in 
the light - (2÷3)104 Ohm. Insignificant difference 
of the obtained values leads to the conclusion that 
the resulting width of the barrier is determined 
only by the penetration depth of the traps. Far 
from the surface of the crystal layers of the traps 
is very small and therefore they are already filled 
in in the dark. The light does not change their fill 
and, therefore, the width of the SCR, and with it 
the resistance.

 

           а)                                           b)
Fig. 2. The design of the arrester (a) and processing 
of the samples the vacuum in the gas discharge (b)

 
When illumination by strongly absorbed light 

carriers are generated in the surface layers of 

the sensor and must move along the surface by 
the applied field. Processing in a gas discharge 
contributes, according to [1,2], the formation 
on the surface additional donor centers. In this 
case the surface conductivity increases, and the 
impact of recombination is weakened.

In the spectral range 540-600 nm by the 
impact of a gas discharge, we observed a slight 
increase of the photocurrent. This indicates the 
predicted occurrence as a result of processing of 
crystals of deep trap levels.

Conditions of formation barrier in our 
structures are also seen in the dependence of the 
curve shape of the spectral distribution of the 
photocurrent polarity from the applied voltage. 
For conventional barriers with increasing 
applied forward bias, the barrier height and width 
decrease. The field strength in the SCR barrier, 
as the ratio of these quantities varies little. When 
changing the polarity of the applied field on the 
opposite of both these parameters – the height 
and width are simultaneously increased, but 
their ratio is again significant changes does not 
undergo.

In our case it is not. The resulting width of 
the barrier is determined only by the penetration 
depth of the traps and does not depend on the 
applied voltage. An external electric field in 
this case reduces the height of the barrier and 
distorts its symmetry (see Fig.1). The side of 
the potential barrier, the field strength at which 
is opposite to external, is reduced to a greater 
extent. Because it is one-sided coverage, short-
wave and long-wave part of the curve the spect

Experimentally proved to be correct to 
investigate the spectral distribution of the 
emerging photo – EMF. Such an approach 
allows not to take into account the nuances of the 
formation of the photocurrent – recombination 
in the inner regions of the crystal, the influence 
of the resistances of its parts, etc. But instead to 
identify the main – effect of the emerging traps 
in the surface layers of the sample due to the 
processing in a gas discharge and donor levels 
on its geometric surface.

Without the participation of the external field 
on the samples processed in a gas discharge, for 
the longitudinal conductivity, we observed the 
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unusual origin and distribution of EMF in the 
excitation light of different wavelengths. A curve 
is represented in Fig. 3

  
 
.
 
 

Fig. 3.The spectral distribution of the photo EMF 
for crystals, processed in a gas discharge

In our case, we found that the magnitude of 
photo-EMF under white light of 100 Lux was less 
than that in monochromatic light. This is due to 
the unusual form of a graph Fig.3. Shortwave and 
longwave contributions do not add up as usual in 
the white light, and subtracted.

This happens due to the unusual kind of 
barrier. Typically, SCR is either a growing part 
from the surface deep into the crystal (ohmic 
contact) or falling (gate contact). In our case 
presented both of the slope of the barrier (Fig.1). 
It shifted in the whole volume of the crystal from 
the surface. In this regard, when illuminated from 
the side of a contact on the surface of the sample, 
first, the absorption occurs in the increasing part 
of the barrier to short wavelength light with 
strong absorption. Photoexcited electrons by 
the field barrier are returned to the contact on 
the illuminated surface, where they increase the 
negative potential relatively to the lower contact 
to the sample. In Fig.3 we adopted this value for 
the positive part of the curve (area 440-540 nm).

As can be seen from the figure, with increasing 
the excitation wavelength, the contribution of this 
component decreases. This is because of that 
for larger wavelength the absorption coefficient 
decreases, and part of the photons reaches the 
deeper layers of the crystal, where the falling part 
of the barrier is. In this case, the field strength 
causes the non-equilibrium electrons move in the 
opposite direction. It is obvious that for a wave 

length of 540 nm, when in Fig.3, there is a curve 
crossing the x-axis, both processes balance each 
other and the resulting potential difference is 
equal to zero.

With further increase in wavelength, more 
photons are absorbed by the falling part of the 
barrier (Fig.1). Field barrier primarily directs the 
electrons into the sample, a negative potential of 
lower contact increases.

For sufficiently large wavelengths ~ 800 nm 
or more, the signal Fig.3 stabilizes, remaining 
negative. This indicates the predominant light 
absorption in the right side of the barrier (Fig.1). 
In addition, the photons can penetrate deep 
enough into the crystal and be absorbed outside 
the SCR contact without making any contribution 
to the signal formation Fig. 3.

The limit of the change curve Fig.3 is a 
conventional spectral distribution of photo reply.

Used processing methods cause changes in 
this schedule with some ratio of temperature, 
light, tension, the used field and the duration 
of the treatment. In our case the best results we 
have obtained with 15 min treatment with 8 mm 
distance to the needle on which it was 4000 V. 
Then the schedule gets abnormal appearance with 
maximally large negative values.

If too large saturation of the traps during 
processing in a gas discharge, their concentration 
gradient is insignificant, and the spectral 
distribution returns to its original state. This is the 
same crystal, which just increased the resistance 
due to the presence of traps.

Thus, the proposed technology of sensors, in 
full accordance with the developed model allows to 
obtain sensors with abnormal spectral sensitivity. 
The view according to Fig. 3 makes it possible 
to use them as receptors in a certain, prescribed 
in the course of technological processing, the 
wavelength of the radiation. Moreover, since 
at this point the value of the signal is zero, this 
sensor will be completely insensitive to any noise 
and interference, including artificially supplied.

In addition, since the light from different 
spectral regions the sign of the EMF and therefore 
the current is reversed, this property can be used 
to create optical devices of new generation.
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O. P. Minaeva, N. S. Simanovych, N. P. Zatovskaya, Y. N. Karakis, M. I. Kutalova, G. G. Chemeresiuk

FEATURES LUMINOUS CONDUCTIVITY IN
THE CRYSTALS TREATED IN A CORONA DISCHARGE

Abstract
The technology of processing of semiconductor crystals is developed in the corona discharge. It is 

established that as a result of this exposure, the samples acquire alternating spectral sensitivity. 
The observed phenomenon is explained by the emergence of a saddle of the potential barrier in the 

surface region of the element, the unusual properties which can allow the creation of a new type of 
device.
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ОСОБЕННОСТИ СВЕТОВОЙ ПРОВОДИМОСТИ В КРИСТАЛЛАХ, 
ОБРАБОТАННЫХ В КОРОННОМ РАЗРЯДЕ 

Резюме
Разработана технология обработки полупроводниковых кристаллов в коронном разряде. 

Установлено, что в результате этого воздействия образцы приобретают знакопеременную спек-
тральную чувствительность. Наблюдаемые явления объяснены возникновением двухскатного 
потенциального барьера в приповерхностной области элемента, необычные свойства которого 
могут позволить создание прибора нового типа.
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УДК 621.315.592                                                                           

О. П. Мінаєва, А. С. Симанович, Н. П. Затовська, Ю. М. Каракіс, М. І. Куталова, Г. Г. Чемересюк
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Резюме
Розроблено технологію обробки напівпровідникових кристалів у коронному розряді. 

Встановлено, що в результаті цього впливу зразки набувають знакоперемінну спектраль-
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