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ADVANCED RELATIVISTIC ENERGY APPROACH TO RADIATION DECAY PROCESSES IN

ATOMIC SYSTEMS

We consider the fundamental aspects of the advanced generalized energy approach to relativistic calculation
of the radiative decay (transitions) probabilities in heavy neutral atomic systems and multicharged ions. The
approach is based on the Gell-Mann and Low S-matrix formalism and the relativistic many-body perturbation
theory (PT) with using the optimized one-quasiparticle representation and an accurate account of the relativistic
and correlation. In relativistic case the Gell-Mann and Low formula expresses an energy shift through the
electrodynamical scattering matrix including the interaction with as the laser field as the photon vacuum field.
The last case is corresponding to definition of the traditional radiative transitions probabilities for atoms and ions.

1. Introduction

Accurate radiative decay widths and probabili-
ties, oscillator strengths of atomic and ionic line
transition are of a great interest for astrophysical
analysis, laboratory, thermonuclear plasma diag-
nostics, fusion research, laser physics etc [1-160].

Spectral lines are usually characterized by
their wavelength and oscillator strength. Typi-
cally, transition probabilities are known less ac-
curately than wavelengths. Moreover, for many
spectral lines of heavy atoms and especially mul-
ticharged ions the radiative transition probabilities
are not reliably known at all. Radiative transition
probabilities have been mainly determined from
calculations and to a much smaller extent from
experiment [1,2]. Many theoretical methods use
techniques which include extensive configuration
interaction or multi-configuration treatments [2-
22]. The well known multi-configuration Hartree-
Fock method (the relativistic effects are often
taken into account in the Pauli approximation or
Breit Hamiltonian etc) allowed to obtain the use-
ful spectral data on light and not heavy atomic
systems [8]. The multi-configuration (MC) Dirac-
Fock (DF) method is the most reliable version of

calculation for multielectron systems with a large
nuclear charge. In these calculations the effects
are taken into account practically precisely [3-
17]. The calculation program of Desclaux (the
Desclaux program, Dirac package) is compiled
with proper account of the one- and two-particle
relativistic, a finiteness of the nucleus size etc. In
last decades a consistent quantum-electrodynam-
ical (QED) techniques have been implemented to
atomic theory calculations (look [17]). It should
be given special attention to two very general and
important computer systems for relativistic and
QED calculations of atomic and molecular prop-
erties developed in the Oxford group and known
as GRASP (“GRASP”, “Dirac”; “BERTHA”,
“QED”, “Dirac”) (see [3—7] and references there).
Besides, the well known density functional theory
(DFT), relativistic coupled-cluster approach and
model potential approaches in heavy atoms and
1ons should be mentioned too [18-24].

In order to determine the transition probabili-
ties one usually uses usually a standard ampli-
tude approach. Each of theoretical approaches
to calculation of transition probabilities contains
critical factors (configuration interaction or mul-
ticonfiguration treatment, spectroscopic coupling
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schemes and relativistic corrections, exchange-
correlation corrections convergence of probabili-
ties results and of the dipole length and velocity
forms, accuracy of transition energies etc) which
need to be adequately taken care of to get reliable
results.

The purpose of this paper is to review the
fundamental ideas of the generalized relativistic
energy approach to calculation of the radiative
decay characteristics for atoms and multich-
arged ions, in particular, transition probabilities
and oscillators strengths, line strengths etc. The
bases of the energy approach to one-electron ions
have been considered by Labzovsky et al [25].
Originally the energy approach to radiative and
autoionization processes in multielectron atoms
and ions has been developed by Ivanova-Ivanov
et al [23,24] (the PC code “Superatom-ISAN”).
More accurate, advanced version of the relativ-
istic energy approach has been further developed
in Refs. [26,27]). The energy approach is based
on the Gell-Mann and Low S-matrix formalism
combined with the relativistic perturbation theory
(PT). In relativistic case the Gell-Mann and Low
formula expressed an energy shift AE through
the electrodynamical scattering matrix includ-
ing interaction with as the photon vacuum field
as a laser field. The first case is corresponding to
determination of radiative decay characteristics
for atomic systems. Earlier we have applied the
corresponding generalized versions of the energy
approach to many problems of atomic, nuclear
and even molecular spectroscopy, including, co-
operative electron-gamma-nuclear “shake-up”
processes, electron-muon-beta-gamma-nuclear

spectroscopy, spectroscopy of atoms in a laser
field etc [28-34].

2. Relativistic energy approach to radiative
decay processes

Generally speaking, the majority of com-
plex atomic systems possesses a dense energy
spectrum of interacting states with essentially
relativistic properties. In the theory of the non-
relativistic atom a convenient field procedure is
known for calculating the energy shifts AE of de-
generate states. This procedure is connected with
the secular matrix M diagonalization [24-26]. In
constructing M, the Gell-Mann and Low adiabat-
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ic formula for AE is used. A similar approach,
using the Gell-Mann and Low formula with the
electrodynamic scattering matrix, is applicable
in a theory of relativistic atom; the approach is
consistently electrodynamical. In contrast to the
non-relativistic case, the secular matrix elements
are already complex in the second order of the PT
(first order of the interelectron interaction). Their
imaginary parts are connected with the radiation
decay (radiation) probability. The total energy
shift of the state is usually presented in the form:
AE=ReAE +iIlmAE ImAE =-T/2 (1)

where I is interpreted as the level width, and the
decay possibility P=T".

In this approach, the whole calculation of the
energies and decay probabilities of a non-degen-
erate excited state is reduced to the calculation
and diagonalization of the complex matrix M. In
the papers of different authors, the ReAE calcula-
tion procedure has been generalized for the case
of nearly degenerate states, whose levels form a
more or less compact group. One of these vari-
ants has been previously [23,26] introduced: for
a system with a dense energy spectrum, a group
of nearly degenerate states is extracted and their
matrix M is calculated and diagonalized. If the
states are well separated in energy, the matrix M
reduces to one term, equal to AE . The non-rela-
tivistic secular matrix elements are expanded in a
PT series for the interelectron interaction.

The complex secular matrix M is represented
in the form [23]:

M=MO+mV Lm0, )
where M) is the contribution of the vacuum dia-
grams of all order of PT, and ", M, M® those
of the one-, two- and three- quasiparticle diagrams
respectively. M is a real matrix, proportional to
the unit matrix. It determines only the general
level shift. It is usually assumed a® =0. The di-
agonal matrix M" can be presented as a sum of
the independent one-quasiparticle contributions.
For simple systems (such as alkali atoms and
ions) the one-quasiparticle energies can be taken
from the experiment. Substituting these quanti-
ties into (2) one could have summarized all the



contributions of the one -quasiparticle diagrams
of all orders of the formally exact relativistic PT.
However, the necessary experimental quantities
are not often available The first two order cor-
rections to ReM® have been analyzed previously
[23,35] using the Feynman diagrams technique.

The contributions of the first-order diagrams
have been completely calculated. In the second
order, there are two kinds of diagrams: polariza-
tion and ladder ones. The polarization diagrams
take into account the quasiparticle interaction
through the polarizable core, and the ladder dia-
grams account for the immediate quasiparticle
interaction.

An effective form for the two-particle polariz-
able operator has been proposed in Ref. [28]; it
has the following form:
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where p! is the core electron density (without ac-
count for the quasiparticle), X is numerical coef-
ficient, c is the light velocity. The similar approx-
imate potential representation has been received
for the exchange polarization interaction of qua-
siparticles. Some of the ladder diagram contribu-
tions as well as some of the three-quasiparticle
diagram contributions in all PT orders have the
same angular symmetry as the two-quasiparticle
diagram contributions of the first order. These
contributions have been summarized by a modifi-
cation of the central potential, which must now
include the screening (anti-screening) of the
core potential of each particle by the two others
(look details in Refs. [23,26,35]). The additional
potential modifies the one-quasiparticle orbitals
and energies. Then the secular matrix can be ap-
proximated as follows: M ~M® + 47®, where 7"

is the modiﬁed one-quasiparticle matrix ( diago-
nal), and 7" the modified two-quasiparticle one.

M"Y is calculated by substituting the modified
one-quasiparticle energies), and 47 by means of
the first PT order formulae for m®, putting the

modified radial functions of the one-quasiparticle
states in the radial integrals (look below)

Let us remind that in the QED theory the pho-
ton propagator D(12) plays the role of interpar-
ticle interaction. Naturally the analytical form of
D(12) depends on the gauge, in which the electro-
dynamical potentials are written. In general, the
results of all approximate calculations depended
on the gauge. Naturally the correct result must be
gauge invariant. The gauge dependence of the am-
plitudes of the photoprocesses in the approximate
calculations is a well known fact and is in details
investigated by Grant, Armstrong, Aymar, Luc-
Koenig, Glushkov-Ivanov (look Refs. [1,3,26]).
Grant has investigated the gauge connection with
the limiting non-relativistic form of the transi-
tion operator and has formulated the conditions
for approximate functions of the states, in which
the amplitudes of the photoprocesses are gauge
invariant. These results remain true in the energy
approach because the final formulae for the prob-
abilities coincide in both approaches.

3. Imaginary part of the secular matrix and
transition probability

Within the relativistic energy approach the ra-
diative processes are determined by the imaginary
part of the interaction (1b) between the active qua-
siparticle and the electrodynamic vacuum of the
electronic field. The presence of the polarizable
core can be effectively accounted for by modifi-
cation of (1b). This corresponds to a modification
of the radiation transition operator in the tradi-
tional amplitude approach. A local form of the
modified transition operator has been previously
treated by Hibbert, Migdalec, Ivanova-Ivanov et
al (look, for example, see Refs. [9,21,23,24,26]).
An integral form of the additional polarization
interaction, including the imaginary part, has
been deduced on the base of the analysis of the
second-order ( the QED PT fourth order) polar-
ization diagrams. In result one could take into ac-
count for the corresponding corrections to ImAE
. The detailed description of the accounting for
the correlation corrections of the PT high orders
within the Green functions method (with the use
of the Feynman diagram’s technique) is given in
Refs. [23,24, 34,35], where additional details can
be found. The corresponding form of the polariz-
able operator is given below.
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The probability is directly connected with
imaginary part of electron energy of the system,
which is defined in the lowest order of the PT as
follows [23]:

ZV‘:)H

[a< <0

“

X-

asms £ for electron and 2~ for vacan-

a<ns

where
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The individual terms of the sum in (5) repre-
sent the contributions of different channels and a
probability of the dipole transition is:
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The corresponding oscillator strength is de-
fined as:
gf =2,-T, /667107,
(7)

where g is the degeneracy degree, [ is a wave-
length in angstroms (A). When calculating the
matrix elements (5), one should use the angle
symmetry of the task and write the corresponding
expansion for sin|w|r, /r  on spherical harmonics
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where J —is the Bessel function of first kind and
(I) = 21 + 1. This expansion is corresponding to
usual multipole expansion for probability of the
radiative transition. Substitution of the expansion
(11) to matrix element of interaction gives the fol-
lowing expression:
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where j are the entire single electron momentums,
m,— their projections; QS and Q7" are connected

(10)
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with the Coulomb and Breit magnetic parts of
the operator (1b). The total radiation width of the
one-quasiparticle state is presented in the form:
[(y)=-2ImM'(y)=-2"(2j+1)ImQ, (n,[,j,nlj)
Anlj
0, =0 +0"
(11)

The individual terms of the . sum cor-
respond to the partial contribution of the
nyl,j, —>nlj transitions; % is a sum of the
contributions of the different multiplicity transi-
tions. The detailed expressions for the Coulomb
and Breit parts can be found in Refs. [23,35]. The
imaginary part QS contains the radial R, and
angular S, integrals as follows (in the Coulomb
units):

MmO (12:43) = Z ' Im{R, (12;43)S, (12:43) +
+R,(12:43)s,(12:43)+
+RAZER),(125), a2
+R,(12:33)s,(12:33)}

In the non-relativistic limit there remains only
the first term in (14) depending only on the large
component f (r) of the one-electron Dirac func-
tions:

ImR, (12;43) :é(zml)zz)(i (13) X, (24)
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The angular coefficient has only a real part:
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{41 1,} means that A,/ and /; must satisfy the

triangle rule and the sum A+/ +/; must be an
even number. The rest terms in (12) include the
small components of the Dirac functions. The
tilde designates that the large radial component
J/ must be replaced by the small one g, and in-
stead of /,,/. =, —1 should be taken for j, </, and

l: =/, +1 for j, > . The Breit (magnetic) part can
be expressed as follows:

er = Qf,rﬂ—l + er,z + Qf,r,m (15)



The corresponding imaginary part (15) is as
follows:

ImQ™ (12:43) = 2~ Im{R, (12:43)s, (12:43 )+

+R,(12:43)s, (12:43)+
(16)
+R,(12:33)s, (T2:43)+
+R,(12:43)s, (12:43)}
The angular part S| has the form
S!(12;43)=(22+1) 8! (13) 8% (24) (-1)"
(17)

The total probability of a A - pole transition is
usually represented as a sum of the electric P/
and magnetic P} parts. The electric (or magnet-
ic) A - pole transition y — § connects two states
with parities which by A (or A +1) units. In our
designations:

Pl (y = 6) =22/ +DQ; (75;75)

(18)

0; =07 +07,, + 07 (19)
P (y = 8)=22j+D0; (y5;8)  (20)
0" =07, (21)

In the numerical calculations the transition
probability, as usually, is expanded to the series
on the known parameter aw as follows:

0" = (a0)", 02, ~(ow)',

n (aw)iﬁ: Qi ® (‘m’))ﬁ-

In a case of the two-quasi-particle states (for
example, this is a case of the Ne-like ions, where
the excited state can be represented as stale with
the two quasiparticles — electron and vacancy
above the closed shells core 1s*2s?2p®) the corre-
sponding probability has the following form (say,

transition: . -
3 l1= 717L 1D

(22)

(23)

e = _ AT T _
P(/1|1112[J],1112[J])=(J){j ; j}P(ill)(h)
It should be noted that that all calculation is
usually carried out in the jj-coupling scheme rep-

resentation. The transition to the intermediate

coupling scheme has been realized by diagonal-
ization of the secular matrix. Indeed, only ReM
should be diagonalized. The imaginary part is
converted by means of the matrix of eigenvectors
{C,.}, obtained by diagonalization of Re M :

mM,, =>.C.M,;C, (24)

y

M, are the matrix elements in the jj-coupling
scheme, and a,, in the intermediate coupling
scheme representation. This procedure is correct
to terms of the order of Im A /Re M . Further let us
also underline that the tedious procedure of phase
convention in calculating the matrix elements of
different operators is avoided in the energy ap-
proach, although the final formulae, of course,
must coincide with the formulae obtained using
the traditional amplitude method operating with
the amplitudes of the processes. Therefore, the
energy approach simplifies the analysis of com-
plex atomic processes including processes with
the interference of different kinds of channels (i.e.
radiation and autoionization ones).

4. The one-quasiparticle optimized
representation

The problem of the searching for the optimal
one-electron representation is one of the oldest in
the theory of multielectron atoms. Two decades
ago Davidson had pointed the principal dis-
advantages of the traditional representation based
on the self-consistent field approach and sug-
gested the optimal “natural orbitals” representa-
tion. Nevertheless , there remain insurmountable
calculational difficulties in the realization of the
Davidson program (look, for example, Ref.[12]).
One of the simplified recipes represents, for ex-
ample, the DFT method [18,19].

Unfortunately, this method doesn’t provide
a regular refinement procedure in the case
of the complicated atom with few quasiparticles
(electrons or vacancies above a core of the
closed electronic shells). For simplicity, let us
consider now the one-quasiparticle atomic system
(i.e. atomic system with one electron or vacancy
above a core of the closed electronic shells). The
multi-quasiparticle case doesn’t contain princi-
pally new moments. In the lowest, second order,
of the QED PT for the DE there is the only one-
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quasiparticle Feynman diagram a (fig.1), contrib-
uting the ImDE (the radiation decay width).

' —

(a) (b) (c)
Figure 1. a: second other PT diagram contrib-
uting the imaginary energy part related to the
radiation transitions; b and c: fourth order polar-
ization diagrams.

In the next, the fourth order there appear dia-
grams, whose contribution into the ImDE ac-
count for the core polarization effects. This
contribution describes collective effects and it is
dependent upon the electromagnetic potentials
gauge (the gauge non-invariant contribution). Let
us examine the multielectron atom with one
quasiparticle in the first excited state, connected
with the ground state by the radiation transi-
tion. In the PT zeroth approximation one can use
the one-electron bare potential:

NG AG (25)

with V(r) describing the electric potential of

the nucleus, V_(r), imitating the interaction of the

quasiparticle (initial or any other appearing in

the real and virtual processes) with the core of
closed shells.

The perturbation in terms of the second quan-
tization representation reads as follows:

V() V() AP - () A(). (26)

The core potential V (r) is related to the core
electron density 7.(r) in a standard way. The lat-
ter fully defines the one electron representation.
Moreover, all the results of the approximate
calculations are the functionals of the density
r(r). Here, the lowest order multielectron effects,
in particular, the gauge dependent radiative con-
tribution for the certain class of the photon propa-
gator gauge is treating. This value is considered
to be the typical representative of the electron
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correlation effects, whose minimization is a rea-
sonable criteria in the searching for the optimal
one-electron basis of the PT. Besides, this pro-
cedure derives an undoubted profit in the routine
spectroscopic calculations as it provides the
way of the refinement of the atomic characteris-
tics calculations, based on the “first principles”
. Remember that the closeness of the radiation
probabilities calculated with the alternative forms
of the transition operator is commonly used as a
criterion of the multielectron calculations qual-
ity. It is of special interest to verify the compat-
ibility of the new optimization principle with
the other requirements conditioning a “good”
one-electron representation.

The imaginary part of the diagram a (fig.1)
contribution has been presented previously as a
sum of the partial contributions of a-s transitions
from the initial state a to the final state s [26]:

ImDE (a) = ). Im DE (a-s; a). (27)

Two fourth order polarization diagrams b,c
(fig.1) should be considered further. The contri-
butions being under consideration, are gauge-
dependent, though the results of the exact cal-
culation of any physical quantity must be
gauge independent . All the non-invariant terms
are multielectron by their nature.

Let us take the photon propagator calibration
as follows:

D=D,+CD,

D =d /(k-k?),
D =-kk/(k-k). (28)
Here C'is the gauge constant; D_ represents the
exchange of electrons by transverse photons,
D, that by longitudinal ones. One could calculate
the contribution of the a,b,c diagrams (fig.1) into
the Im DE taking into account both the D and
D, parts. The a diagram (fig.1) contribution into

the Im DE related to the a -s transition reads as

- e—.” drldrzya+ (rl) y: (Vz)X
87

X 1—(271(22 Sin(was r12 )ya (r2)ys (rl)’ (29)

for D =D pand
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for D=D, where w__is the a -s transition ener-
gy. Accordlng to the Grant theorem [1], the D |
contribution vanishes, if the one- quas1partlcle
functions y ,y_ satisfy the same Dirac equation.
Nevertheless this term is to be retained when us-
ing the distorted waves approximation, for exam-
ple. Another very important example represents
the formally exact approach based on the bare
Hamiltonian defined by its spectrum without
specifying its analytic form [26,34]. Here the
non-invariant contribution appears already in the
lowest order. When calculating the forth order
contributions some approximations are inevita-
ble.

These approximations have been formulated
in Refs.[26], where the polarization corrections to
the state energies have been considered.

Let us consider the direct polarization diagram
b (fig.1) as an example. After the some transfor-
mations the formal expression for the sought for
value looks as

ImE,, (a—s|4,)= _C%J.”jdndrzd%dmz(a)mn -ll-a) i

| . ENEN)
W, (DY, ()Y ()Y, () -aq,) /1y -

mn ag

{l(a, — (aymy, )aynsy)) / 1y -sin[ @, ('iz +r34)+a) :

Cos[wan (r, + )0+ (asny Nanm NI, ()Y, ()Y, ()Y (1),

and the upper continuum electron states; m £ fin-
dicates the finite number of states in the core and
the states of the negative continuum (accounting
for the electron vacuum polarization).

All the vacuum polarization and the self-
energy corrections to the sought for values are
omitted. Their numerical smallness compared
with the other relativistic corrections to the dif-
ferent atomic characteristics had been verified
by the numerous calculations. The renormal-
ization procedure is not needed here. Neverthe-
less the second-order vacuum polarization and
self-energy corrections can be additively added
to the complex state energy. The remaining ex-

pression includes summation over the bound
and upper continuum atomic states. To evaluate
this sum, we use the analytic relation between
the atomic electron Fermi level and the core
electron density » _ (r), appropriate to the ho-
mogeneous  nonrelativistic electron gas (the
Tomas- Fermi approximation). Now the sum & o

ey AN be calculated analytically, its value be-
comes a functional of the core electron density.
The resulting expression looks as the correc-
tion due to the additional nonlocal interaction of
the active quasiparticle with the closed shells.
Nevertheless, its calculation is reducible to the
solving of the system of the ordinary differ-
ential equations (1-D procedure) [26]. The most
important refinements can be introduced by ac-
counting for the relativistic and the density gradi-
ent corrections to the Tomas- Fermi formula (see
Refs. [23,26]). The same program is realized
for other polarization diagrams. The minimiza-
tion of the functional Im dE _ (b+c) leads to the
integro-differential equation for the  _ (the DF or
Dirac-Kohn-Sham-like equations for the electron
density) that are numerically solved. In result we
obtain the optimal one-quasiparticle representa-
tion, which is further used in calculation of the
radiative (autoionization) transition characteris-
tics (7)-(10).

5. Conclusion

We have considered the fundamental blocks
of the generalized energy approach to relativis-
tic calculation of the radiative decay (transitions)
probabilities in heavy neutral atomic systems
and multicharged ions. The approach is based on
the Gell-Mann and Low S-matrix formalism and
the gauge-invariant relativistic many-body per-
turbation theory (PT) with using the optimized
one-quasiparticle representation and an accurate
account of the relativistic and exchange-corre-
lation effects. In relativistic case the Gell-Mann
and Low formula expresses an energy shift AE
through the electrodynamical scattering matrix
including the interaction with the photon vacuum
field. This case is corresponding to definition of
the traditional radiative transitions probabilities
for atoms and ions. Obviously, the same program
can be realized in order to give adequate quantita-
tive description of interaction of atomic systems
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with a laser field and further computing the radia-
tion emission and absorption lines parameters, the
corresponding lines moments etc. [28,29].
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ADVANCED RELATIVISTIC ENERGY APPROACH TO RADIATION DECAY
PROCESSES IN ATOMIC SYSTEMS

Abstract.

We consider the fundamental aspects of the generalized energy approach to relativistic calculation
of the radiative decay (transitions) probabilities in heavy neutral atomic systems and multicharged
ions. The approach is based on the Gell-Mann and Low S-matrix formalism and the relativistic many-
body perturbation theory (PT) with using the optimized one-quasiparticle representation and an ac-
curate account of the relativistic and correlation. In relativistic case the Gell-Mann and Low formula
expresses an energy shift AE through the electrodynamical scattering matrix including the interaction
with as the laser field as the photon vacuum field. The last case is corresponding to definition of the
traditional radiative transitions probabilities for atoms and ions.

Key words: energy approach, atomic systems and multicharged ions, radiative transitions, Gell-
Mann and Low S-matrix formalism
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A. B. Imywkos, B. b. Tepnosckuii, B. B. Bysaooicu, I1. A. 3auuko, JI. B. Hukona

PEJIITUBUCTCKHIM SHEPTETHYECKHHN IMOJAXO0J K ONMCAHUIO ITPOIIECCOB
PAIMALIMOHHOI'O PACITAZIA B ATOMHBIX CUCTEMAX

Pesrome.

B pabore paccmoTrpensl pyHAaMEHTAIbHBIE ACTIEKTHI 000OIEHHOTO PENIITUBUCTCKOTO YHEPTETH-
YECKOIo MOJX0/a B PENATUBUCTCKOW TEOPUM paJUallMOHHBIX PaclagoB (MEPexXol0B) BEPOSTHOCTEH
B TSDKEJBIX HEHTpaNbHBIX aTOMHBIX CHCTEMax M MHOTo3apsaHbIX MOHOB. [lomxon Oasupyercs Ha
S-marpuunom popmanusma ['emui-Manna u JIoy 1 pensiTUBUCTCKOW MHOTOYaCTUYHBIX TEOPUH BO3MY-
LICHHUH C BBIIIOJIHEHUEM ONTUMHU3UPOBAHHOTO OAMHKBA3NYaCTUHKBOTO IPEICTABIEHUS U aKKYPaTHBIM
YUETOM PEJISITUBUCTCKUX M KOPPEISIIMOHHBIX IMONPaBoK. B penstuBucTckoM citydae ¢popmyna ['emi-
ManHa n Jloy BeIpakaeT 3HEpreTUUYECKUN CABUT YE€Pe3 IIEKTPOAUHAMUYECKYIO MAaTPUILY PACCEsSHHUS,
B TOM YHCJI€, C YUYETOM B3aUMOAEHCTBUS KaK C I10JIEM JIa3€pHOT0O U3ITyUeHHMs], TaK U 1oJieM (POTOHHOTO
BakyyMma. [lociieqnuil cirygail COOTBETCTBYET OIPEAEICHUIO TPAAULMOHHBIX BEPOSATHOCTEN paAaLt-
OHHBIX IIEPEXOA0B Il aTOMOB U HOHOB

KuroueBbie c10Ba: SHEPreTUUECKUI ITOIXO0/1, aTOMHBIE CUCTEMBI I MHOTO3apsJHbIE HOHBI, paina-
IIMOHHBIE TIepexo/ibl, S-MaTpuyHbIil popmanu3m ['emn-Manna u Jloy
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A. B. I'lywxos, B. b. Tepnoscokuti, B. B. bysioorcu, I1. O. 3aiuxo, JI. B. Hixona

PEJIITUBICTCHKUII EHEPTETHUHWI NIIXIJI JO OMMUCY MPOLECIB PATIAIIII-
HOTI'O PO3MAJLY B ATOMHUX CUCTEMAX

Pe3rome.

Y po6oTi po3misHyTI (GyHIAMEHTAIbHI aCIEeKTH YAOCKOHAJIEHOTO PEJITHBICTCHKOTO €HEepPreTHd-
HOTO MIAXOAY B PENSTHBICTCHKIN Teopii pamialliiHUX po3naiiB (mepexoniB) WMOBIpHOCTEH y Bax-
KHX HEHUTpaAJIbHUX aTOMHHUX CHUCTeMax 1 O6arato3apsaHux ioHiB. [ligxing 6a3yeThcst Ha S-mMaTpUudHOMY
dbopmanizmy ['e;u-Manna ta Jloy 1 pensaTuBICTChKOT OaraTo4acTUHKOBIN Teopii 30ypeHb 3 IMITIEMEH-
TaIi€I0 ONTHUMI30BaHOTO OJAMHKBA31YaCTHHKBOTO MPEICTABICHHS 1 aKypaTHUM ypaxyBaHHSAM PEJISTH-
BICTCHKHX 1 KOPEIAIIMHUX MOMPABOK. Y PeATUBICTCHKOMY BUNAAKy (popmyna Iemn-Manna i Jloy
BHUpa)kae CHEPreTUYHHM 3CyB Yepe3 eIeKTPOJUHAMIUHY MaTPHIIIO PO3CIFOBAHHS, B TOMY YHCIIi, 3 ypa-
XyBaHHSIM B3a€MOJIi SIK 3 IOJIEM JIA3EPHOTO BUIIPOMIHIOBaHHS, TaK i 1mosieM ()OTOHHOTO BakKyyMmy.
OcTaHHii BUMAIOK BIJANOBIAA€ BU3HAYEHHIO TPAAUIIMHMX HMOBIpHOCTEH paiialliiiHMX NEepexojiB
JUIS aTOMIB Ta 10HIB

Kiro4oBi cjioBa: eHepreTHdHMNA MiAX1J, aTOMHI CUCTEMH 1 OaraTo3apsiiHi 10HH, pajialiiHi nepe-
xonu, S-marpuuHuit Gopmainizm ['enn-Manna ta Jloy
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