
11

UDC 539.182

A. V. Glushkov, A. V. Glushkov, V. B. Ternovsky, V. V . Buyadzhi, P. A. Zaichko, L. V. Nikova

Odessa State Environmental University, L’vovskaya str.15, Odessa-16, 65016, Ukraine
E-mail: dirac13@mail.ru 

ADVANCED RELATIVISTIC ENERGY APPROACH TO RADIATION DECAY PROCESSES IN 
ATOMIC SYSTEMS 

We consider the fundamental aspects of the advanced generalized energy approach to relativistic calculation 
of the radiative decay (transitions) probabilities in heavy neutral atomic systems and multicharged ions. The 
approach is based on the Gell-Mann and Low S-matrix formalism and the relativistic many-body perturbation 
theory (PT) with using the optimized one-quasiparticle representation and an accurate account of the relativistic 
and correlation. In relativistic case the Gell-Mann and Low formula expresses an energy shift   through the 
electrodynamical scattering matrix including the interaction with as the laser field as the photon vacuum field. 
The last case is corresponding to definition of the traditional radiative transitions probabilities for atoms and ions.

1.  Introduction

Accurate radiative decay widths and probabili-
ties, oscillator strengths of atomic and ionic line 
transition are of a great interest for astrophysical 
analysis, laboratory, thermonuclear plasma diag-
nostics, fusion research, laser physics etc [1–160]. 

Spectral lines are usually characterized by 
their wavelength and oscillator strength. Typi-
cally, transition probabilities are known less ac-
curately than wavelengths. Moreover, for many 
spectral lines of heavy atoms and especially mul-
ticharged ions the radiative transition probabilities 
are not reliably known at all. Radiative transition 
probabilities have been mainly determined from 
calculations and to a much smaller extent from 
experiment [1,2]. Many theoretical methods use 
techniques which include extensive configuration 
interaction or multi-configuration treatments [2-
22]. The well known multi-configuration Hartree-
Fock method (the relativistic effects are often 
taken into account in the Pauli approximation or 
Breit Hamiltonian etc) allowed to obtain the use-
ful spectral data on light and not heavy atomic 
systems [8]. The multi-configuration (MC) Dirac-
Fock (DF) method is the most reliable version of 

calculation for multielectron systems with a large 
nuclear charge. In these calculations the effects 
are taken into account practically precisely [3-
17]. The calculation program of Desclaux (the 
Desclaux program, Dirac package) is compiled 
with proper account of the one- and two-particle 
relativistic, a finiteness of the nucleus size etc. In 
last decades a consistent quantum-electrodynam-
ical (QED) techniques have been implemented to 
atomic theory calculations (look [17]). It should 
be given special attention to two very general and 
important computer systems for relativistic and 
QED calculations of atomic and molecular prop-
erties developed in the Oxford group and known 
as GRASP (“GRASP”, “Dirac”; “BERTHA”, 
“QED”, “Dirac”) (see [3–7] and references there). 
Besides, the well known density functional theory 
(DFT), relativistic coupled-cluster approach and 
model potential approaches in heavy atoms and 
ions should be mentioned too [18-24]. 

In order to determine the transition probabili-
ties one usually uses usually a standard ampli-
tude approach. Each of theoretical approaches 
to calculation of transition probabilities contains 
critical factors (configuration interaction or mul-
ticonfiguration treatment, spectroscopic coupling 
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schemes and relativistic corrections, exchange-
correlation corrections convergence of probabili-
ties results and of the dipole length and velocity 
forms, accuracy of transition energies etc) which 
need to be adequately taken care of to get reliable 
results. 

The purpose of this paper is to review  the 
fundamental ideas of the generalized relativistic 
energy approach to calculation of the radiative 
decay characteristics for atoms and multich-
arged ions, in particular,  transition probabilities 
and oscillators strengths, line strengths etc. The 
bases of the energy approach to one-electron ions 
have been considered by Labzovsky et al [25]. 
Originally the energy approach to radiative and 
autoionization processes in multielectron atoms 
and ions has been developed by Ivanova-Ivanov 
et al [23,24] (the PC code “Superatom-ISAN”). 
More accurate, advanced version of the relativ-
istic energy approach has been further developed 
in Refs. [26,27]). The energy approach is based 
on the Gell-Mann and Low S-matrix formalism 
combined with the relativistic perturbation theory 
(PT). In relativistic case the Gell-Mann and Low 
formula expressed an energy shift DΕ  through 
the electrodynamical scattering matrix includ-
ing interaction with as the photon vacuum field 
as a laser field. The first case is corresponding to 
determination of radiative decay characteristics 
for atomic systems. Earlier we have applied the 
corresponding generalized versions of the energy 
approach to many problems of atomic, nuclear 
and even molecular spectroscopy, including, co-
operative electron-gamma-nuclear “shake-up” 
processes, electron-muon-beta-gamma-nuclear 
spectroscopy, spectroscopy of atoms in a laser 
field etc [28-34].

2.  Relativistic energy approach to radiative 
decay processes

Generally speaking, the majority of com-
plex atomic systems possesses a dense energy 
spectrum of interacting states with essentially 
relativistic properties. In the theory of the non-
relativistic atom a convenient field procedure is 
known for calculating the energy shifts DΕ  of de-
generate states. This procedure is connected with 
the secular matrix M diagonalization [24-26]. In 
constructing M, the Gell-Mann and Low adiabat-

ic formula for DΕ  is used. A similar approach, 
using the Gell-Mann and Low formula with the 
electrodynamic scattering matrix, is applicable 
in a theory of relativistic atom; the approach is 
consistently electrodynamical. In contrast to the 
non-relativistic case, the secular matrix elements 
are already complex in the second order of the PT 
( first order of the interelectron  interaction). Their 
imaginary parts are connected with the radiation 
decay (radiation) probability. The total energy 
shift of the state is usually presented in the form:
                                

Re Im Im 2E i E EDΕ= D + D D =-G   (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G .

In this approach, the whole calculation of the 
energies and decay probabilities of a non-degen-
erate excited state is reduced to the calculation 
and diagonalization of the complex matrix M. In 
the papers of different authors, the Re ED  calcula-
tion procedure has been generalized for the case 
of nearly degenerate states, whose levels form a 
more or less compact group. One of these vari-
ants has been previously [23,26] introduced: for 
a system with a dense energy spectrum, a group 
of nearly degenerate states is extracted and their 
matrix M is calculated and diagonalized. If the  
states are well separated in energy, the matrix M 
reduces to one term, equal to ED . The non-rela-
tivistic secular matrix elements are expanded in a 
PT series for the  interelectron interaction. 

The complex  secular matrix M is represented 
in the form [23]:  

           
( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +           (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  those 
of the one-, two- and three- quasiparticle diagrams 
respectively. ( )0M  is a real matrix, proportional to 
the unit matrix. It determines only the general 
level shift. It is usually assumed ( )0 0.M =  The di-
agonal matrix ( )1M  can be presented as a sum of 
the independent one-quasiparticle contributions. 
For simple systems (such as alkali atoms and 
ions) the one-quasiparticle  energies can be taken 
from the experiment. Substituting these quanti-
ties into (2) one could have summarized  all the 
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contributions of the one -quasiparticle  diagrams 
of all orders of the formally exact relativistic PT. 
However, the necessary experimental quantities 
are not often available. The first two order cor-
rections to ( )2Re M  have been analyzed previously 
[23,35] using the Feynman diagrams technique. 

The contributions of the first-order diagrams 
have been completely calculated. In the second 
order, there are two kinds of diagrams: polariza-
tion and ladder ones.  The polarization diagrams 
take into account the quasiparticle interaction 
through the polarizable core, and the ladder dia-
grams account for the immediate quasiparticle 
interaction. 

An effective form for the two-particle polariz-
able operator has been proposed in Ref. [28]; it 
has the following form:
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where 0
cρ  is the core electron density (without ac-

count for the quasiparticle), X is numerical coef-
ficient, c is the light velocity. The similar approx-
imate potential representation has been received 
for the exchange polarization interaction of qua-
siparticles. Some of the ladder diagram contribu-
tions as well as some of the three-quasiparticle 
diagram contributions in all PT orders have the 
same angular symmetry as the two-quasiparticle 
diagram contributions of the first order. These 
contributions have been summarized by a modifi-
cation of the central  potential, which  must now 
include the  screening (anti-screening) of the 
core potential  of each particle by the two others 
(look details in Refs. [23,26,35]). The additional 
potential modifies the one-quasiparticle orbitals 
and energies. Then the secular matrix can be ap-
proximated as follows: )2()1( ~~~ MMM + , where ( )1M  
is the modified one-quasiparticle matrix ( diago-
nal), and ( )2M  the modified two-quasiparticle one. 

( )1M  is calculated by substituting the modified 
one-quasiparticle energies), and ( )2M  by means of 
the first PT order formulae for ( )2M , putting the 

modified radial functions of the one-quasiparticle 
states in the radial  integrals (look below) 

Let us remind that in the QED theory the pho-
ton propagator D(12) plays the role of interpar-
ticle interaction. Naturally the analytical form of 
D(12) depends on the gauge, in which the electro-
dynamical potentials are written. In general, the 
results of all approximate calculations depended 
on the gauge. Naturally the correct result must be 
gauge invariant. The gauge dependence of the am-
plitudes of the photoprocesses in the approximate 
calculations is a well known fact and is in details 
investigated by Grant, Armstrong, Aymar, Luc-
Koenig, Glushkov-Ivanov (look Refs. [1,3,26]). 
Grant has investigated the gauge connection with 
the limiting non-relativistic form of the transi-
tion operator and has formulated the conditions 
for approximate functions of the states, in which 
the amplitudes of the photoprocesses are gauge 
invariant. These results remain true in the energy 
approach because the final formulae for the prob-
abilities coincide in both approaches. 

 
3.  Imaginary part of the secular matrix and 
transition probability

Within the relativistic energy approach the ra-
diative processes are determined by the imaginary 
part of the interaction (1b) between the active qua-
siparticle and the electrodynamic vacuum of the 
electronic field. The presence of the polarizable 
core can be effectively accounted for by modifi-
cation of (1b). This corresponds to a modification 
of the radiation transition operator in the tradi-
tional amplitude approach. A local form of the 
modified transition operator has been previously 
treated by Hibbert, Migdalec, Ivanova-Ivanov et 
al (look, for example, see Refs. [9,21,23,24,26]).  
An integral form of the  additional  polarization 
interaction,  including the imaginary part, has 
been deduced on the base  of the analysis of the 
second-order ( the QED PT fourth order) polar-
ization diagrams. In result one could take into ac-
count for the corresponding corrections to Im ED
. The detailed description of the accounting for 
the correlation corrections of the PT high orders 
within the Green functions method (with the use 
of the Feynman diagram’s technique) is given in 
Refs. [23,24, 34,35], where additional details can 
be found.  The corresponding form of the polariz-
able operator is given below.

(3)
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The probability is directly connected with 
imaginary part of electron energy of the system, 
which is defined in the lowest order of the PT as 
follows [23]: 
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The individual terms of the sum in (5) repre-
sent the contributions of different channels and a 
probability of the dipole transition is: 
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The corresponding oscillator strength is de-
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where g is the degeneracy degree,  l is a wave-
length in angstroms (Ǻ). When calculating the 
matrix elements (5), one should use the angle 
symmetry of the task and write the corresponding 
expansion for sin|w|r12/r12  on spherical harmonics 
as follows: 

                                        
                                                                     (8)
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The individual terms of the 
nlj∑ sum cor-

respond to the partial contribution of the 
n l j nljl l l →  transitions; 

l∑ is a sum of the 
contributions of the different multiplicity transi-
tions. The detailed expressions for the Coulomb 
and Breit parts can be found in Refs. [23,35]. The 
imaginary part CulQl  contains the radial Rl and 
angular  Sl  integrals as follows (in the Coulomb 
units):
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The angular coefficient has only a real part:
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{ }1 3l ll  means that 1, ll and 3l  must satisfy the 
triangle rule and the sum 1 3l ll + +  must be an 
even number. The rest terms in (12) include the 
small components of the Dirac functions. The 
tilde designates that the large radial component 
f  must be replaced by the small one g , and in-

stead of , 1i i il l l= -  should be taken for i ij l<  and 

1i il l= +  for i ij l> . The Breit (magnetic) part can 
be expressed as follows:

        , 1 , , 1
Br Br Br BrQ Q Q Ql l l l l l l- += + +                   (15)
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where J –is the Bessel function of first kind 
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defined as:    
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where g is the degeneracy degree,   is a 
wavelength in angstroms (Ǻ). When 
calculating the matrix elements (5), one 
should use the angle symmetry of the task 
and write the corresponding expansion for 
sinr12/r12  on spherical harmonics as 
follows:  
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where J –is the Bessel function of first kind 
and () = 2 + 1. This expansion is 
corresponding to usual multipole expansion 
for probability of the radiative transition. 
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element of interaction gives the following 
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where ji are the entire single electron 
momentums, тi – their projections; CulQ and  

BrQ are connected with the Coulomb and 
Breit magnetic  parts of the operator (1b). 
The total radiation width of the one-
quasiparticle state is presented in the form: 
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The individual terms of the 
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correspond to the partial contribution of the 
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 is a sum of the 
contributions of the different multiplicity 
transitions. The detailed expressions for the 
Coulomb and Breit parts can be found in 
Refs. [23,35]. The imaginary part CulQ  
contains the radial R and angular  S  
integrals as follows (in the Coulomb units): 
 

polarizable core can be effectively accounted 
for by modification of (1b). This corresponds 
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operator in the traditional amplitude 
approach. A local form of the modified 
transition operator has been previously 
treated by Hibbert, Migdalec, Ivanova-
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including the imaginary part, has been 
deduced on the base  of the analysis of the 
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polarization diagrams. In result one could 
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Green functions method (with the use of the 
Feynman diagram’s technique) is given in 
Refs. [23,24, 34,35], where additional details 
can be found.  The corresponding form of the 
polarizable operator is given below. 
The probability is directly connected with 
imaginary part of electron energy of the 
system, which is defined in the lowest order 
of the PT as follows [23]:  
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The angular coefficient has only a real part: 
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                                                                  (14) 
 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
expressed as follows: 
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The corresponding imaginary part (15) is as 
follows:  
 

      3~4~;123~4~;12Im)43;12(Im 1Br
 SRZQ l

    43;2~1~43;2~1~  SR  
 

    34~;21~34~;21~  SR  

                    3~4;2~13~4;2~1  SR           (16) 

 
The angular part lS  has the form 

                          
         112;43 2 1 13 24 1 ll l lS S S 

      
 

       
 

        


































































.
000

1
1

011
1

1

12
1

02
1

2
1113

1331

33

13

13
31

1

ll
jj

jj
lllS

jljj

jl










 
                  (17) 

The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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In a case of the two-quasi-particle states (for 
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where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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The corresponding imaginary part (15) is as 
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, where 
the excited state can be represented as stale with 
the two quasiparticles – electron and vacancy 
above the closed shells core 1s22s22p6) the corre-
sponding probability has the following form (say, 
transition: 
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It should be noted that that all calculation is 
usually carried out in the jj-coupling scheme rep-
resentation. The transition to the intermediate 

coupling scheme has been realized by diagonal-
ization of the secular matrix. Indeed, only Re M
should be diagonalized. The imaginary part is 
converted by means of the matrix of eigenvectors 
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ijM  are the matrix elements in the  jj-coupling 
scheme, and mkM  in the intermediate coupling 
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the interference of different kinds of channels (i.e. 
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4.  The one-quasiparticle optimized 
representation

The problem of the searching for the optimal 
one-electron representation is one of the oldest in 
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
expressed as follows: 
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   

should be taken for i ij l  and 1i il l   for 

i ij l . The Breit (magnetic) part can be 
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follows:  
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
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follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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 1 3l l  means that 1, l and 3l  must satisfy 
the triangle rule and the sum 1 3l l    must 
be an even number. The rest terms in (12) 
include the small components of the Dirac 
functions. The tilde designates that the large 
radial component f  must be replaced by the 
small one g , and instead of , 1i i il l l   
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The total probability of a  - pole transition 
is usually represented as a sum of the electric 

EP  and magnetic MP  parts. The electric (or 
magnetic)  - pole transition    
connects two states with parities which by 
 ( or  +1) units. In our designations: 
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In the numerical calculations the transition 
probability, as usually, is expanded to the 
series on the known parameter  as 
follows:  
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In a case of the two-quasi-particle states (for 
example, this is a case of the Ne-like ions, 
where the excited state can be represented as 
stale with the two quasiparticles – electron 
and vacancy above the closed shells core 
1s22s22p6) the corresponding probability has 
the following form (say, transition:  
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(23) 
It should be noted that that all calculation is 
usually carried out in the jj-coupling scheme 
representation. The transition to the 
intermediate coupling scheme has been 
realized by diagonalization of the secular 
matrix. Indeed, only Re M should be 
diagonalized. The imaginary part is 
converted by means of the matrix of 
eigenvectors  mkC , obtained by 

diagonalization of Re M : 
 

Im mk mi ij jk
ij

M C M C                                  

                                                             (24) 
ijM  are the matrix elements in the  jj-

coupling scheme, and mkM  in the 
intermediate coupling scheme representation. 
This procedure is correct to terms of the 
order of Im ReM M  . Further let us also 
underline that the tedious procedure of phase 
convention in calculating the matrix elements 
of different operators is avoided in the energy 
approach, although the final formulae, of 
course, must coincide with the formulae 
obtained using the traditional amplitude 
method operating with the amplitudes of the 
processes. Therefore, the energy approach 
simplifies the analysis of complex atomic 
processes including processes with the 
interference of different kinds of channels 
(i.e. radiation and autoionization ones). 

4.  The one-quasiparticle optimized 
representation 

 
The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.  
Two  decades  ago  Davidson  had  pointed   
the   principal disadvantages of the traditional 
representation based on the self-consistent 
field  approach  and suggested the optimal 
"natural orbitals"  representation. 

Nevertheless , there remain insurmountable 
calculational difficulties in  the  realization  
of the Davidson program (look, for example, 
Ref.[12]). One of the simplified recipes  
represents, for example, the DFT method  
[18,19].   

Unfortunately,  this  method   
doesn't provide  a  regular  refinement  
procedure  in  the  case  of  the complicated 
atom with few quasiparticles (electrons  or  
vacancies  above a core  of the closed 
electronic shells).  For simplicity, let us 
consider now the one-quasiparticle atomic 
system (i.e. atomic system with one electron 
or vacancy above a core of the closed 
electronic shells). The multi-quasiparticle 
case doesn’t contain principally new 
moments. In the lowest, second order, of the 
QED PT for the E there is the only one- 
quasiparticle Feynman  diagram a (fig.1), 
contributing the ImE (the radiation decay 
width).  
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Figure 1. a: second other PT diagram 
contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order  polarization  diagrams. 

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
ImE  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). Let us examine  
the  multielectron  atom  with  one 
quasiparticle in the  first  excited  state,  
connected  with  the ground state  by  the  
radiation  transition.  In the PT zeroth 
approximation one can use the  one-electron 
bare potential:                 
                                                                      
                     VN(r)+VC(r),                         (25)   
 



16

quasiparticle Feynman  diagram a (fig.1), contrib-
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Figure 1. a: second other PT diagram contrib-
uting the imaginary energy part related to the 
radiation transitions; b and c: fourth order  polar-
ization  diagrams.

In  the  next, the fourth order there appear dia-
grams,  whose  contribution  into the  ImDE  ac-
count  for  the  core  polarization   effects. This 
contribution describes collective effects and it is 
dependent upon the electromagnetic potentials 
gauge (the gauge non-invariant contribution). Let 
us examine  the  multielectron  atom  with  one 
quasiparticle in the  first  excited  state,  connected  
with  the ground state  by  the  radiation  transi-
tion.  In the PT zeroth approximation one can use 
the  one-electron bare potential:                

                                                                     
                     VN(r)+VC(r),                         (25)  

with VN(r) describing the electric potential of 
the nucleus, VC(r), imitating the interaction of the  
quasiparticle  (initial  or  any other appearing in 
the real and virtual processes)  with the  core of  
closed  shells. 

The perturbation in terms of the  second quan-
tization representation reads as follows:

          -VC(r) y+(r) y(r)  -  jm(x) Am(x).              (26)

The core potential VC(r) is  related to the core 
electron density rC(r) in a standard way. The lat-
ter fully defines the one electron representation. 
Moreover, all  the  results  of  the approximate 
calculations are the functionals of the density 
rC(r). Here, the lowest order multielectron effects, 
in particular, the gauge dependent radiative con-
tribution for the certain class of the photon propa-
gator gauge is  treating.  This  value  is considered 
to  be  the  typical  representative  of  the  electron 

correlation effects, whose minimization is a  rea-
sonable  criteria in the searching for the optimal 
one-electron  basis  of  the  PT. Besides, this pro-
cedure derives an undoubted profit in the routine 
spectroscopic  calculations  as  it  provides  the  
way   of   the refinement of the atomic characteris-
tics  calculations,  based  on the “first principles”  
.  Remember  that  the  closeness  of  the radiation 
probabilities calculated with the alternative  forms  
of the transition operator is commonly used as  a  
criterion  of  the multielectron calculations qual-
ity. It is of special  interest  to verify the compat-
ibility of the new  optimization  principle  with 
the  other  requirements  conditioning  a    “good”   
one-electron representation. 

The imaginary part of the diagram a (fig.1)  
contribution has been presented  previously as a 
sum of the partial contributions of a-s transitions 
from the initial state a to the final state s [26]:

                 ImDEa (a) = ∑
S

Im DE (a-s; a). (27)

Two  fourth  order  polarization  diagrams  b,c  
(fig.1)  should be considered further.  The  contri-
butions   being   under consideration, are gauge- 
dependent, though  the  results  of  the exact  cal-
culation  of  any  physical  quantity  must  be    
gauge  independent . All the non-invariant terms 
are multielectron by their nature.  

Let us take the photon propagator calibration 
as follows:

D = DT + CDL ,

DT = dmn   / ( k - k 2 ),                      
                        DL = - kmkn / ( k- k2 ).            (28)
     
Here C is the gauge constant; DT represents the  

exchange  of  electrons  by  transverse photons, 
DL that by longitudinal ones. One could calculate 
the contribution of the a,b,c diagrams (fig.1) into 
the Im DE taking into account  both the  DT  and 
DL parts. The a diagram (fig.1) contribution into 
the Im DE related to the  a -s transition reads as 
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It should be noted that that all calculation is 
usually carried out in the jj-coupling scheme 
representation. The transition to the 
intermediate coupling scheme has been 
realized by diagonalization of the secular 
matrix. Indeed, only Re M should be 
diagonalized. The imaginary part is 
converted by means of the matrix of 
eigenvectors  mkC , obtained by 

diagonalization of Re M : 
 

Im mk mi ij jk
ij

M C M C                                  

                                                             (24) 
ijM  are the matrix elements in the  jj-

coupling scheme, and mkM  in the 
intermediate coupling scheme representation. 
This procedure is correct to terms of the 
order of Im ReM M  . Further let us also 
underline that the tedious procedure of phase 
convention in calculating the matrix elements 
of different operators is avoided in the energy 
approach, although the final formulae, of 
course, must coincide with the formulae 
obtained using the traditional amplitude 
method operating with the amplitudes of the 
processes. Therefore, the energy approach 
simplifies the analysis of complex atomic 
processes including processes with the 
interference of different kinds of channels 
(i.e. radiation and autoionization ones). 

4.  The one-quasiparticle optimized 
representation 

 
The problem of the searching for the optimal 
one-electron representation is one of the 
oldest in the theory of multielectron atoms.  
Two  decades  ago  Davidson  had  pointed   
the   principal disadvantages of the traditional 
representation based on the self-consistent 
field  approach  and suggested the optimal 
"natural orbitals"  representation. 

Nevertheless , there remain insurmountable 
calculational difficulties in  the  realization  
of the Davidson program (look, for example, 
Ref.[12]). One of the simplified recipes  
represents, for example, the DFT method  
[18,19].   

Unfortunately,  this  method   
doesn't provide  a  regular  refinement  
procedure  in  the  case  of  the complicated 
atom with few quasiparticles (electrons  or  
vacancies  above a core  of the closed 
electronic shells).  For simplicity, let us 
consider now the one-quasiparticle atomic 
system (i.e. atomic system with one electron 
or vacancy above a core of the closed 
electronic shells). The multi-quasiparticle 
case doesn’t contain principally new 
moments. In the lowest, second order, of the 
QED PT for the E there is the only one- 
quasiparticle Feynman  diagram a (fig.1), 
contributing the ImE (the radiation decay 
width).  
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contributing the imaginary energy part 

related to the radiation transitions; b and c: 
fourth order  polarization  diagrams. 

In  the  next, the fourth order there appear 
diagrams,  whose  contribution  into the  
ImE  account  for  the  core  polarization   
effects. This contribution describes collective 
effects and it is dependent upon the 
electromagnetic potentials gauge (the gauge 
non-invariant contribution). Let us examine  
the  multielectron  atom  with  one 
quasiparticle in the  first  excited  state,  
connected  with  the ground state  by  the  
radiation  transition.  In the PT zeroth 
approximation one can use the  one-electron 
bare potential:                 
                                                                      
                     VN(r)+VC(r),                         (25)   
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- e2

8p ∫∫ dr1 dr2  ya
+ (r1) ys

+ (r2) {[(1- a1 n12 a2 n12 

)/ r12 ] sin (was r12 )+was  (1+  a1   

             n12a2n12)´cos(wasr12)}ya(r2)ys(r1),              (30)

for D=DL , where was is the a -s transition ener-
gy. According to the Grant theorem [1], the Dmn,L 
contribution vanishes, if  the  one-quasiparticle  
functions  ya  , ys satisfy the same Dirac equation. 
Nevertheless this term is to be retained when us-
ing the distorted waves approximation, for exam-
ple. Another very important example  represents  
the  formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum without 
specifying its analytic form  [26,34].  Here the 
non-invariant contribution appears already in the 
lowest order. When calculating the forth order 
contributions some approximations are inevita-
ble. 

These approximations have been formulated 
in Refs.[26], where the polarization corrections to 
the state energies have been considered. 

Let us consider the direct polarization diagram 
b (fig.1) as an  example.  After the some transfor-
mations the formal expression for the sought for 
value looks as  

 

                                                                   (31)

and the upper continuum electron states;  m £ f in-
dicates the finite number of states in the  core  and  
the states of the negative  continuum  (accounting  
for  the  electron vacuum  polarization). 

All  the  vacuum   polarization and the self-
energy corrections to the  sought  for  values  are  
omitted. Their  numerical  smallness  compared 
with the other  relativistic corrections to  the  dif-
ferent  atomic  characteristics  had  been verified  
by  the  numerous  calculations.   The   renormal-
ization procedure is not needed here. Neverthe-
less the second-order vacuum polarization and 
self-energy corrections can be additively added 
to the complex state energy. The remaining ex-

pression includes summation over the bound 
and upper continuum atomic states. To evaluate 
this  sum,  we use the analytic relation  between 
the atomic electron Fermi level  and  the  core  
electron  density r c (r), appropriate  to the ho-
mogeneous   nonrelativistic  electron gas (the 
Tomas- Fermi approximation). Now the sum ån>f, 

m<f can be calculated analytically, its value be-
comes a functional of the core electron density.  
The  resulting  expression  looks  as  the correc-
tion due to  the  additional nonlocal interaction  of  
the active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to the  
solving  of  the  system  of  the ordinary differ-
ential equations (1-D procedure) [26]. The most 
important refinements can be introduced by ac-
counting for the relativistic and the density gradi-
ent corrections to the Tomas- Fermi formula (see  
Refs. [23,26]).  The  same  program  is realized  
for other polarization diagrams. The minimiza-
tion of the functional Im dEninv (b+c) leads to the 
integro-differential equation for the r c (the DF or 
Dirac-Kohn-Sham-like equations for the electron 
density) that are numerically solved. In result we 
obtain the optimal one-quasiparticle representa-
tion, which is further used in calculation of the 
radiative (autoionization) transition characteris-
tics (7)-(10).   

5.  Conclusion

We have considered the fundamental blocks 
of the generalized energy approach to relativis-
tic calculation of the radiative decay (transitions) 
probabilities in heavy neutral atomic systems 
and multicharged ions. The approach is based on 
the Gell-Mann and Low S-matrix formalism and 
the gauge-invariant relativistic many-body per-
turbation theory (PT) with using the optimized 
one-quasiparticle representation and an accurate 
account of the relativistic and exchange-corre-
lation effects. In relativistic case the Gell-Mann 
and Low formula expresses an energy shift DΕ  
through the electrodynamical scattering matrix 
including the interaction with the photon vacuum 
field. This case is corresponding to definition of 
the traditional radiative transitions probabilities 
for atoms and ions. Obviously, the same program 
can be realized in order to give adequate quantita-
tive description of interaction of atomic systems 

waves approximation, for example. Another 
very important example  represents  the  
formally exact approach based  on  the  bare  
Hamiltonian  defined  by  its spectrum 
without specifying its analytic form  [26,34].  
Here the non-invariant contribution appears 
already in the lowest order. When calculating 
the forth order contributions some 
approximations are inevitable.  

These approximations have been 
formulated in Refs.[26], where the 
polarization corrections to the state energies 
have been considered.  
Let us consider the direct polarization 
diagram b (fig.1) as an  example.  After the 
some transformations the formal expression 
for the sought for value looks as   
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and the upper continuum electron states;  m  
f indicates the finite number of states in the  
core  and  the states of the negative  
continuum  (accounting  for  the  electron 
vacuum  polarization).  
All  the  vacuum   polarization and the self-
energy corrections to the  sought  for  values  
are  omitted. Their  numerical  smallness  
compared with the other  relativistic 
corrections to  the  different  atomic  
characteristics  had  been verified  by  the  
numerous  calculations.   The   
renormalization procedure is not needed 
here. Nevertheless the second-order vacuum 
polarization and self-energy corrections can 
be additively added to the complex state 
energy. The remaining expression includes 
summation over the bound and upper 
continuum atomic states. To evaluate this  
sum,  we use the analytic relation  between 
the atomic electron Fermi level  and  the  
core  electron  density  c (r), appropriate  to 
the homogeneous   nonrelativistic  electron 
gas (the Tomas- Fermi approximation). Now 
the sum n>f, m<f can be calculated 

analytically, its value becomes a functional 
of the core electron density.  The  resulting  
expression  looks  as  the correction due to  
the  additional nonlocal interaction  of  the 
active quasiparticle with  the  closed  shells.  
Nevertheless,  its calculation is reducible to 
the  solving  of  the  system  of  the ordinary 
differential equations (1-D procedure) [26]. 
The most important refinements can be 
introduced by accounting for the relativistic 
and the density gradient corrections to the 
Tomas- Fermi formula (see  Refs. [23,26]).  
The  same  program  is realized  for other 
polarization diagrams. The minimization of 
the functional Im Eninv (b+c) leads to the 
integro-differential equation for the  c (the 
DF or Dirac-Kohn-Sham-like equations for 
the electron density) that are numerically 
solved. In result we obtain the optimal one-
quasiparticle representation, which is further 
used in calculation of the radiative 
(autoionization) transition characteristics (7)-
(10).    

5.  Conclusion 
We have considered the fundamental blocks 
of the generalized energy approach to 
relativistic calculation of the radiative decay 
(transitions) probabilities in heavy neutral 
atomic systems and multicharged ions. The 
approach is based on the Gell-Mann and Low 
S-matrix formalism and the gauge-invariant 
relativistic many-body perturbation theory 
(PT) with using the optimized one-
quasiparticle representation and an accurate 
account of the relativistic and exchange-
correlation effects. In relativistic case the 
Gell-Mann and Low formula expresses an 
energy shift   through the electrodynamical 
scattering matrix including the interaction 
with the photon vacuum field. This case is 
corresponding to definition of the traditional 
radiative transitions probabilities for atoms 
and ions. Obviously, the same program can 
be realized in order to give adequate 
quantitative description of interaction of 
atomic systems with a laser field and further 
computing the radiation emission and 
absorption lines parameters, the 
corresponding lines moments etc. [28,29]. 
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with a laser field and further computing the radia-
tion emission and absorption lines parameters, the 
corresponding lines moments etc. [28,29].
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Abstract. 
We consider the fundamental aspects of the generalized energy approach to relativistic calculation 

of the radiative decay (transitions) probabilities in heavy neutral atomic systems and multicharged 
ions. The approach is based on the Gell-Mann and Low S-matrix formalism and the relativistic many-
body perturbation theory (PT) with using the optimized one-quasiparticle representation and an ac-
curate account of the relativistic and correlation. In relativistic case the Gell-Mann and Low formula 
expresses an energy shift DΕ  through the electrodynamical scattering matrix including the interaction 
with as the laser field as the photon vacuum field. The last case is corresponding to definition of the 
traditional radiative transitions probabilities for atoms and ions.
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РЕЛЯТИВИСТСКИЙ ЭНЕРГЕТИЧЕСКИЙ ПОДХОД К ОПИСАНИЮ ПРОЦЕССОВ 
РАДИАЦИОННОГО РАСПАДА В АТОМНЫХ СИСТЕМАХ

Резюме. 
В работе рассмотрены фундаментальные аспекты обобщенного релятивистского энергети-

ческого подхода в релятивистской теории радиационных распадов (переходов) вероятностей 
в тяжелых нейтральных атомных системах и многозарядных ионов. Подход базируется на 
S-матричном формализма Гелл-Манна и Лоу и релятивистской многочастичных теории возму-
щений с выполнением оптимизированного одинквазичастинквого представления и аккуратным 
учетом релятивистских и корреляционных поправок. В релятивистском случае формула Гелл-
Манна и Лоу выражает энергетический сдвиг через электродинамическую матрицу рассеяния, 
в том числе, с учетом взаимодействия как с полем лазерного излучения, так и полем фотонного 
вакуума. Последний случай соответствует определению традиционных вероятностей радиаци-
онных переходов для атомов и ионов

Ключевые слова: энергетический подход, атомные системы и многозарядные ионы, радиа-
ционные переходы, S-матричный формализм Гелл-Манна и Лоу
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А. В. Глушков, В. Б. Терновський, В. В. Буяджи, П. О. Заїчко, Л. В. Нікола

PЕЛЯТИВІСТСЬКИЙ ЕНЕРГЕТИЧНИЙ ПІДХІД ДО ОПИСУ ПРОЦЕСІВ РАДІАЦІЙ-
НОГО РОЗПАДУ В АТОМНИХ СИСТЕМАХ

Резюме. 
У роботі розглянуті фундаментальні аспекти удосконаленого релятивістського енергетич-

ного підходу в релятивістській теорії радіаційних розпадів (переходів) ймовірностей у важ-
ких нейтральних атомних системах і багатозарядних іонів. Підхід базується на S-матричному  
формалізму Гелл-Манна та Лоу і релятивістської багаточастинковій теорії збурень з імплемен-
тацією оптимізованого одинквазічастинквого представлення і акуратним урахуванням реляти-
вістських і кореляційних поправок.  У релятивістському випадку формула  Гелл-Манна і Лоу 
виражає енергетичний зсув  через електродинамічну матрицю розсіювання, в тому числі, з ура-
хуванням  взаємодії як з полем лазерного випромінювання, так й полем фотонного вакууму. 
Останній випадок відповідає визначенню традиційних ймовірностей радіаційних переходів  
для атомів та іонів

Ключові слова: енергетичний підхід, атомні системи і багатозарядні іони, радіаційні пере-
ходи, S-матричний  формалізм Гелл-Манна та Лоу


