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RELATIVISTIC AND NONRELATIVISTIC APPROACHES IN THEORY OF  
PERMITTED BETA-RANSITIONS: AN EFFECT OF ATOMIC FIELD ON 
FERMI AND INTEGRAL FERMI FUNCTIONS VALUES

Within a new optimized gauge-invariant Dirac-Fock approach it is considered a problem of  
computing the permitted beta transition probabilities and estimating a quality of computing the Fermi 
and integral Fermi functions in dependence upon the type of the atomic self-consistent field. It is 
shown that for small and middle values for the nuclear charge (Z <40) the difference between  data 
obtained from other methods is low (hundredths of %). At the large Z (till Z~ 95; for example the 
beta decay 241Pu-241Am) calculation in a case of the HFSrel field gives 0.5% lower value for F, and 
respectively in a case of the GIDF field - 0.8%, compared with the non-relativistic HFSnerel value. 
This difference is explained by an effect of  the squeezing for relativistic orbitals.

1. Introduction

In this paper we go on studying a contribu-
tion of different factors which make an influence 
on the permitted beta decay characteristics and 
consider a quality of computing the Fermi func-
tion and integral Fermi function in our consistent 
relativistic approach and alternative theoretical 
methods. Computing the b decay characteristics 
is traditionally of a great interest that is strength-
ened due to the new experimental studies of the 
b decay for a number of nuclei [1-10]. A number 
of experimental and theoretical papers appeared 
where the different aspects of the b decay theory 
and accounting for different factors are consid-
ered. Naturally the important topic is problem 
to get the renewed data about the neutrino mass 
from the beta decay spectra shape. An exact value 
of the half-decay period for the whole number of 
heavy radioactive nuclei is important for stand-
ardisation of data about their properties. 

Disagreement between different experimental 
data regarding the b-decay in heavy radioactive 
nuclei is provided by different chemical environ-
ment radioactive nucleus. For example, such dis-
agreement in data on the half-decay period for the 
241Pu (see, for example, ref. [1,5,8,9]) is explained 
in some papers by special beta decay channel. 
The beta particle in this channel does not tran-
sit into free state, but it occupies the external free 
atomic level. Above important questions of theort 
one could note the following effects too: a). an 
influence of choice of atomic field model on the 
numerical characteristics of the beta decay, espe-
cially, it concerned the permitted beta transitions; 
b). changing electron wave functions as solutions 
of the corresponding quantum mechanical equa-
tions because of the changing atomic electric field 
and a  difference in the valence shells occupation 
numbers in different chemical substances; c). A 
changing up limit of integration under calculating 
the Fermi integral function in different chemical 
substances [1,6]. 
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As a rule, special tables [9] for the Fermi func-
tion and integral Fermi function are  used for 
computing the beta spectrum shape. In ref. [9] 
calculation scheme is based on the non-relativ-
istic Hartree-Fock-Slater approach, but the finite 
size of nucleus is taken into account. In paper 
[4] the relativistic Dirac-Fock (DF) method was 
used. Note that the DF approach is the most wide 
spread method of calculation, but, as a rule, the 
corresponding orbitals basis’s are not optimized. 
Some problems are connected with correct defini-
tion of the nuclear size effects, QED corrections 
etc. We are applying below our gauge invariant 
DF (GIDF) type approach [11-17] for comput-
ing the permitted beta transition probabilities and 
estimating a quality of computing the Fermi and 
integral Fermi functions in dependence upon the 
type of the atomic self-consistent field.

2. Method

The details of our approach have been pre-
sented earlier (see, for example, [10,11,17,18]), 
here we are limited by the key ideas. As it is well 
known a distribution of the b particles on energy 
in the permitted transitions is as follows [9]:                                            
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Here G is the weak interaction constant; Е and 
р=(Е2-1)1/2 are an entire energy and pulse of beta 
particle; Е0=1+(Еbn /mec2) , Еbn is the boundary 
energy of β-spectrum; |M| is a matrix element, 
which is not dependent upon an energy in a case 
of the permitted β- transitions.  The key elements 
of the beta-decay theory for  computing  the b 
decay shape and decay half period are the Fermi 
function and integral Fermi function. The Fermi 
function F and integral Fermi function f are de-
fined as follows: 
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Here f+1  and   g-1 are the relativistic electron ra-
dial functions; the indexes ±l=c, where  c=(l-j)/
(2j+1). 

Two schemes of calculation are usually used: 
i). the relativistic electron radial wave functions 
are calculated on the boundary of the spherical 
nucleus with radius R0 (it has done in ref. [4]); ii). 
the values of these functions in the zero are used 
(see ref.[9]). 

The normalisation of electron radial functions 
fi  and gi  provides the behaviour of these functions 
for large values of radial valuable as follows: 

       gi (r)→r -1[(E+1)/E]1/2 sin(pr +di),      (3а)
     
   fi (r)→r -1(i/|i|) [(E-1)/E]1/2 cos (pr+di)   (3b)

An effect of interaction in the final state be-
tween beta electron and atomic electrons with 
an accuracy to (aZ/v)2 is manifested and further 
accounted for in the first non-vanishing approxi-
mation [8].  This contribution changes the energy 
distribution of the beta electron on value and is 
derived in Ref. [1]. 

As method of calculation of the relativistic 
atomic fields and electron wave functions, we 
have used the GIDF approach [10,11]. The po-
tential of Dirac equation includes also the elec-
tric and polarization potentials of a nucleus (the 
gaussian form of charge distribution in the nu-
cleus was used). 

All correlation corrections of the PT second 
and high orders (electrons screening, particle-
hole interaction etc.) are accounted for [5]. The 
GIDF equations for N-electron system are written 
and contain the potential: 

V(r)=V(r|nlj)+Vex+V(r|R), 

which includes the electrical and polarization po-
tentials of the nucleus. The part exV accounts for 
exchange inter-electron interaction. The optimi-
zation of the orbital basis’s is realized by iteration 
algorithm within gauge invariant QED procedure 
(look its application in the beta-decay theory 
[5]).  Approach allows calculating the continuum 
wave functions, taking into account fully an ef-
fect of exchange of the continuum electron with 
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Here f+1  and   g-1 are the relativistic 
electron radial functions; the indexes l=, 
where  =(l-j)/(2j+1).  

Two schemes of calculation are 
usually used: i). the relativistic electron 
radial wave functions are calculated on the 
boundary of the spherical nucleus with 
radius R0 (it has done in ref. [4]); ii). the 
values of these functions in the zero are 
used (see ref.[9]).  
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of these functions for large values of radial 
valuable as follows:  

 
       g (r)→r -1[(E+1)/E]1/2 sin(pr +),                                        
                                                              (3а) 
      
   f (r)→r -1(/||) [(E-1)/E]1/2 cos (pr+)                                    
                                                             (3b) 

 
An effect of interaction in the final state 
between beta electron and atomic electrons 
with an accuracy to (Z/v)2 is manifested 

and further accounted for in the first non-
vanishing approximation [8].  This 
contribution changes the energy 
distribution of the beta electron on value 
and is derived in Ref. [1].  

As method of calculation of the 
relativistic atomic fields and electron wave 
functions, we have used the GIDF 
approach [10,11]. The potential of Dirac 
equation includes also the electric and 
polarization potentials of a nucleus (the 
gaussian form of charge distribution in the 
nucleus was used).  

All correlation corrections of the 
PT second and high orders (electrons 
screening, particle-hole interaction etc.) are 
accounted for [5]. The GIDF equations for 
N-electron system are written and contain 
the potential:  

 
V(r)=V(r|nlj)+Vex+V(r|R),  

 
which includes the electrical and 
polarization potentials of the nucleus. The 
part exV accounts for exchange inter-

the relativistic Dirac-Fock (DF) method 
was used. Note that the DF approach is the 
most wide spread method of calculation, 
but, as a rule, the corresponding orbitals 
basis’s are not optimized. Some problems 
are connected with correct definition of the 
nuclear size effects, QED corrections etc. 
We are applying below our gauge invariant 
DF (GIDF) type approach [11-17] for 
computing the permitted beta transition 
probabilities and estimating a quality of 
computing the Fermi and integral Fermi 
functions in dependence upon the type of 
the atomic self-consistent field. 

 
2. Method 

 
The details of our approach have 

been presented earlier (see, for example, 
[10,11,17,18]), here we are limited by the 
key ideas. As it is well known a 
distribution of the  particles on energy in 
the permitted transitions is as follows [9]:                                             

 
                                        

 ),(
2

1/)( 2
3 ZEFGdEEdW

                  

.||)( 22
0 MEEpE   

                                                           (1) 
Here G is the weak interaction constant; Е 
and р=(Е2-1)1/2 are an entire energy and 
pulse of beta particle; Е0=1+(Еbn /mec2) , 
Еbn is the boundary energy of β-spectrum; 
|M| is a matrix element, which is not 
dependent upon an energy in a case of the 
permitted β- transitions.  The key elements 
of the beta-decay theory for  computing  
the  decay shape and decay half period 
are the Fermi function and integral Fermi 
function. The Fermi function F and 
integral Fermi function f are defined as 
follows:  

 

)(
2

1),( 2
1

2
12   fg

p
ZEF ,                                       

                                                            (2а) 

.)(),(),( 2
0

1
0

0
dEEEpEZEFZEf

E
                              

                                                           (2b) 
Here f+1  and   g-1 are the relativistic 
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electrons of the atom. Note that this is one of the 
original moments of the paper. Another original 
moment is connected with using the consistent 
QED gauge invariant procedure for optimization 
of the electron functions basis’s. Numerical cal-
culation and analysis shows that used methods 
allow getting the results, which are more precise 
in comparison with analogous data, obtained with 
using non-optimized basis’s. The details of the 
numerical procedure are presented in ref. [11-17]. 

3. Results and conclusions

The results of computing the atomic field ef-
fect of the Fermi function F values (HFSnonrel, 
GIDF) are listed in Table 1.As the test parameter 
it is used the parameter: 

Δ2 ={[ rel
DIDFF  (E, Z)/ nonrel

HFSF (E, Z)]-1}.100%,

де nonrel
HFSF  is calculated in the Hartree-FockSlater 

(HFS) model atomic field (Harston-Pyper,1986), 
rel

DIDFF  – GIDF (our data). It is very inmportant 
to note that difference between data obtained by 
relativistic methods: GIDF and relativistic HFS is 
not significant (fractions of present) for the little 
and middle values of the nuclear charge Z.

Table 1 
An influence of the atomic field model on the 

Fermi function F (E, Z)  values:  Δ2  (%)

Еkin, keV Z=20 Z=63 Z=95

10
50
100
500

-0,08
-0,06
+0,04
+0,13

-0,24
-0,23
-0,18
-0,14

-0,79
-0,77
-0,68
-0,61

Nevertheless, for larger Z (till Z =95) the HF-
Srel calculation gives the value F which is less on 
5% in comparison with the corresponding non-
relativistic HFSnonrel . For our approach this value 
is 0,8%. We suppose that this fact is connected 
with  the effect of relativistic squeeze of the orbit-

als. In this case, the wave function (continuum) 
is to a greater extent screened from the charge of 
the atomic nucleus by a relativistic field of atomic 
electrons than the corresponding non-relativistic 
one.  Further we present the results of comput-
ing function F for choosing different definitions 
of cited  function. In the first case, the calcula-
tion of the F function is carried out  using values 
electron wave functions on the boundary of the 
nucleus, in the second case - through the squares 
of the amplitudes of radial expansion of the wave 
functions f2

+1(0) +g2
-1(0) when r→0. Here the test 

parameter is as follows: 

Δ3  ={[ F (E, Z, R=0)) / 

/F (E, Z, R=R0 ]-1}. 100%,

where F (E, Z, R = R0) – the function Fermi cal-
culated the values of the wave functions on the 
boundary of the nucleus; F (E, Z, R = 0) - the Fer-
mi function values calculated through the squares 
of the amplitudes of radial expansion of the wave 
functions f2

+1(0) +g2
-1(0) when r→0. The corre-

sponding results are presented in  Table 2.

Table 2 
The difference Δ3 ( %) between values of the 

Fermi function F (E, Z) for different definitions 
F (E, Z): HFS – (Band et al, 1986,2006), GIDF – 

our data.

Ekin,
keV

Z=20 Z=63
GIDF

Z=95

HFS  GIDF HFS  GIDF

0,1
1,0
50
500

1,35  1,39
1,37  1,42
 1,38 1, 45
1,50  1,58

12,72
12,84
12,95
13,10

33,9     36,8
34,1     37,2
34,2     37,6

  35,5    39,88

With the growing difference in Z values of the 
F function significantly increase. Similarly, the 
same situation takes a place with changing the in-
tegral Fermi function. In the transition from the 
first f definition to the second definition of the f 
function increases for decays: 
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i). 33P-33S (Ebound=249keV),35S-35Cl (Ebound 
=167keV) на 2-4%, 

ii). 63Ni-63Cu (Ebound =65,8 keV)- на 5%, 
iii). 155Eu-155Gd (Ebound =140,7 keV)-12%, 
iv). 241Pu-241Am (Ebound =20,8 keV)-32%. 
In literature there are different points of view 

on the correctness of a determination of the F 
function . We confirm more consistent and cor-
rected definition of the F function through the 
squares of the amplitudes of radial expansion of 
the wave functions f2

+1(0) +g2
-1(0) when r→0. An 

important issue is concerned with an area  of the 
formation of f(Ebound,Z).

The standard test parameter is as follows:
 

y= ∫
x

0

F(E,Z) Ep (E0 – E)2 dE/ 

/ ∫
0

0

E

F(E,Z) Ep (E0- E)2 dE

Ine Table 3 we present our estimates of the  
forming area for the integral Fermi function f

Table 3 
The  forming area for the integral Fermi 

function f (our estimates): t=x/Ebound 

Ebound 
keV

β-decay y, %
t=0,3 0,5 0,7 0,9

20,8
39,4
65,8
140,7
167,4
249
257

241Pu→241Am 
106Ru→106Rh

63Ni→63Cu
155Eu→155Gd

35S→35Cl
33P→33S

45Ca→45Sc

67
66
65
63
58
53
52

89
88
87
84
81
78
77

99
98
97
96
95
93
91

100
100
100
100
100
100
100

Therefore, we have carried out the  detailed 
quantitative impact assessment of the Fermi func-
tion F (E, Z) for a number permitted by beta-de-
cays in dependence upon the choice of an atomic 
field in a few calculated methods such as HFS, 
HFS with taking into account the relativistic cor-
rections in the Breit-Pauli approximation and our 

relativistic optimized DF one. It is shown that for 
small and middle values for the nuclear charge (Z 
<40) the difference between  data obtained from 
other methods is low (hundredths of %). At the 
large Z (till Z~ 95; for example the beta decay 
241Pu-241Am) calculation in a case of the HFSrel 
field gives 0.5% lower value for F, and respec-
tively in a case of the GIDF field - 0.8%, com-
pared with the non-relativistic HFSnerel value. This 
difference is in our opinion, explained by an ef-
fect of  the squeezing for relativistic orbitals. In 
this case, the wave function (of continuum) is to 
a greater extent screened from the charge of the 
atomic nucleus by relativistic field of atomic elec-
trons than by corresponding not- relativistic field.
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RELATIVISTIC AND NONRELATIVISTIC APPROACHES IN THEORY OF  PERMIT-
TED BETA-RANSITIONS: AN EFFECT OF ATOMIC FIELD ON FERMI AND INTEGRAL 
FERMI FUNCTIONS VALUES

Abstract.
Within a new optimized gauge-invariant Dirac-Fock approach it is considered a problem of  com-

puting the permitted beta transition probabilities and estimating a quality of computing the Fermi and 
integral Fermi functions in dependence upon the type of the atomic self-consistent field. It is shown 
that for small and middle values for the nuclear charge (Z <40) the difference between  data obtained 
from other methods is low (hundredths of %). At the large Z (till Z~ 95; for example the beta decay 
241Pu-241Am) calculation in a case of the HFSrel field gives 0.5% lower value for F, and respectively in 
a case of the GIDF field - 0.8%, compared with the non-relativistic HFSnerel value. This difference is 
explained by an effect of  the squeezing for relativistic orbitals.
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Ю. В. Дубровская, О. Ю. Хецелиус,  А. В. Игнатенко, Д. Е. Сухарев

РЕЛЯТИВИСТСКИЙ И НЕРЕЛЯТИВИСТСКИЙ ПОДХОДЫ В ТЕОРИИ РАЗРЕШЕН-
НЫХ БЕТА-ПЕРЕХОДОВ: ВЛИЯНИЕ ВИДА АТОМНОГО ПОЛЯ НА ЗНАЧЕНИЯ 
ФУНКЦИИ ФЕРМИ И ИНТЕГРАЛЬНОЙ ФУНКЦИИ ФЕРМИ

Резюме. 
В новой оптимизированной калибровочно-инвариантной теории Дирака-Фоку рассмотрена 

проблема вычисления вероятности разрешенных бета переходов и оценки качества вычисле-
ния функции Ферми и интегральной функции Ферми в зависимости от типа атомной поля. 
Проведена детальная  количественная оценка влияния выбора атомного поля, генерируемого 
в методах Хартри-Фока-Слэтера, Хартри-Фока-Слэтера  с учетом релятивистских поправок в 
приближении Брейта-Паули (ХФСрел) и авторской версии оптимизированного метода Дирака-
Фока (ОДФ) на функцию Ферми F (E, Z) для ряда разрешенных бета распадов. Показано, что 
для малых и средних значений заряда ядра (Z <40) разница данных, полученных на основе всех 
методов является незначительной (сотые доли %). При больших Z (двигаясь к  Z = 95; 241Pu-
241Am) расчет в поле ХФСрел дает на 0,5% меньшую величину для F, а в поле ОДФ на 0.8%, по 
сравнению с нерелятивистским значением ХФСнерел, что связано с эффектом релятивистского 
сжатия орбиталей.

Ключевые слова: вероятность бета распада, функция Ферми, модель атомного поля.
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РЕЛЯТИВІСТСЬКИЙ І НЕРЕЛЯТІВІСТСКИЙ ПІДХОДИ В ТЕОРІЇ ДОЗВОЛЕНИХ 
БЕТА- ПЕРЕХОДІВ: ВПЛИВ ВИДУ АТОМНОГО ПОЛЯ НА ЗНАЧЕННЯ ФУНКЦІЇ 
ФЕРМІ І ІНТЕГРАЛЬНОЇ ФУНКЦІЇ ФЕРМІ

Резюме.
У новій оптимізованої калібрувально-інваріантній теорії Дірака-Фоку розглянута проблема 

обчислення ймовірності дозволених бета переходів, оцінки якості обчислення функції Фермі і 
інтегральної функції  Фермі в залежності від типу атомної поля. Проведена докладна кількісна 
оцінка впливу вибору  атомного поля, генеруємого у методах Хартрі-Фока-Слетеру, Хартрі-
Фока-Слетеру з врахуванням релятивістських поправок у наближенні Брейта-Паулі (ХФСрел) 
і авторської версії оптимізованого методу Дірака-Фоку (ОДФ) на функцію Фермі F(E,Z) для 
ряду дозволених бета розпадів. Показано, що для малих і середніх значень заряду ядра (Z<40) 
різниця даних, отриманих  на основі всіх методів є  незначною (соті долі %). При більших Z ( 
рухуючись до Z =95; 241Pu-241Am)  розрахунок у полі ХФСрел дає на 0,5% меншу величину для 
F, а в полі ОДФ на 0.8%, у порівнянні  з нерелятивістським значенням ХФСнерел, що пов’язано з 
ефектом релятивістського стиснення орбіталей. 

Ключові слова:  імовірність бета розпаду, функція Фермі, модель атомного поля


