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NONLINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE
IN SELF-MODULATION AND CHAOTIC REGIME

It has been performed quantitative modelling, analysis, forecasting dynamics relativistic backward-wave
tube (RBWT) with accounting relativistic effects (y,= 1.5-6.0), dissipation (factor D), a presence of space
charge etc. There are computed the temporal dependences of the normalized field amplitudes (power) in a wide
range of variation of the controlling parameters which are characteristic for distributed relativistic electron-
waved self-vibrational systems: electric length of an interaction space N, bifurcation parameter proportional
to (~current I) Pirse one J and relativistic factor y,. The computed temporal dependence of the field amplitude
(power) Fmax in a good agreement with theoretical estimates and experimental data by Ginzburg etal (IAP,
Nizhny Novgorod) with using the pulsed accelerator "Saturn". The analysis techniques including multi-fractal
approach, methods of correlation integral, false nearest neighbour, Lyapunov exponent’s, surrogate data, is
applied analysis of numerical parameters of chaotic dynamics of RBWT. There are computed the dynamic
and topological invariants of the RBWT dynamics in auto-modulation(AUM)/chaotic regimes, correlation
dimensions values (3.1; 6.4), embedding, Kaplan-York dimensions, Lyapunov’s exponents (+,+) Kolmogorov
entropy. There are constructed the bifurcation diagrams with definition of the dynamics self-modulation/

chaotic areas in planes, namely, "J-y", "D-J".

1. Introduction

As it is well known in the modern electron-
ics, photoelectronics etc there are many physical
systems (the backward-wave tubes, multiclement
semiconductors and gas lasers, different radio-
technical devices etc), which can manifest the el-
ements of chaos and hyperchaos in their dynam-
ics (c.f.[1-32]). The key aspect of studying the
dynamics of these systems is analysis of the dy-
namical characteristics. Chaos theory establish-
es that apparently complex irregular behaviour
could be the outcome of a simple deterministic
system with a few dominant nonlinear interde-
pendent variables. The past decade has witnessed
a large number of studies employing the ideas
gained from the science of chaos to character-
ize, model, and predict the dynamics of various
systems phenomena (c.f.[1-16]). The outcomes
of such studies are very encouraging, as they not
only revealed that the dynamics of the apparently

irregular phenomena could be understood from a
chaotic deterministic point of view but also re-
ported very good predictions using such an ap-
proach for different systems.

The backward-wave tube is an electronic de-
vice for generating electromagnetic vibrations
of the superhigh frequencies range. In refs.[3-
16] there have been presented the temporal de-
pendences of the output signal amplitude, phase
portraits, statistical quantifiers for a weak chaos
arising via period-doubling cascade of self-mod-
ulation and for developed chaos at large values of
the dimensionless length parameter. The authors
of [3-16] solved the different versions of system
of equations of nonstationary nonlinear theory for
the O type backward-wave tubes with and with-
out account of the spatial charge, without energy
losses etc. It has been shown that the finite-di-
mension strange attractor is responsible for cha-
otic regimes in the backward-wave tube.
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In our work it has been performed quantitative
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
ing relativistic effects (g,= 1.5-6.0), dissipation, a
presence of space charge etc. There are computed
the temporal dependences of the normalized field
amplitudes (power) in a wide range of variation of
the controlling parameters which are characteris-
tic for distributed relativistic electron-waved self-
vibrational systems: electric length of an interac-
tion space N, bifurcation parameter proportional
to (~current /) Pirse one and relativistic factor g
There is computed a temporal dependence of the
field amplitude (power) F__ in a good agreement
with theoretical estimates and experimental data
by Ginzburg etal (IAP, Nizhny Novgorod) with
using the pulsed accelerator “Saturn”.

2. Method

As the key ideas of our technique for nonlinear
analysis of chaotic systems have been in details
presented in refs. [17-32], here we are limited
only by brief representation. The first important
step is a choice of the model of the RBWT dy-
namics. We use the standard non-stationary the-
ory [3-6], however, despite the cited papers we
take into account a numver of effects, namely,
influence of space charge, dissipation, the waves
reflections at the ends of the system and others
[12,13]. Usually relativistic dynamics is described
system of equations for unidimensional relativis-
tic electron phase 0(C,7,6,) (which moves in the
interaction space with phase ¢, (¢,I[0; 2p]) and
has a coordinate z at time moment t) and field
E(x,t) = Re[e(x,t)explio,t —if,x]

unidimensional complex amplitude

F(C,r):E/(ZBOUCZ) as follows [240, 249]:

1

0°0/0,° = —Lzyg[(l+ﬁ66’/8§)2 N

x Re[F exp(i0)], , (1)

OF /0t —0F /0 =—LI iz_lfe*fedeo
n 0

with the boundary and initial conditions:

0 |;:0: 6y, 00/0¢ |g:0: 0
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In is important to note that the system stud-
ied has a few controlling parameters which are
characteristic for distributed relativistic elec-
tron-waved self-vibrational systems: electric
length of an interaction space N, bifurcation
parameter proportional to (~current /) Pirse one
L=27CN/y, (here C-isthe known Piers param-

eter, C=3/1,K,/(4U) ,and 7, is a constant beam

current component, U - accelerating voltage,
K - resistance of copupling of the slowing down
system) and relativistic factor y, = (1— 8;) "

Since processes resulting in the chaotic behav-
iour are fundamentally multivariate, it is neces-
sary to reconstruct phase space using as well as
possible information contained in the dynami-
cal parameter s(n), where n the number of the
measurements. Such a reconstruction results in a
certain set of d-dimensional vectors y(n) replac-
ing the scalar measurements. Packard et al. [19]
introduced the method of using time-delay coor-
dinates to reconstruct the phase space of an ob-
served dynamical system. The direct use of the
lagged variables s(n + t), where t is some integer
to be determined, results in a coordinate system in
which the structure of orbits in phase space can be
captured. Then using a collection of time lags to
create a vector in d dimensions,

y(n) = [s(n), s(n +t), s(n + 2t), ...,

s(n + (d-1)t)], (1)
the required coordinates are provided. In a non-
linear system, the s(n + jt) are some unknown
nonlinear combination of the actual physical vari-
ables that comprise the source of the measure-
ments. The dimension d is called the embedding
dimension, d,. According to Maf¢ and Takens
[24,25], any time lag will be acceptable is not ter-
ribly useful for extracting physics from data. If t
is chosen too small, then the coordinates s(n + jt)
and s(n + (j + 1)t) are so close to each other in
numerical value that they cannot be distinguished
from each other. Similarly, if t is too large, then
s(n + jt) and s(n + (j + 1)t) are completely inde-
pendent of each other in a statistical sense. Also,
if t 1s too small or too large, then the correlation



dimension of attractor can be under- or overesti-
mated respectively. The autocorrelation function
and average mutual information can be applied
here. The first approach is to compute the linear
autocorrelation function:

%i[s(m+6)—§[ s(m)—s]

C, () =—"= Tz
ﬁ;[s(m)—Ef

(2)
s = %; s(m)

and to look for that time lag where C,(d) first pass-
es through zero (see [18]). This gives a good hint
of choice for t at that s(n + jt) and s(n + (j + 1)t)
are linearly independent. a time series under con-
sideration have an n-dimensional Gaussian distri-
bution, these statistics are theoretically equivalent
as it is shown by Palus (see [15]). The general
redundancies detect all dependences in the time
series, while the linear redundancies are sensitive
only to linear structures. Further, a possible non-
linear nature of process resulting in the vibrations
amplitude level variations can be concluded.

The goal of the embedding dimension determi-
nation is to reconstruct a Euclidean space R? large
enough so that the set of points d, can be unfolded
without ambiguity. In accordance with the em-
bedding theorem, the embedding dimension, d,,
must be greater, or at least equal, than a dimen-
sion of attractor, d , i.e. d, > d . In other words,
we can choose a fortiori large dimension d,, e.g.
10 or 15, since the previous analysis provides us
prospects that the dynamics of our system is prob-
ably chaotic. However, two problems arise with
working in dimensions larger than really required
by the data and time-delay embedding [5,6,18].
First, many of computations for extracting inter-
esting properties from the data require searches
and other operations in R whose computational
cost rises exponentially with d. Second, but more
significant from the physical point of view, in the
presence of noise or other high dimensional con-
tamination of the observations, the extra dimen-
sions are not populated by dynamics, already cap-
tured by a smaller dimension, but entirely by the
contaminating signal. In too large an embedding
space one is unnecessarily spending time work-
ing around aspects of a bad representation of the

observations which are solely filled with noise. It
is therefore necessary to determine the dimension
d,.

There are several standard approaches to re-
construct the attractor dimension (see, e.g., [3-
6,15]). The correlation integral analysis is one
of the widely used techniques to investigate the
signatures of chaos in a time series. The analy-
sis uses the correlation integral, C(r), to distin-
guish between chaotic and stochastic systems. To
compute the correlation integral, the algorithm of
Grassberger and Procaccia [10] is the most com-
monly used approach. If the time series is char-
acterized by an attractor, then the integral C(r) is
related to the radius » given by

d = 1im122€")
i logr

; €)

where d is correlation exponent that can be de-
termined as the slop of line in the coordinates
log C(r) versus log r by a least-squares fit of a
straight line over a certain range of r, called the
scaling region. If the correlation exponent attains
saturation with an increase in the embedding di-
mension, the system is generally considered to
exhibit chaotic dynamics. The saturation value of
correlation exponent is defined as the correlation
dimension (d,) of attractor.

The Lyapunov exponents are the dynamical
invariants of the nonlinear system. In a general
case, the orbits of chaotic attractors are unpre-
dictable, but there is the limited predictability of
chaotic physical system, which is defined by the
global and local Lyapunov exponents.

A negative exponent indicates a local average
rate of contraction while a positive value indi-
cates a local average rate of expansion. In the cha-
os theory, the spectrum of Lyapunov exponents is
considered a measure of the effect of perturbing
the initial conditions of a dynamical system. Since
the Lyapunov exponents are defined as asymp-
totic average rates, they are independent of the
initial conditions, and therefore they do comprise
an invariant measure of attractor. In fact, if one
manages to derive the whole spectrum of Lyapu-
nov exponents, other invariants of the system, i.e.
Kolmogorov entropy and attractor’s dimension
can be found. The Kolmogorov entropy, K, meas-
ures the average rate at which information about
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the state is lost with time. An estimate of this
measure is the sum of the positive Lyapunov ex-
ponents. The inverse of the Kolmogorov entropy
is equal to the average predictability. There are
several approaches to computing the Lyapunov
exponents (see, e.g., [5,6,18]). One of them [18]
is in computing the whole spectrum and based on
the Jacobin matrix of the system function [14].

3. Results

As input, the following parameters were taken:
the energy of electrons - 150keV, starting current
of 7A composed impedance connection 0,5W ,
length of interaction space - 0,623m, the average
radius waveguides - 1,38sm period corrugating -
1,73sm radius of the electron beam - 0,67sm. The
dynamic model (2.6) has been implemented in
two ways considering the effects of space charge
and without and with (unlike in [5]) the effect
of slowing the loss of energy in the system (at
the ends of reflection and some other factors dis-
cussed more etc.). As bifurcation parameter ac-
tually is J =& |Z|(2B;m *), where Z - resis-
tance connection, I - beam current, £, =v,/c,v,
- the initial velocity of the electrons, the param-
eter space charge QO =leg(m ®’b), transverse

wave number g=w(cf,y,), k-harmonic and

2z
space charge density g, = (1/7) J. e*’d@, , coeffi-

cient of reduction space charge ka= 0.55. To factor
in the expression for the normalized dissipation
parameter has been fixed D = 8Db. In figure 1 we
list the relevant theoretical simulation test results
in non-stationary processes RBWT at injection
currents: (a) - 55A, (b) - 90A, (c) - 120A.

At current 7A it is set stationary mode that
with increasing value of current strength transited
to the periodic automodulation (I = 30A, on our
data, the period of T, = 7,3ns; experimental value
[14b]: 8ns), and then when I = 55A it is realized
the chaotic auto-modulation mode (fig 1a). By
increasing the amount of current to 75A there is
the quasi-periodical auto-modulation (period 13.8
ns) and, finally, when the current value is more
than 100A it’s realized essentially chaotic regime.
Note that reset of the quasi-periodic auto-modula-
tion mode can be explained by an effect of space
charge.
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Figure 1. Theoretical results for the temporal
dependence of power of the RBWT at the in-
jection currents: (a)-55A, (b)-90A, (¢) - 120A.

The similar theoretical estimates (however
without the dissipation effect) and experiment re-
sults data have been obtained by Ginsburg et al.
[5b]. Let us note that all results are in a physically
reasonable agreement with each other.

Fig. 2 (a) shows the results of our computing
the autocorrelation function, and Fig. 2b) - the av-
erage mutual information.

In fig.3 there is listed the relationship between
the correlation exponent and embedding dimen-
sion of the temporal series (line 1), the mean
values of variables replacement (line 2) and the
implementation of one replacement (line 3). Col-
umns errors indicate minimum values exponen-
tial correlation among all variables substituted. In
Fig. 4 we presents data of estimating the embed-
ding dimension based on the algorithm of false
nearest neighbours for points of the original data
series (line 1), the mean values of surrogate data
(2), and one surrogate realization (3).
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Figure 2. The autocorrelation function, (a) and
the average mutual information (b).
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Figure 3. The relationship between the correlation
exponent and embedding dimension of the tem-
poral series (line 1), the mean values of variables
replacement (line 2) and the implementation of
one replacement (line 3).
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Fig. 4 we presents data of estimating the embed-
ding dimension based on the algorithm of false
nearest neighbours for points of the original
data series (line 1), the mean values of surrogate
data (2), and one surrogate realization (3).

Next in the table 1 we list our data on . the cor-
relation dimension d,, embedding dimension, de-
termined on the basis of false nearest neighbours
algorithm (d,) with percentage of false neigh-
bours (%). calculated for different values of lag
t according to the analysis of two series figla (I
- chaos) and fig.1c (II - hyperchaos).

Table 1

Correlation dimension d,, embedding di-
mension, determined on the basis of false
nearest neighbours algorithm (d,) with per-
centage of false neighbours (%) calculated for
different values of lag t

Chaos (I) Hyperchaos (II)
|4 | @) | ot od |y
60 3.6 5 67 7.2 10

(5.5) (12)
6 3.1 4 10 | 63 | 8(2.1)
(1.1)
8 3.1 4 12 6.3 | 8(2.1)
(1.1)
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In Table 2 we list our computing data on the
Lyapunov exponents (LE), the dimension of the
Kaplan-York attractor, the Kolmogorov entropy
K . For studied series there are the positive and
negative LE values. he resulting dimension Ka-
plan York in both cases are very similar to the cor-
relation dimension (calculated by the algorithm
by Grassberger-Procachia).

Table 1

The Lyapunov exponents (LE), the
dimension of the Kaplan-York attractor, the
Kolmogorov entropy K __ . (our data)

Chaos | A, A, A, A, K
D 0.261 | 0.0001 | —0.0004 | —0.528 0.26
(IT) 0.514 | 0.228 0.0000 | —0.0002 | 0.74

Further, in Fig.5 we present the firstly obtained
original (continuous line) and predicted (dotted
line) dependences of power in the chaos mode
(D: (a) - without energy loss effect, (b) - taking
into account the effect of loss. order to estimate
reliability (success) of prediction model [13-15]
we have computed the correlation coefficient (r)
between actual and

52 53 55

54

(b)

5.4 55

(a)

53

52

Figure 5. Original (continuous line) and pre-
dicted (dotted line) dependences of power in
the chaos mode (I): (a) - without energy loss
effect, (b) - taking into account the effect of loss

prognostic rows ranked to a number of the neigh-
bours (NN). In this case, the mean forecast error
was (o = 1.9) for time series (chaos mode). In
addition, usually to account for a forecast error
one should take into account the noise level in the
studied time series. For this purpose the method-
ology by Hu et al (see [13] was used.
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Importantly, the above-described physical
mechanism of changing different modes in the
RBWT dynamics due an increasing a current val-
ue and the bifurcation parameter J corresponds to
certain value relativistic factor, namely y = 1,3.

More important is the analysis of the RBWT
nonlinear dynamics in the plane «relativistic
factor — bifurcation parameter.» Actually in this
context a three-parametric relativistic nonlinear
dynamics is fundamentally different from pro-
cesses in non-relativistic BWT dynamics. In fig.6
we list a chart that shows the quantitative limits
of auto-modulation (line I) in the plane of pa-
rameters: bifuracation parameter J - relativistic
factor y,. Note that the second line (line II) limits
the area where there is a twist particles and used
theoretical model works. A characteristic feature
of the chart is the presence of so-called effect of
«beak», which is based on relativistic factor goes
far deeper automodulation area. Firstly this effect
was predicted in [3-6]. In essentially relativistic
limit (see. Fig. 7) the frequency of auto-modula-
tion falls by about half. Obviously, that all of the
above characteristics is much more complicated
compared to the dynamics of non-relativistic dy-
namics.
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Figure 6. The limits of automodulation (line I)
on the plane of parameters: “bifurcation pa-
rameter - relativistic factor”

So, we believe that a chaos in the RBWT dy-
namics should be called by relativistic chaos phe-
nomenon.
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Figure 7. The dependence of the frequency of
auto-modulation upon relativistic factor

Conclusions

In this work we have performed quantitative
modelling, analysis, forecasting dynamics relativ-
istic backward-wave tube (RBWT) with account-
ing relativistic effects (y,= 1.5-6.0), dissipation, a
presence of space charge, reflection of waves at
the end of deceleration system etc. There are com-
puted the temporal dependences of the normal-
ized field amplitudes (power) in a wide range of
variation of the controlling parameters which are
characteristic for distributed relativistic electron-
waved self-vibrational systems: electric length
of an interaction space N, bifurcation parameter
proportional to (~current /) Pirse one L(J): 2.7-3.9
and relativistic factor g =1.5-6.0). There are com-
puted the dynamic and topological invariants of
the RBWT dynamics in auto-modulation/chaotic
regimes, correlation dimensions values (3.1; 6.4),
embedding, Kaplan-York dimensions, Lyapu-
nov’s exponents (LE:+,+) Kolmogorov entropy.
There are firstly constructed the bifurcation dia-
grams with definition of the dynamics self-mod-
ulation/chaotic areas in planes: «J-y», «D-J». It
is shown that for moderately small y, ~ 1.3 transi-
tion to chaos is realized through a sequence of the
period doubling bifurcations, but with the growth
of the g, dynamics significantly complicates with
interchange of quasi-harmonical/ chaotic regimes
(incl. discovery of a “beak” effect on the chart,
sharp fall of automodulation period at vy ~4),

emergence of highly-d chaotic attractor, which
evolves at a much complicated scenario. Firstly
on basis of chaos-cybernetic approach with a new
wavelet-expansion predicted paths algorithm it
is realized forecasting the temporal evolution of
chaotic dynamics for RBWT at different values of
J, g, taking into account the effects of relativity,
influence of space charge, dissipation and shown
that in a case of low-attractor dynamics (chaotic
auto-modulation) the predicted series well re-
built the empirical data (correlation coefficient
between predicted and real rows ranked among
the neighbours number ~ 0.97), which is the first
indication of the possibility of a new quantitative
evolution prediction direction in studying relativ-
istic microwave electronics devices.
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UDC 517.9
A. V. Glushkov, V. B. Ternovsky, S. V. Brusentseva, A. V. Duborez, Ya. 1. Lepich

NON-LINEAR DYNAMICS OF RELATIVISTIC BACKWARD-WAVE TUBE
IN SELF-MODULATION AND CHAOTIC REGIME

Abstract.

It has been performed quantitative modelling, analysis, forecasting dynamics relativistic backward-
wave tube (RBWT) with accounting relativistic effects (g,= 1.5-6.0), dissipation (factor D), a presence
of space charge etc. There are computed the temporal dependences of the normalized field amplitudes
(power) in a wide range of variation of the controlling parameters which are characteristic for dis-
tributed relativistic electron-waved self-vibrational systems: electric length of an interaction space N,
bifurcation parameter proportional to (~current /) Pirse one J and relativistic factor g ;. The computed
temporal dependence of the field amplitude (power) F_ ina good agreement with theoretical estimates
and experimental data by Ginzburg etal (IAP, Nizhny Novgorod) with using the pulsed accelerator
“Saturn”. The analysis techniques including multi-fractal approach, methods of correlation integral,
false nearest neighbour, Lyapunov exponent’s, surrogate data, is applied analysis of numerical param-
eters of chaotic dynamics of RBWT. There are computed the dynamic and topological invariants of
the RBWT dynamics in auto-modulation(AUM)/chaotic regimes, correlation dimensions values (3.1;
6.4), embedding, Kaplan-York dimensions, Lyapunov’s exponents (+,+) Kolmogorov entropy. There
are constructed the bifurcation diagrams with definition of the dynamics self-modulation/chaotic
areas in planes, namely, “J-g », «D-J».

Key words: relativistic backward-wave tube, chaos, non-linear methods
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YIK 517.9

A. B. I'mywikos, B. b. Tepnosckuii, C. B. bpycenyesa, A. B. /[yoopes, A. U. Jlenux

HEJIMHENHASI IMHAMMKA PEJIITUBUCTCKOM JIAMIIBI OBPATHOM BOJIHBI B
ABTOMOAVIAIINOHHOM U XAOTUYECKOM PEX XKNMAX

Pesrome.

[IpuBeneHbl pe3ynbTaTbl MOJIEIMPOBAHUSA, aHAIU3a M MPOrHO3a AMHAMUKH MPOLECCOB B Peisi-
THBHUCTCKOM nlamrie obparHoii BoiHbl (PJIOB) ¢ yuera penstusuctckux sddekros (g= 1,5-6,0),
muccunanyu  (pakrop D), Hamuuus MpOCTPaHCTBEHHOTO 3apsia W T.J. BblunciIeHbl BpeMeHHbIE
3aBHCHUMOCTU HOPMHUPOBAHHOW aMIUIMTYAbl MOJS (MOIIHOCTH) B IIMPOKOM JHAara3oHe U3MEHEHUS
YIPABISAIOIUX TAPaMETPOB, KOTOPBIE XapAKTEPHBI AJIs1 PACIIPEIEICHHBIX PEIATUBUCTCKUAX NIEKTPOH-
HO-BOJIHOBBIX aBTOKOJIEOATEIbHBIX CHCTEM: AIIEKTpUYECKasl JJUHA MPOCTPAHCTBA B3aUMOACHCTBHS
N, Ou(ypKauMOHHBIH MapaMeTp, MPONOPUMOHAILHBIA CUJIE TOKA, J M PENATUBUCTCKUA (BaKTop g .
BeruncienHast 3aBUCUMOCTb aMIUIUTY Il IOJIs (MOLTHOCTH) Fmax HaXoauTCsl B XOPOIIEM COIVIACHH C
TEOPETUYECKUMHU OLIEHKAaMH U TaHHBIMH dKcriepuMenTa [ uu3oypra u ap. (UI1®, Huwxuauit HoBropon)
C MCIIOJIb30BAHUEM UMITYIbCHOTO yckoputenst «Carypu». TexHuKa HeIMHEHHOro aHaiau3a, KOTopast
BKJIIOYAET MYJIbTU(PAKTAIBHUNA MOAXO/, METObl KOPPEISALMOHHBIX UHTErPaIoB, JIOKHBIX OMKaii-
LIMX COCENEH, SKCTIOHEHT JIsImyHOBa, CyppOraTHbIX JaHHbBIX, UCIIOIb30BAHHAS JJIs aHAJIN3a YUCIIEH-
HBIX ITapaMeTPOB Xa0THUECKUX aBTOKoJeOaTenbHbIX peskuMoB B PJIOB. PaccunTansl 1uHamuueckue
Y TOIIOJIOTHYECKUE NHBapUaHThl 1nHaMuku PJIOB B aBTOMOAYJISIIMOHHOM M XaOTHYECKOM PEXHUMAX,
KOPPEJIALMOHHAS PAa3MEPHOCTB, pa3MepHOCTH BioxkeHus (3.1; 6.4), Karmman-Mopka, mokasaremn Jls-
nyHoBa (+, +), auTponusa KonmMoroposa 1 noctpoeHbsl OU(ypKallOHHbIE TUarpaMMbl ¢ OIIPEIEIICHU-
€M 001acTel aBTOMOYJIALMHU U Xa0Ca , B YaCTHOCTH, «J-g», «D-I».

KiroueBble c10Ba: pensTUBUCTCKAs JIaMITbl OOPAaTHOM BOJIHBI, Xa0C, HEIMHEHHBIE METO/IbI

VYIK 517.9

O. B. I'nywxos, B. b. Tepnoscoxuiti, C. B. bpycenyesa, A. B. [Iyoopes, A. 1. Jlenix

HEJITHIMHA IUHAMIKA PEJIITUBICTCHKOI JIAMIIN 3BEPHEHOI XBWJII B
ABTOMOAVIAHIMHOMY TA XAOTHYHOMY PEKUMAX

Pesrome.

HagBenenslipe3ynpraTi MOZIETIOBAHHS, aHAJII3Y 1 IPOTHO3Y TUHAMIKH MPOLECIB B PENIATUBICTCHKOT
nammi 380potHOi XxBul (PJI3X) 3 ypaxyBanusaM penatusicTchkux edektis (g= 1,5-6,0), nucumamii
(dakrop D), HasIBHOCTI MPOCTOPOBOTO 3apsay 1 T.i. OOUKCIICHI YacoBi 3aJ€KHOCTI HOPMOBAHO1 aMII-
JITYAH 1107151 (TMTOTY>KHOCTI) B IIUPOKOMY Jiara30Hi 3MIHU KepYIOUHX IMapaMeTpiB, sKi XapaKTepHi s
PO3IIONIICHNX PENATUBICTCHKUX EJICKTPOHHO-XBIIIBOBUX AaBTOKOJIMBAJIBHUX CHUCTEM: EJICKTPUYHA
JTIOBXHHA MpocTopy B3aemomii N, OidypkariiiHuii mapameTp, MPONOPIIHHANA CUJli CTpymy, J 1 pens-
THBICTChKUH (pakTop g,. OOuKCIeHa 3aIeKHICTh aMILTITYIM oS (IIOTYXKHOCTI) Fmax 3HaxomuThes
B XOPOULIOMY 3J1arofii 3 TEOPETUYHUMHU OLIHKaMU 1 JaHUMH ekcriepuMeHTy ['1H30ypra Ta iH. (II[1D,
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Hwxniit HoBropon) 3 BUKOpUCTaHHAM IMITYJIbCHOTO TpucKoproBauya «CarypH». TexHika HenmiHiIHOTO
aHaJli3y, sKa BKJI0OYa€e MyibTiQpaKkTaaIbHUM MiAX1J, METOJU KOPESLINHUX 1HTerpaliB, XMOHUX Hal-
OMKYMX CYCIIiB, €KCTIOHEHT JIsmyHOBa, cyporaTHuX JaHUX, BUKOPUCTaHA JUIS aHATi3y YHCEIbHUX
napaMeTpiB XaOTHUYHUX aBTOKOJIMBaIbHUX pekuMiB y PJI3X. Po3paxoBani JuHAMI4YHI Ta TONOIOT1Y-
Hi iHBapianTy AuHamiku PJIOB B aBTOMOAYISIIIIOHHOM 1 XaOTHYHOMY PEKHMMaxX, KOPEJsIiifHa po3-
MipHiCTb, po3MipHocTi BKIagenus (3.1; 6.4), Kamnan-Hopka, nokasuuku JlsmyHosa (+, 1), eHTporTis
Komnmoroposa i moOynoBani 6idypkariiiHi JiarpaMu 3 BA3HAYSHHSM 00JacTeil aBTOMOYIIALL 1 Xaocy,
30kpema, «J-g», «D-I».
KurouoBi cioBa: pesTUBICTCHKA JIAMITH 3BOPOTHOT XBHITI, Xa0C, HEJIIHIMHI METOIN
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