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QUANTUM DEFECT APPROXIMATION IN THEORY OF RADIATIVE TRANSITIONS IN 
SPECTRUM OF Li-like CALCIUM 

The combined relativistic quantum defect approximation and relativistic many-body perturbation theory 
with the zeroth order optimized  approximation are applied to studying  the Li-like calcium oscillator strengths 
of radiative transitions from ground state to the Rydberg states. New element in our scheme is an implementation 
of optimized relativistic quantum defect approximation to an energy approach frames. Comparison of calculated 
oscillator strengths with available theoretical and experimental (compillated) data is performed and a number of 
oscillator strengths are presented firstly.

1.  Introduction

This paper goes on our work on studying ra-
diative transitions characteristics in the multich-
arged ions on the basis of the combined relativis-
tic quantum defect approximation [1,2] and rela-
tivistic many-body perturbation theory with the 
zeroth order optimized  approximation [3]. 

Let us remind (look, for example, [1,2]) that 
the spectral data for  highly ionized atoms has a 
fundamental importance in many fields of atom-
ic physics (spectroscopy, spectral lines theory), 
plasma physics and chemistry, laser physics and 
quantum electronics, astrophysics and laboratory, 
thermonuclear plasma diagnostics and in fusion 
research. 

There have been sufficiently many reports of 
calculations and compilation of energies and os-
cillator strengths for the Li-like ions and other 
alkali-like ions (see, for example, [1–23]). Par-
ticularly, Martin and Wiese have undertaken a 
critical evaluation and compilation of the spectral 
parameters for Li-like ions (Z=3-28) [4,5]. The 
results of the high-precision non-relativistic cal-
culations of the energies and oscillator strengths 
of 1s22s¡1s22p for Li-like systems up to Z = 50 
are presented in Refs. [12-20]. The Hylleraas-type 

variational method and the 1/Z expansion meth-
od have been used. Chen Chao and Wang Zhi-
Wen [15] listed the nonrelativistic dipole-length, 
-velocity, -acceleration oscillator strengths for 
1s22s–1s22p transitions of LiI isoelectronic se-
quence calculated  within a full core plus correla-
tion method with using multiconfiguration inter-
action wave functions. Fully variational nonrela-
tivistic Hartree-Fock wave functions were used 
by Bièmont in calculating 1s2n2L (n<8=s,p,d,f; 
3<Z<22) Li-like states [18]. 

In many papers the Dirac-Fock (DF) method, 
model potential, quantum defect approximation 
in the different realizations have been used for 
calculating  the energies and oscillator strengths 
of the Li-like and similar ions (see Refs.[4-9,19-
30]). The consistent QED calculations of the 
energies, ionization potentials, hyperfine struc-
ture constants for the Li-like ions are performed 
in Refs. [18,19]. However, for Li-like ions with 
higher Z, particularly, for their high-excited (Ry-
dberg) states, there are not enough precise data 
available in literatures. 

In this paper the combined relativistic quantum 
defect approximation (QDA) and relativistic ma-
ny-body perturbation theory with the zeroth order 
optimized  approximation are applied to studying  
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the Li-like calcium oscillator strengths of radia-
tive transitions from ground state to the Rydberg 
states. New element in our scheme is an imple-
mentation of optimized relativistic quantum de-
fect approximation to an energy approach frames. 
Comparison of calculated oscillator strengths 
with available theoretical and experimental (com-
pillated) data is performed and a number of oscil-
lator strengths are presented firstly.

2.  Relativistic energy approach to atom in a 
strong laser field: Multiphoton resonances

As the detailed presentation of our version 
of the relativistic quantum defect approximation 
is in , for example, Ref. [1,2], here we present 
only the key elements. The   relativistic energy 
approach in gauge-invariant form is presented in 
many books, articles (look [5-7,3]).  Within an 
energy approach the imaginary part of electron 
energy shift of an atom is  directly connected with 
the radiation transition  probability. The total en-
ergy shift of the state is usually presented as (see, 
for example, [5,6] and also [3]):

                        DE = ReDE + i G/2             (1)

where G is interpreted as the level width and de-
cay possibility P = G. The imaginary part of elec-
tron energy of the system, which is defined in the 
lowest PT order as [3]: 
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where ∑
>> fna

for electron and ∑
≤< fna

for vacancy. 

The matrix element is determined as follows:

                                                                     (3)  

The separated terms of the sum in (3) represent 
the contributions of different channels and a prob-
ability of the dipole transition is: 
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The corresponding oscillator strength: 

152 1067.6/ ⋅G⋅= nggf al , where g is the degen-

eracy degree,  l is a wavelength in angstrems 
(Ǻ). Under calculating the matrix elements (3) 
one should use the angle symmetry of the task 
and write the expansion for potential sin|w|r12/r12 
on spherical functions and  this expansion corre-
sponds to usual multipole one for radiative prob-
ability. Substitution of expansion (5) to matrix 
element of interaction gives [5,6]: 
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where ji is the total single electron momentum, mi 

– the projections; QulQl  is the Coulomb part of in-

teraction, BrQl - the Breit part. The Coulomb part 
QulQl  is expressed in terms of radial integrals Rl , 

angular coefficients Sl .  The Breit interaction part 
is defined by similar way (see [3]). The relativis-
tic wave functions are calculated by solution of 
the Dirac equation with the potential, which in-
cludes the “outer electron- ionic core” potential 
and polarization potential [3]. The calibration of 
the single model potential parameter has been per-
formed on the basis of the special ab initio proce-
dure within relativistic energy approach  (see also 
[5-7]). In Ref.[6] the lowest order multielectron 
effects, in  particular,  the gauge dependent radia-
tive contribution Im dEninv for the certain class of 
the photon propagator calibration is treated. This 
value is considered to be the typical representative 
of the electron correlation effects, whose minimi-
zation is a reasonable criterion in the searching 
for the optimal one-electron basis of the  relativ-
istic many-body PT. The minimization of func-
tional Im dEninv leads to integral-differential equa-
tion that can be solved using one of the standard 
codes. Therefore, it provides the construction of 
the optimized 1-particle representation and thus 
optimized relativistic model potential ORMP 
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where ji is the total single electron 
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terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
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momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
potential [3]. The calibration of the single 
model potential parameter has been 
performed on the basis of the special ab initio 
procedure within relativistic energy approach  
(see also [5-7]). In Ref.[6] the lowest order 
multielectron effects, in  particular,  the 
gauge dependent radiative contribution Im 
Eninv for the certain class of the photon 
propagator calibration is treated. This value 
is considered to be the typical representative 
of the electron correlation effects, whose 
minimization is a reasonable criterion in the 
searching for the optimal one-electron basis 
of the  relativistic many-body PT. The 
minimization of functional Im Eninv leads to 
integral-differential equation that can be 
solved using one of the standard codes. 
Therefore, it provides the construction of the 
optimized 1-particle representation and thus 
optimized relativistic model potential ORMP 
scheme [6]. The same procedure is used in 
generalization of the relativistic QDA. 
Usually, the most exact version of the QDA 
is provided by using the empirical data in 

2.  Relativistic energy approach to atom in 
a strong laser field: Multiphoton 

resonances 
 

As the detailed presentation of our 
version of the relativistic quantum defect 
approximation is in , for example, Ref. [1,2], 
here we present only the key elements. The   
relativistic energy approach in gauge-
invariant form is presented in many books, 
articles (look [5-7,3]).  Within an energy 
approach the imaginary part of electron 
energy shift of an atom is  directly connected 
with the radiation transition  probability. The 
total energy shift of the state is usually 
presented as (see, for example, [5,6] and also 
[3]): 
 

E = ReE + i /2                                                                   
                                                                  (1) 

where  is interpreted as the level width and 
decay possibility P = . The imaginary part 
of electron energy of the system, which is 
defined in the lowest PT order as [3]:  
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The separated terms of the sum in (3) 
represent the contributions of different 
channels and a probability of the dipole 
transition is:  
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The corresponding oscillator strength: 

152 1067.6/  nggf  , where g is the 
degeneracy degree,   is a wavelength in 
angstrems (Ǻ). Under calculating the matrix 
elements (3) one should use the angle 

symmetry of the task and write the expansion 
for potential sinr12/r12 on spherical 
functions and  this expansion corresponds to 
usual multipole one for radiative probability. 
Substitution of expansion (5) to matrix 
element of interaction gives [5,6]:  
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where ji is the total single electron 
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Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
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generalization of the relativistic QDA. 
Usually, the most exact version of the QDA 
is provided by using the empirical data in 
order to determine the quantum defect values 
for different state.  
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where ji is the total single electron 
momentum, mi – the projections; QulQ  is the 
Coulomb part of interaction, BrQ - the Breit 
part. The Coulomb part QulQ  is expressed in 
terms of radial integrals R , angular 
coefficients S .  The Breit interaction part is 
defined by similar way (see [3]). The 
relativistic wave functions are calculated by 
solution of the Dirac equation with the 
potential, which includes the “outer electron- 
ionic core” potential and polarization 
potential [3]. The calibration of the single 
model potential parameter has been 
performed on the basis of the special ab initio 
procedure within relativistic energy approach  
(see also [5-7]). In Ref.[6] the lowest order 
multielectron effects, in  particular,  the 
gauge dependent radiative contribution Im 
Eninv for the certain class of the photon 
propagator calibration is treated. This value 
is considered to be the typical representative 
of the electron correlation effects, whose 
minimization is a reasonable criterion in the 
searching for the optimal one-electron basis 
of the  relativistic many-body PT. The 
minimization of functional Im Eninv leads to 
integral-differential equation that can be 
solved using one of the standard codes. 
Therefore, it provides the construction of the 
optimized 1-particle representation and thus 
optimized relativistic model potential ORMP 
scheme [6]. The same procedure is used in 
generalization of the relativistic QDA. 
Usually, the most exact version of the QDA 
is provided by using the empirical data in 
order to determine the quantum defect values 
for different state.  
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scheme [6]. The same procedure is used in gen-
eralization of the relativistic QDA. Usually, the 
most exact version of the QDA is provided by us-
ing the empirical data in order to determine the 
quantum defect values for different state. 

The above described approach allows to gen-
eralize the QDA and get a new ab initio optimized 
QDA scheme, satisfying a principle of minimiza-
tion for the gauge dependent radiative contribu-
tions to Im dEninv for the certain class of the pho-
ton propagator calibration. A relativistic quantum 
defect is usually defined as (see, for example, [3]:

         ,)( χgνµχ -+-= nn nE                  (6) 

where χ is he Dirac quantum number, and 
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In the non-relativistic limit (i.e. the fine struc-

ture constant α→0) expression (7) transfers to the 
well known non-relativistic expression for quan-
tum defect: 
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where n is the principal quantum number, n* is an 
effective quantum number, Еn is an electron en-
ergy and z is a charge of a core (ion).  

3.  Results and conclusions

We applied the above described approach to 
calculating the energies and oscillator strengths 
of transitions in spectra of the Li-like calcium 
(Z=12). All calculation is  performed on the basis 
of the numeral code Superatom. There are con-
sidered the radiative transitions from ground state 
to the Rydberg states, particularly, 2s1/2 – np1/2,3/2  
(n=3-12). ASome preliminary data were listed 
in [1]. As usually, to test the obtained results, we 
compare our data on the oscillator strengths val-

ues for some Li-like ions with the known theoreti-
cal and compillated data [8-18]. In table 1 we pre-
sent the our oscillator strengths values (OQDA) 
for the 2s1/2 – npj  (n=3-12, j=1/2,3/2) transitions 
in spectrum of the Li-like Ca17+.  

Table 1 
Oscillator strengths values (OQDA) for the 
2s1/2 – npj  (n=3-12, j=1/2,3/2) transitions in 

spectrum of the Li-like Ca17+

 

Transition Exp QDA DF

2s1/2–3p1/2 0.123 – –

2s1/2–3p3/2 0.241 – –

2s1/2–4p1/2 – – –

2s1/2–8p1/2 – 2.54a 2.53a

2s1/2–9p1/2 – 1.74a 1.73a

2s1/2–10p1/2 – 1.24a 1.24a

2s1/2–11p1/2 – 0.919a 0.916a

2s1/2–12p1/2 – 0.70a 0.698a

2s1/2–13p1/2 – 0.546a 0.54a

Transition MBP Our1 Our2

2s1/2–3p1/2 0.126 0.120 0.121

2s1/2–3p3/2 0.246 0.237 0.238

2s1/2–4p1/2 – 0.028 0.029

2s1/2–8p1/2 – 2.52 2.52

2s1/2–9p1/2 – 1.75 1.75

2s1/2–10p1/2 – 1.24 1.24

2s1/2–11p1/2 – 0.91 0.91

2s1/2–12p1/2 – 0.70 0.70

2s1/2–13p1/2 – 0.55 0.55

In Table 1 we list also the corresponding re-
sults on oscillator strengths obtained by comput-
ing within the standard QDA, Dirac-Fock (DF) 
by Zilitis and some experimental data by Mar-
tin-Weiss [1,4,8]. The QDA oscillator strengths 
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data become more exact with the growth of the 
principal quantum number. At the same time the 
accuracy of the DF data may be decreased. The 
agreement between the Martin-Weiss data and 
our results (our 1 and Our 2 are corresponding 
to two different gauges of a photon propagator or 
at usual amplitude approach language length and 
velocity forms of transition operator) is physical-
ly reasonable. The closeness of oscillator strength 
values proves a gauge invariance principle  con-
servation in the radiative transition probabilities 
scheme.  
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SPECTRUM OF Li-like CALCIUM 

Abstract.
The combined relativistic quantum defect approximation and relativistic many-body perturbation 

theory with the zeroth order optimized  approximation are applied to studying  the Li-like calcium 
oscillator strengths of radiative transitions from ground state to the Rydberg states. New element in 
our scheme is an implementation of optimized relativistic quantum defect approximation to an energy 
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Т. Б. Ткач

ПРИБЛИЖЕНИЕ  КВАНТОВОГО ДЕФЕКТА В ТЕОРИИ РАДИАЦИОННЫХ 
ПЕРЕХОДОВ В СПЕКТРЕ Li-ПОДОБНОГО КАЛЬЦИЯ

Резюме. 
Комбинированный релятивистский метод модельного потенциала и метод теории возмуще-

ний с оптимизированным 1-частичным нулевым приближением использованы для вычисления 
энергий и сил осцилляторов радиационных переходов из основного состояния в низколежащие 
и ридберговские состояния в спектрах  Li-подобных ионов. Основная особенность нового под-
хода заключается в имплементации оптимизированного релятивистского приближения модель-
ного потенциала (квантового дефекта) в рамки энергетического подхода. Выполнен анализ и 
сравнение полученных данных  для сил осцилляторов с имеющимися теоретическими и экс-
периментальными данными.  

Ключевые слова: квантового дефекта приближение, силы осцилляторов, радиационные 
переходы, Li-подобный кальций
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НАБЛИЖЕННЯ КВАНТОВОГО ДЕФЕКТУ В ТЕОРІЇ РАДІАЦІЙНИХ ПЕРЕХОДІВ  
У СПЕКТРІ Li-ПОДІБНОГО КАЛЬЦІЮ

Резюме. 
Комбінований релятивістське наближення квантового дефекту  і релятивістська теорія збу-

рень з оптимізованим одночастинковим нульовим наближенням використані для вивчення 
сил осциляторів радіаційних переходів з основного стану у  рідбергівські стани у спектрі  Li-
подібного кальцію. Основна особливість нового підходу пов’язана з імплементацією оптимі-
зованого релятивістського наближення квантового дефекту у межи енергетичного підходу. Ви-
конано аналіз та порівняння отриманих результатів по силам осциляторів з наявними теоретич-
ними та експериментальними даними і ряд значень сил осциляторів представлені, по-перше.

Ключові слова: квантового дефекту наближення, сили осциляторів, радіаційні переходи, 
Li-подібний кальцій


