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SPECTROSCOPY OF THE COMPLEX AUTOIONIZATION RESONANCES IN 
SPECTRUM OF HELIUM: TEST AND NEW SPECTRAL DATA 

We applied a generalized energy approach (Gell-Mann and Low S-matrix formalism) combined with the 
relativistic multi-quasiparticle (QP) perturbation theory (PT) with the Dirac-Kohn-Sham zeroth approximation 
and accounting for the exchange-correlation, relativistic corrections to studying  autoionization resonances 
in the helium spectrum, in particular, we predicted the energies and widths of the number of the Rydberg 
resonances. There are presented the results of comparison of our theory data for the autoionization resonance 
3s3p 1Р0 with the available experimental data and those results of other theories, including, method of complex 
rotation by Ho, algebraic approach by Wakid-Callaway, diagonalization method by Senashenko-Wague etc.

1. Introduction

Here we continue our investigations of study-
ing the autoionization state and AR in spectra of 
many electron complex atoms and ions. Let us 
note [1] that theoretical methods of calculation 
of the spectroscopic characteristics for heavy at-
oms and ions are usually divided into a few main 
groups [1-21]. At first, one should mention the 
well known, classical multi-configuration Har-
tree-Fock method (as a rule, the relativistic effects 
are taken into account in the Pauli approximation 
or Breit hamiltonian etc.) allowed to get a great 
number of the useful spectral information about 
light and not heavy atomic systems, but in fact 
it provides only qualitative description of spec-
tra of the heavy atoms and ions. Another more 
consistent method  is given by the known multi-
configuration Dirac-Fock (MCDF) approach. In 
the MCDF calculations the one- and two-particle 
relativistic effects and important exchange-corre-
lation corrections are usually taken into account 
practically, however the total accounting is not 
possible. In this essence it should be given spe-
cial attention to very complex correlation effects, 

such as a continuum pressure and energy depen-
dence of the inter electron interaction.  

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the helium  atom. 
The new elements of the approach include  the 
combined the generalized energy approach and 
the gauge-invariant QED many-QP PT with the 
Dirac-Kohn-Sham (DKS) “0” approximation 
(optimized 1QP  representation) and an accurate 
accounting for relativistic, correlation and others  
effects. The generalized gauge-invariant version 
of the energy approach has been further devel-
oped in Refs. [12,13]. Below we present new data 
on the energies and widths of the 2s,p, 3s,p 1Р, 
double excited AR for configurations ns2 , np2 , 
3d2 1G, 4d2 1G, 5d2 1G, 4f2 1I , N snp 1,3Lπ and 3lnl΄ 
1,3 Lπ  . 

2. Relativistic approach in autoionization 
spectroscopy of heavy atoms

In refs. [11-15, 17-20] it has been in details 
presented, so here we give only the fundamen-
tal aspects.  In relativistic case the Gell-Mann 
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and Low formula expressed an energy shift DE 
through the QED scattering matrix including the 
interaction with as the photon vacuum field as 
the laser field. The first case is corresponding to 
definition of the traditional radiative and autoion-
ization characteristics of multielectron atom. The 
wave function zeroth basis is found from the Di-
rac-Kohn-Sham equation with a potential, which 
includes the ab initio (the optimized model poten-
tial or DF potentials, electric and polarization po-
tentials of a nucleus; the Gaussian or Fermi forms 
of the charge distribution in a nucleus are usu-
ally used) [5]. Generally speaking, the majority of 
complex atomic systems possess a dense energy 
spectrum of interacting states with essentially 
relativistic properties. Further one should realize 
a field procedure for calculating the energy shifts 
DE of degenerate states, which is connected with 
the secular matrix M diagonalization [8-12]. The 
secular matrix elements are already complex in 
the second order of the PT. Their imaginary parts 
are connected with a decay possibility. A total en-
ergy shift of the state is presented in the standard 
form:

Re Im Im 2E i E EDΕ= D + D D =-G , (1)

where G is interpreted as the level width, and the 
decay possibility Ρ = G . The whole calculation 
of the energies and decay probabilities of a non-
degenerate excited state is reduced to the calcula-
tion and diagonalization of the M. The jj-coupling 
scheme is usually used. The complex  secular ma-
trix M is represented in the form [9,10]:  

      
( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +              (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. ( )0M  is a real matrix, proportional 
to the unit matrix. It determines only the general 
level shift. We have assumed ( )0 0.M =  The di-
agonal matrix ( )1M  can be presented as a sum of 
the independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. Sub-

stituting these quantities into (2) one could have 
summarized  all the contributions of the 1QP di-
agrams of all orders of the formally exact QED 
PT. The optimized 1-QP representation is the best 
one to determine the zeroth approximation. In 
the second order, there is important kind of dia-
grams: the ladder ones. These contributions have 
been summarized by a modification of the central 
potential, which must now include the screening 
(anti-screening) effect  of each particle by two 
others. The additional potential modifies the 1QP 
orbitals and energies. Let us remind that in the 
QED theory, the photon propagator D(12) plays 
the role of this interaction. Naturally, an analyti-
cal form of D depends on the gauge, in which the 
electrodynamic potentials are written. In general, 
the results of all approximate calculations de-
pended on the gauge. Naturally the correct result 
must be gauge invariant. The gauge dependence 
of the amplitudes of the photoprocesses in the ap-
proximate calculations is a well known fact and 
is in details investigated by Grant, Armstrong, 
Aymar-Luc-Koenig, Glushkov-Ivanov [1,2,5,9]. 
Grant has investigated the gauge connection with 
the limiting non-relativistic form of the transition 
operator and has formulated the conditions for 
approximate functions of the states, in which the 
amplitudes are gauge invariant (so called Grant’s 
theorem). These results remain true in an energy 
approach as the final formulae for the probabili-
ties coincide in both approaches. In ref. [16] it has 
been developed a new version of the approach to 
conserve gauge invariance. Here we applied it to 
get the gauge-invariant procedure for generating 
the relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). 

A width of  a state associated with the decay of 
the AR is determined by square of the matrix ele-
ment of the interparticle interaction Г ∞ |V ( b1b2 , 
b3k ) | 2 . The total width is given by the expres-
sion: 
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probabilities coincide in both approaches. In ref. 
[16] it has been developed a new version of the 
approach to conserve gauge invariance. Here we 
applied it to get the gauge-invariant procedure 
for generating the relativistic DKS orbital bases 
(abbreviator of our method: GIRPT).  

A width of  a state associated with the 
decay of the AR is determined by square of the 
matrix element of the interparticle interaction 
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where the coefficients C can be determined bas 
follows:                    

                                                                   (4a)

                                                                   (4b)
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                                                                  (4d)

The matrix element of the relativistic inter-
particle interaction 

                                                                      (5)

(here αI –the Dirac matrices) in (3) is determined 
as follows: 

     

                                                                      (6)

                         aQ = Qul
aQ + Br

aQ .               (7)

Here Qul
aQ and Br

aQ is corresponding to the 
Coulomb and Breit parts of the interlparticle in-
teraction (5). It is worth to remind that the  real 
part of the interaction matrix element can be ex-
panded in terms of Bessel functions [5,8]:

( ) ( )∑
=

<+
×=

0 2
1

2112

12

2
cos

l
l

ωlpω
rJ

rrr
r

( ) ( )21
2

1 cos rrll
ω PrJ >--

×
(8)

The Coulomb part Qul
lQ  is expressed in the ra-

dial integrals Rl , angular coefficients Sl  as fol-
lows:

( ) ( ){ +12431243Re~Re Qul
ll SRQ l

( ) ( )++ 3~241~3~241~ ll SR

( ) ( )++ 34~2~134~2~1 ll SR

( ) ( )}3~4~2~1~3~4~2~1~ ll SR+
(9)

where, for example,  ReQl(1243) is as follows:  

(10)

Here  f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                            

(11)

The angular coefficient is defined by standard 
way as above [3]. The calculation of radial inte-
grals ReRl(1243) is reduced to the solution of a 
system of  differential equations:  

                                              (12)

In addition,  у3(∞)=ReRl(1243), у1(∞)=Xl(13). 
The system of differential equations includes also 

equations for functions f/r|æ|-1, g/r|æ|-1, ( )1
lZ , ( )2

lZ . 
The formulas for the autoionization (Auger) decay 
probability include the radial integrals Ra(akgb), 
where one of the functions describes electron in 
the continuum state. When calculating this inte-
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   
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In addition,  у3()=ReR(1243), у1()=X(13). 
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(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 
The correctly normalized function should have 
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When integrating the master system, the 
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way as above [3]. The calculation of radial 
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(12) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 
The correctly normalized function should have 
the following asymptotic at  r0: 
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When integrating the master system, the 
function is calculated simultaneously:       
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gral, the correct normalization of the function ψk 
is a problem. The correctly normalized function 
should have the following asymptotic at  r→0:

                                                   
                                                                   (13)

When integrating the master system, the func-
tion is calculated simultaneously:      

                                              
                                                                    (14)

It can be shown that at r→∞, N(r)→Nk, where 
Nk is the normalization of functions  fk, gk of con-
tinuous spectrum satisfying the condition (9). 
Other details can be found in refs.[10-13,16-20] 
as well as description of the  “Superatom” and 
Cowan PC codes, used in all computing.

3. Results and conclusions

In figure 1 there are presented the  fragments of 
the He photoionization spectrum plus absorption 
(due to the data by  NIST [22]). Spectral range 
includes the ARs, which are on average 35-40 eV 
above the first  ionization potential (24.58eV). 

Figure 1. The fragment of the experimental He 
photoionization spectrum (210-180A)

One of the first members of the AR series is 
associated with the transition to double the per-
mitted level excited 2s2p 1P1

0.  Generally there 
are identified two series of the resonances namely 
2snp, 2pns, and both have a first member 2s2p 
and converge to 189.6A). In Table 1 we list the 
experimental data on energy and width (NBS, 
National Bureau of Standards) 1Р0, lying below 
the ionization threshold n=2, and theoretical re-
sults - one of the most accurate theory type Fano 
(Bhatia-Temkin: Th1) and our theory (Th2)[1,3], 

which shows the comparison is quite acceptable 
accuracy of our theory. Another important test of 
any theory - calculation parameters AS 3s3p 1Р0.

Table 1 
The energy and width of the AR He 1Р0 (see 

text)

Th.1 Th.2
(our data)

Exp.
(NBS, NIST)

Е 60.1444 60.1392 60.133±0.015
60.151±0.0103

Г 0.0369 0.0374 0.038±0.004
0.038±0.002

In the Tables 2 and 3 we present the comparison 
of our data for the AR 3s3p 1Р0 with those of other 
theories, including, method of complex rotation 
by Ho, algebraic approach by Wakid-Callaway, 
diagonalization method by Senashenko-Wague, 
relativistic Hartree-Fock (RHF) methid by Nico-
laides-Komninos, R-matrix method by Hayes-
Scott, method of the adiabatic potential curves by 
Koyoma-Takafuji-Matsuzawa and Sadeghpour, 
L2 technique with the Sturm decomposition by 
Broad- Gershacher and Moccia-Spizzo, the Fesh-
bach method by  Wu-Xi) and data measurements 
in laboratories: NIST (NBS; 2SO-MeV electron 
synchrotron storage ring (SURF-II )), Wisconsin 
Laboratory (Wisconsin Tantalus storage ring), 
Stanford Synchrotron Radiation Laboratory 
(SSRL), Berlin electron storage ring (BESSY), 
Daresbury Synchrotron Radiation Source (DSRS) 
[1,3,5,22-24].  

On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are devel-
oped specifically for the study helium and can 
not be easily generalized to the case of the heavy 
multi-electron atoms) the definite advantage of 
the presented approach. Note that during transla-
tion for the units “Ry-eV” there was used the He 
ground-state energy value: E=- 5.80744875 Ry 
and the reduced  Rydberg constant 1Ry = 13.603 
876 eV.
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The matrix element of the relativistic inter-
particle interaction  
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              aQ = Qul

aQ + Br
aQ .             (7) 

 
Here Qul

aQ and Br
aQ is corresponding to the 

Coulomb and Breit parts of the interlparticle 
interaction (5). It is worth to remind that the  
real part of the interaction matrix element can 
be expanded in terms of Bessel functions [5,8]: 
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The Coulomb part Qul

Q  is expressed in the 
radial integrals R , angular coefficients S  as 
follows: 
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where, for example,  ReQ(1243) is as follows:   
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Here  f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   
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(12) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 
The correctly normalized function should have 
the following asymptotic at  r0: 
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When integrating the master system, the 
function is calculated simultaneously:       
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It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-
13,16-20] as well as description of the  
“Superatom” and Cowan PC codes, used in all 
computing. 

 
3. Results and conclusions 

In figure 1 there are presented the  fragments of 
the He photoionization spectrum plus 
absorption (due to the data by  NIST [22]). 
Spectral range includes the ARs, which are on 
average 35-40 eV above the first  ionization 
potential (24.58eV).  
 

 
Figure 1. The fragment of the experimental He 

photoionization spectrum (210-180A) 
 
 
One of the first members of the AR series is 
associated with the transition to double the 
permitted level excited 2s2p 1P1

0.  Generally 
there are identified two series of the resonances 
namely 2snp, 2pns, and both have a first 
member 2s2p and converge to 189.6A). In Table 
1 we list the experimental data on energy and 
width (NBS, National Bureau of Standards) 1Р0, 
lying below the ionization threshold n=2, and 
theoretical results - one of the most accurate 
theory type Fano (Bhatia-Temkin: Th1) and our 
theory (Th2)[1,3], which shows the comparison 
is quite acceptable accuracy of our theory. 
Another important test of any theory - 
calculation parameters AS 3s3p 1Р0. 

 
Table 1. The energy and width of the AR He 
1Р0  

(see text) 
 Th.1 

 
Th.2 

(our data) 
Exp. 

(NBS, NIST) 
Е 60.1444 60.1392 60.1330.015 

60.1510.0103 
Г 0.0369 0.0374 0.0380.004 

0.0380.002 
 

In the Tables 2 and 3 we present the comparison 
of our data for the AR 3s3p 1Р0 with those of 
other theories, including, method of complex 
rotation by Ho, algebraic approach by Wakid-
Callaway, diagonalization method by 
Senashenko-Wague, relativistic Hartree-Fock 
(RHF) methid by Nicolaides-Komninos, R-
matrix method by Hayes-Scott, method of the 
adiabatic potential curves by Koyoma-Takafuji-
Matsuzawa and Sadeghpour, L2 technique with 
the Sturm decomposition by Broad- Gershacher 
and Moccia-Spizzo, the Feshbach method by  
Wu-Xi) and data measurements in laboratories: 
NIST (NBS; 2SO-MeV electron synchrotron 
storage ring (SURF-II )), Wisconsin Laboratory 
(Wisconsin Tantalus storage ring), Stanford 
Synchrotron Radiation Laboratory (SSRL), 
Berlin electron storage ring (BESSY), 
Daresbury Synchrotron Radiation Source 
(DSRS) [1,3,5,22-24].   
 
Table 2a. Theoretical data for energy of the AR 
3s3p 1Р0 (our data with those of other theories) 

Method Authors Er (Ry) 
PT-REA 
Complex-rotation   
Algebraic close 
coupling  
Diagonalization 
method 
RHF  
 
R-matrix calculation 
Adiabatic potential 
curves  
Adiabatic potential 
L2 tech.+Sturm 
 
Feshbach method 
K-matrix L2 basis-set  

Our theory  
Ho  
Wakid-
Callaway  
Senashenko-
Wague 
Nicolaides-
Komninos 
Hayes-Scott 
Koyoma etal 
 
Sadeghpour 
Broad- 
Gershacher 
Wu-Xi 
Moccia-
Spizzo 

-0.668802 
-0.671252 

-0.670 
 

-0.6685 
- 

0.671388 
 

-0.6707 
-0.6758 

 
-0.67558 
-0.67114 

 
-0.669 27 

 
-0.670 766 

 
On the one hand, there is sufficiently good 
accuracy of our theory, the secondly (bearing in 
mind that most of the listed methods are 
developed specifically for the study helium and 
can not be easily generalized to the case of the 
heavy multi-electron atoms) the definite 
advantage of the presented approach. Note that 
during translation for the units “Ry-eV” there 
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Table 2a 
Theoretical data for energy of the AR 3s3p 1Р0 

(our data with those of other theories)

Method Authors Er (Ry)

PT-REA
Complex-rotation  
Algebraic close 
coupling 
Diagonalization 
method
RHF 

R-matrix calculation
Adiabatic potential 
curves 
Adiabatic potential
L2 tech.+Sturm

Feshbach method
K-matrix L2 basis-set 

Our theory 
Ho 
Wakid-
Callaway 
Senashenko-
Wague
Nicolaides-
Komninos
Hayes-Scott
Koyoma etal

Sadeghpour
Broad- 
Gershacher
Wu-Xi
Moccia-
Spizzo

-0.668802
-0.671252

-0.670

-0.6685
-

0.671388

-0.6707
-0.6758

-0.67558
-0.67114

-0.669 27

-0.670 
766

Table 2b
Theoretical data for width of the AR 3s3p 1Р0 

(our data with with those of other theories)

Method Authors Г/2 (Ry)

PT-REA
Complex-rotation  
Algebraic close 
coupling 
Diagonalization 
method
RHF 

R-matrix calculation
Adiabatic curves 
Adiabatic potential
L2 tech.+Sturm

Feshbach method
K-matrix L2 basis-set 

Our theory 
Ho 
Wakid-
Callaway 
Senashenko-
Wague
Nicolaides-
Komninos
Hayes-Scott
Koyoma etal
Sadeghpour
Broad- 
Gershacher
Wu-Xi
Moccia-
Spizzo

0.006814
0.007024
0.00695

0.00548

     -

0.00660
     -
     -
0.00704

0.00420

0.00676

An interesting and valuable renewed data on 
Rydberg AR energies (in atomic units) of the dou-
ble excited states ns2 1S are listed in Table 4. 

In whole an detailed analysis shows quite 
physically reasonable agreement between the pre-
sented theoretical and experimental results. But 
some difference, in our opinion, can be explained 

by different accuracy of estimates of the radial 
integrals, using the different type basis’s (gauge 
invariance conservation or a degree of accounting 
for the exchange-correlation effects) and some 
other additional computing approximations.

Table 3
Theoretical and experimental data for energy 

and width of the AR 3s3p 1Р0 (our data with 
those of other best theories)

Method Er (eV) Г/2 (eV)

Theories
Our data 
Complex-
rotation  
MCHF
R-matrix 

Exp.
NBS-I (1973)
Wisconsin(1982)
SSRL (1987)
BESSY (1988) 
 DSRS (2009)

69.9055
69.8722
69.8703
69.8797

69.919±0.007
69.917±0.012
69.917±0.012
69.914±0.015
69.880±0.022

0.1854
0.1911

-
0.1796

0.132±0.014
0.178±0.012
0.178±0.012
0.200±0.020
0.180±0.015

Note: the He ground-state energy value: E=- 
5.80744875 Ry and the reduced  Rydberg con-
stant 1Ry = 13.603 876 eV.

Table 4 
Predicted data for Rydberg AR energies (in 

atomic units) of the He double excited states 
ns2 1S (our theory)

State Energy State Energy
6s2 0.08697 10s2 0.03002
7s2 0.06288 11s2 0.02468
8s2 0.04467 12s2 0.01998
9s2 0.03697 13s2 0.01923
14s2 0.01596 18s2 0.00928
15s2 0.01370 19s2 0.00832
16s2 0.01198 20s2 0.00746
17s2 0.01042 21s2 0.00507
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In our theory there are used gauge-optimized 
basis’s of the relativistic and such basis has ad-
vantage in comparison with the standard DF type 
basis’s. 

In conclusion let us remind that in ref. [14] 
(see also [5,12]) it had been predicted a new op-
tics and spectroscopy  effect of the giant chang-
ing of the AS width in a sufficiently weak electric 
field (for two pairs of the Tm, Gd AR). Naturally  
any two states of different parity can be mixed 
by the external electric field. The mixing leads to 
redistribution of the autoionization widths. In a 
case of the heavy elements such as lanthanide and 
actinide atoms the respective redistribution has a 
giant effect. In the case of degenerate or near-de-
generate resonances this effect becomes observ-
able even at a moderately weak field. 

We have tried to discover the same new spec-
tral effect in a case of the He Rydberg autoioniza-
tion  states spectrum using the simplified version 
of the known strong-field operator PT formalism 
[5,14]. However, the preliminary estimates have 
indicated on the absence of the width giant broad-
ening effect for the helium case, except for minor 
changes of the corresponding widths, which are 
well known in the standard atomic spectroscopy. 
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data for the autoionization resonance 3s3p 1Р0 with the available experimental data and those results of 
other theories, including, method of complex rotation by Ho, algebraic approach by Wakid-Callaway, 
diagonalization method by Senashenko-Wague etc.
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СПЕКТРОСКОПИЯ СЛОЖНЫХ АВТОИОНИЗАЦИОННЫХ РЕЗОНАНСОВ В 
СПЕКТРЕ ГЕЛИЯ: ТЕСТ И НОВЫЕ СПЕКТРАЛЬНЫЕ ДАННЫЕ

Резюме. 
Обобщенный энергетический подход (S-матричный формализм Гелл-Мана и Лоу) и реляти-

вистская теория возмущений с дирак-кон-шэмовским нулевым приближением и учетом обмен-
но-корреляционных и релятивистских поправок применены к изучению автоионизационных 
резонансов в атоме гелия, в частности, предсказаны энергии и ширины ряда ридберговых ре-
зонансов.  Представлены результаты сравнения данных нашей теории, в частности, для автои-
онизацийного резонанса 3s3p 1Р0 с имеющимися экспериментальными данными и результата-
ми других теорий, в том числе, методом комплексного вращения Хо алгебраического подхода 
Wakid-Callaway, метода диагонализации Senashenko-Wague и т.д. 

Ключевые слова: спектроскопия автоионизационных резонансов, релятивистский энерге-
тический подход, гелий
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СПЕКТРОСКОПІЯ СКЛАДНИХ АВТОІОНІЗАЦІЙНИХ РЕЗОНАНСІВ В СПЕКТРІ 
ГЕЛІЮ: ТЕСТ І НОВІ СПЕКТРАЛЬНІ ДАНІ 

Резюме.  
Узагальнений енергетичний підхід (S-матричний формалізм Гелл-Мана та Лоу) и реляти-

вістська теорія збурень з дірак-кон-шемівським нульовим наближенням та урахуванням   об-
мінно-кореляційних і релятивістських поправок застосований  до вивчення автоіонізаційних 
резонансів у атомі гелію, зокрема, передбачені енергії та ширини ряду рідбергових резонансів.  
Представлені результати порівняння даних нашої теорії, зокрема, для автоіонізаційного резо-
нансу 3s3p 1Р0 з наявними експериментальними даними і результатами інших теорій, у тому 
числі, методом комплексного обертання Хо, алгебраїчного підходу Wakid-Callaway, методу діа-
гоналізації Senashenko-Wague  і т.д. 

Ключові слова: спектроскопія автоіонізаційних резонансів, релятивістський енергетичний 
підхід, гелій


