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LASER MULTIPHOTON SPECTROSCOPY OF ATOM EMBEDDED IN DEBYE PLASMAS: 
MULTIPHOTON RESONANCES AND TRANSITIONS  

The consistent relativistic energy approach to atom in a realistic laser field, based on the Gell-Mann and 
Low S-matrix formalism, is applied to studying the resonant multiphoton transitions in atoms embedded in the 
Debye plasmas. There is considered a new scheme to calculating the  multiphoton transitions characteristics, 
shifts and widths of multiphoton resonances.  An approach is used for treating the three-photon transitions in 
krypton embedded in the Debye plasmas.

1. The physics of multiphoton phenomena is 
one of the very quickly developed branches of the 
modern optics and spectroscopy, photophysics. 
Studying of multiphoton phenomena in atoms, 
molecules ets has a great progress that is stimu-
lated by development of new laser technologies 
(see Refs. [1-10]). The appearance of the power-
ful laser sources allowing to obtain the radiation 
field amplitude of the order of atomic field in the 
wide range of wavelengths results to systematic 
investigations of the nonlinear interaction of radi-
ation with atomic and molecular systems [1-14]. 

At the same time a direct laser-nucleus inter-
actions traditionally have been dismissed because 
of the well known effect of small interaction ma-
trix elements [9-11]. Some exceptions such as 
an interaction of x-ray laser fields with nuclei in 
relation to alpha, beta-decay and x-ray-driven 
gamma emission of nuclei have been earlier con-
sidered. With the advent of new coherent x-ray 
laser sources in the near future, however, these 
conclusions have to be reconsidered. 

At present time a great interest has been con-
nected with studying atomic processes in plasma 
environments because of the plasma environment 
screening effect on the plasma-embedded atomic 
systems. One should remind that the screening ef-
fects have play a important and significant part in 
the investigation of plasma environments over the 
past several decades. 

Different theoretical methods have been em-
ployed along with the Debye screening to study 
plasma environments.

The interaction of atoms with the external al-
ternating fields, in particular, laser fields, has been 
the subject of intensive experimental and theoret-
ical studied (see, for example, Refs. [1-8, 12-24]). 
A definition of the k-photon emission and absorp-
tion probabilities and atomic levels shifts, study 
of dynamical stabilization and field ionization etc 
are the most actual problems to be solved. 

Above methods which are usually used one 
should mention such approaches as the standard 
perturbation theory (surely for low laser filed in-
tensities), Green function method, the density-
matrix formalism, time-dependent density func-
tional formalism, direct numerical solution of the 
Schrödinger (Dirac) equation, multi-body multi-
photon approach, the time-independent Floquet 
formalism etc (see [1-8,12-24] and Refs. therein). 

Earlier the relativistic energy approach to 
studying the interaction  of atom with a  realis-
tic strong laser  field, based  on  the Gell-Mann 
and Low S-matrix formalism, has been devel-
oped. Originally, Ivanov has proposed an idea to 
describe quantitatively a behaviour of an atom in 
a realistic laser field by means studying the ra-
diation emission and absorption lines and further 
the theory of interaction of an atom with the Lor-
enz laser pulse and calculating the corresponding 
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lines moments has been in details developed in 
Ref. [19-25]. It has been checked in numerical 
simulation of the multiphoton resonances shifts 
and widths in the hydrogen and caesium. Theo-
ry of interaction of an atom with the Gauss and 
soliton-like laser pulses and calculating the cor-
responding lines moments has been in details pre-
sented in Refs. [23,26,27]. 

Here the consistent relativistic energy approach 
to atom in a realistic laser field, based on the Gell-
Mann and Low S-matrix formalism, is applied to 
studying the resonant multiphoton transitions in 
atoms embedded in the Debye plasmas. There is 
considered a new scheme to calculating the  mul-
tiphoton transitions characteristics, shifts and 
widths of multiphoton resonances.  An approach 
is used for treating the three-photon transitions in 
krypton embedded in the Debye plasmas

2. The relativistic energy approach in the dif-
ferent realizations and the radiation lines moments 
technique is in details presented in Refs. [19-30]. 
So, here we are limited only by presenting the 
master elements. In the theory of the non-relativ-
istic atom a convenient field procedure is known 
for calculating the energy shifts dE of degenerate 
states. This procedure is connected with the secu-
lar matrix M diagonalization. In constructing M, 
the Gell-Mann and Low adiabatic formula for dE 
is used [20-23,31]. In relativistic theory, the Gell-
Mann and Low formula dE is connected with 
electrodynamical scattering matrice, which in-
cludes interaction with as a laser field as a photon 
vacuum field. A case of interaction with photon 
vacuum is corresponding to standard theory of 
radiative decay of excited atomic states. Surely, 
in relativistic theory the secular matrix elements 
are already complex in the second perturbation 
theory (PT) order. Their imaginary parts are con-
nected with radiation decay possibility. The total 
energy shift is usually presented in the form [23]:

dE = RedE + i ImdE ,
                     

                     Im dE = -P/2,                        (1)

where P is the level width (decay possibility). Let 
us describe the interaction “atom-laser field” by 
the Ivanov potential [21,23]:

V(r,t)=V(r)òdwf(w-w0) cos
n=-∞

∞

∑ [w0t+w0nt]    (2)

Here w0 is the central laser radiation frequen-
cy, n is the whole number. The function f(w) is a 
Fourier component of the laser pulse. The con-
dition òdwf2(w)=1 normalizes potential V(rt) on 
the definite energy in the pulse. Usually one could  
consider the pulses with Lorentz shape (coherent 
1-mode pulse): ¦(w) = b/(w2+D2), Gaussian one 
(multi-mode chaotic pulse): ¦(w) = bexp[ln2(w2/
D2)]  and the soliton-like pulse: f(t) = b ch-1[t/D] 
(b -normalizing multiplier). 

The master program results in the calculating 
an imaginary part of energy shift ImdEa (w0) for 
any atomic level as the function of the central la-
ser frequency w0. An according function has the 
shape of the resonance, which is connected with 
the transition a-p (a, p-discrete levels) with ab-
sorption (or emission) of the “k” number of pho-
tons. For this transition the following values are 
determined [20-23]: 

dw(pa|k)=ò ¢dw Im dEa (w)(w - wpa/ k)/N,  (3)

mm =  ò ¢dw Im dEa (w) (v - wpa / k)m / N,             

where 
ò ¢dwImEa

is the normalizing multiplier; wpa is position of 
the non-shifted line for  transition a-p, dw(pa|k)  is 
the line shift under k-photon absorption; vpa=wpa+ 
k×dw(pa|k). The first moments m1, m2 and m3 de-
termine the atomic line centre shift, its dispersion 
and the asymmetry. 

 To find mm, we need to get an expansion of 
Ea to PT series: 

Ea = å Ea
(2k) (w0).

One may use here the Gell-Mann and Low adi-
abatic formula for dEa [20-23]. The consideration 
can be simplified by account of the k-photon ab-
sorption contribution in the first two PT orders. 
Besides, summation on laser pulse is exchanged 
by integration. The corresponding (l+2k+1)-times 
integral on (l+2k) temporal variables and r (l=0,2) 
(integral Ig ) are calculated [19-23]. Finally, after 
some cumbersome transformations one can get 
the expressions for the line moments. The corre-
sponding expressions for the Gaussian laser pulse 
are as follows:
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 dImE 
is the normalizing multiplier; p is position 
of the non-shifted line for  transition -p, 
(pa|k)  is the line shift under k-photon 
absorption; p=p+ kp|k). The first 
moments 1, 2 and 3 determine the atomic 
line centre shift, its dispersion and the 
asymmetry.  
 To find m, we need to get an 
expansion of E to PT series:  
 

E =  E
(2k) (0). 

 
One may use here the Gell-Mann and Low 
adiabatic formula for E [20-23]. The 
consideration can be simplified by account of 
the k-photon absorption contribution in the 
first two PT orders. Besides, summation on 
laser pulse is exchanged by integration. The 
corresponding (l+2k+1)-times integral on 
(l+2k) temporal variables and  (l=0,2) 
(integral I ) are calculated [19-23]. Finally, 
after some cumbersome transformations one 
can get the expressions for the line moments. 
The corresponding expressions for the 
Gaussian laser pulse are as follows: 

 
(p | k) = 

 
  ={/(k+1)k}[E(p,p/k)-E(,p/k)],    (9) 

 
2 = 2/k 

 
3={43/[k(k+1)]}[E(p,p/k)-E(, p/k)], 
 
where 
 

E(j,p/k)=0,5 V
pi

 jpi Vpij [ 1
  jp pi

k /
+ 

+ 1
  jp pi

k /
]                   (10) 

 
The summation in (10) is over all 

atomic states. Let us note that these formulas 
for the Gaussian pulse differ of the Lorenz 

shape laser pulse expressions [21-23]. For the 
soliton-like pulse it is necessary to carry out 
the numerical calculation or use some 
approximations to simplify the expressions 
[27].  

In order to calculate (10),  one should 
use the technique [28,29] of calculating sums 
of the QED PT second order, which has been 
earlier applied by us in calculations of some 
atomic and mesoatomic parameters 
[26,27,30-32].  

Finally the computational procedure 
results in a solution of the ordinary 
differential equations system for above 
described functions and integrals. In concrete 
numerical calculations the PC “Superatom-
ISAN” package is used. The construction of 
the operator wave functions basises within 
the QED PT, the technique of calculating the 
matrix elements in Egs. (9,10) and other 
details is are presented in Refs. [19-30].  
3. In order to take into account the plasmas 
screening effect one could use the known 
Debye shielding model.  As it is well known 
(c.f.[33-35] and refs there) in the classical 
theory of plasmas developed by Debye and 
Hückel, the interaction potential between two 
charged particles  in a plasma is modelled by 
a Yukawa-type potential as follows:  
 

V(ri, rj) = (ZaZb/|ra-rb|}exp (-|ra-rb|),                                                          
                                                                 (11) 
where ra, rb represent respectively the spatial 
coordinates of particles A and B and Za,   Zb 

denote their charges. A difference between 
the Yukawa type potential and standard 
Coulomb potential is in account for the effect 
of plasma, which is modeled by the shielding 
parameter  [33]. The parameter  is linked  
with the plasma parameters such as the 
temperature T and the charge density n  as 
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dw(pa | k) =
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The summation in (10) is over all atomic states. 
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In order to calculate (10),  one should use the 
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PT second order, which has been earlier applied 
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omic parameters [26,27,30-32]. 

Finally the computational procedure results in 
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system for above described functions and inte-
grals. In concrete numerical calculations the PC 
“Superatom-ISAN” package is used. The con-
struction of the operator wave functions basises 
within the QED PT, the technique of calculating 
the matrix elements in Egs. (9,10) and other de-
tails is are presented in Refs. [19-30]. 

3. In order to take into account the plasmas 
screening effect one could use the known Debye 
shielding model.  As it is well known (c.f.[33-35] 
and refs there) in the classical theory of plasmas 
developed by Debye and Hückel, the interac-
tion potential between two charged particles  in 
a plasma is modelled by a Yukawa-type potential 
as follows: 
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where ra, rb represent respectively the spatial co-
ordinates of particles A and B and Za,   Zb denote 
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A difference between the Hamiltonian (12) and 
analogous model Hamiltonian with the Yukawa 
potential of ref. [33] is in using the relativistic 
approximation, which is obviously necessary for 
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and width bexp= 1.5 meV/(Tw×cm-2); (ii) shift 
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expansion of E to PT series:  
 

E =  E
(2k) (0). 

 
One may use here the Gell-Mann and Low 
adiabatic formula for E [20-23]. The 
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follows: (i) a=3.76 meV/(Tw×cm-2   (a=3.2 meV/
(Tw×cm-2 ); (ii) a=7.8 meV/(Tw×cm-2) (a=6.5 
meV/(Tw×cm-2). 

The presented  results show that Debye plasma 
environments have an effect on the multiphoton 
transitions. Nevertheless, one should keep in 
mind some important facts the  (see, for exam-
ple, [33,34]). It is clear the static screening result 
considered above is subject to the condition that 
the plasma is a thermodynamically equilibrium 
plasma and neglects the contributions from ions 
in plasma since electrons provide more effective 
shielding than ions. 

Obviously with the changing the plasma con-
ditions (parameters)  in principle there can be tak-
en a place a significant variations. Besides, one 
should remember about the conditions of applica-
bility of the Debye approximation. 
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резонансных многофотонных переходов атомов в дебаевской плазме.  Предложена новая схема 
вычисления характеристик  многофотонных переходов, энергий и ширин многофотонных пере-
ходов. Подход использован для описания трехфотонных переходов в криптоне в плазме Дебая.
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