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OPTIMIZED PERTURBATION THEORY TO CALCULATING THE 
HYPERFINE LINE SHIFT AND BROADENING FOR HEAVY ATOMS IN 
THE BUFFER GAS

It is presented review of a new consistent relativistic approach to determination of 
collisional shift and broadening hyperfine lines for heavy atoms in an atmosphere of the 
buffer inert gas. It is based on the atomic gauge-invariant relativistic perturbation theory 
and the exchange perturbation theory. As illustration, consistent approach is applied to 
calculating the interatomic potentials, hyperfine structure line collision shift and broadening 
for heavy atoms, in particular, atoms of alkali elements – rubidium, caesium, and thallium, 
ytterbium, in an atmosphere of the buffer inert gas.

1 Introduction

The broadening and shift of atomic spectral 
lines by collisions with neutral atoms has been 
studied extensively since the very beginning of 
atomic physics, physics of collisions etc [1–5]. 
High precision data on the collisional shift and 
broadening of the hyperfine structure lines of 
heavy elements (alkali, alkali-earth, lanthanides, 
actinides and others) in an atmosphere of the 
buffer (for example, inert) gases are of a great in-
terest for modern quantum chemistry, atomic and 
molecular spectroscopy, astrophysics and metrol-
ogy as well as for studying a role of weak interac-
tions in atomic optics and heavy-elements chem-
istry [1-10]. As a rule, the cited spectral lines shift 
and broadening due to a collision of the emitting 
atoms with the buffer atoms are very sensitive to 
a kind of the intermolecular interaction. It means 
that these studies provide insight into the nature 
of interatomic forces and, hence, they provide an 
excellent test of theory.  

An accurate analysis of the spectral line pro-
files is a powerful technique for studying atomic 
and molecular interactions and is often neces-
sary for probing matter in extreme conditions, 
such as in stellar atmospheres, ultracold traps 
and Bose–Einstein condensates [3,6]. Besides, 
calculation of the hyperfine structure line shift 

and broadening allows to check a quality of the 
wave functions (orbitals) and study a contribu-
tion of the relativistic and correlation effects to 
the energetic and spectral characteristics of the 
two-center (multi-center) atomic systems. From 
the applied point of view, the mentioned physical 
effects form a basis for creating an atomic quan-
tum measure of frequency [10,12,14]. The corre-
sponding phenomenon for the thallium atom has 
attracted a special attention because of the pos-
sibility to create the thallium quantum frequency 
measure. Alexandrov et al [10] have realized the 
optical pumping thallium atoms on the line of 
21GHz, which corresponds to transition between 
the components of hyperfine structure for the Tl 
ground state. These authors have measured the 
collisional shift of this hyperfine line in the at-
mosphere of the He buffer gas. 

The detailed non-relativistic theory of colli-
sional shift and broadening the hyperfine struc-
ture lines for simple elements (such as light alkali 
elements etc.) was developed by many authors 
(see, for example, Refs. [1-14]). However, un-
til now an accuracy of the corresponding avail-
able data has not been fully adequate to predict 
or identify transitions within accuracy as required 
for many applications.  It is obvious that correct 
taking into account the relativistic and correlation 
effects is absolutely necessary in order to obtain 
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sufficiently adequate description of spectroscopy 
of the heavy atoms in an atmosphere of the buf-
fer gases. This stimulated our current investiga-
tion whose goals were to propose a new relativ-
istic perturbation theory approach to calculating 
the interatomic potentials and hyperfine structure 
line collision shifts and broadening for the alkali 
and lanthanide atoms in an atmosphere of the in-
ert gases. The basic expressions for the collision 
shift and broadening hyperfine structure spectral 
lines are taken from the kinetic theory of spectral 
lines [6,7,11,12]. 

The exchange perturbation theory (the modi-
fied version ЕL-НАV) has been used to calculate 
the corresponding potentials (see details in [1-5]).  
Let us note that sufficiently detailed reviews of 
the different versions of exchange perturbation 
theory are presented, for example, in Refs.[1-9]. 
It is worth to remind about the known difficulties 
of the exchange perturbation theory, associated 
with complex structure series, which contain the 
overlap integrals and exchange integrals [1].  Due 
to the ambiguity of the expansion in the antisym-
metric functions it had been  built a number of 
different formalisms of an exchange perturbation 
theory. Usually one could distinguish two groups 
in dependence on the zero-order approximation 
of the Hamiltonian. In the symmetry adapted the-
ories the zeroth-approximation Hamiltonian is an 
asymmetric, but the zeroth- approximation func-
tions have the correct symmetry. In symmetric 
formalisms there is constructed a symmetric ze-
roth-approximation Hamiltonian such as the an-
tisymmetric function is its eigen function. Further 
formally standard Rayleigh - Schrodinger pertur-
bation theory is applied. However, this approach 
deals with the serious difficulties in switching to 
systems with a number of electrons, larger than 
two. In addition, the bare Hamiltonian is not her-
mitian. 

So the symmetry adapted theories gain more 
spreading. In particular, speech is about versions 
as EL-HAV (Eisenschitz-London-Hirschfeleder- 
van der Avoird), MS-MA (Murrel-Shaw-Musher-
Amos) and others (see details in Refs. [4,5]). The 
detailed analysis of advantages and disadvantages 
of the exchange perturbation theory different ver-
sions had been performed by Batygin et al (see, 
for example, [11,12]) in studying the hyperfine 
structure line shift of the hydrogen atom in an 

atmosphere of an inert buffer gas.  In our work 
the modified version of the ЕL-НАV exchange 
perturbation theory has been used to calculate the 
corresponding potentials (see details in [4]). On 
fact [4] this is the Schrödinger type perturbation 
theory for intermolecular or interatomic inter-
actions, using the wave operator formalism. To 
include all exchange effects, wavefunctions are 
used whose symmetry with respect to permuta-
tions of both electronic and nuclear coordinates 
can be prescribed arbitrarily. The interaction en-
ergy is obtained as a series in ascending powers 
of the interaction operator. Further van der Avoird 
[4] has proved that every term in this series is 
real and that the terms of even order are nega-
tive definite for perturbation of the ground state. 
It has been also verified that up to and including 
third order the results of this theory, if they are 
restricted to electron exchange only, agree exactly 
with those of the Eisenschitz-London theory (see 
other details in Refs. [1-5]). 

The next important point is choice of the most 
reliable version of calculation for multielectron 
atomic field and generating the basis of atomic 
orbitals. In Refs. [17-30] a consistent relativistic 
energy approach combined with the relativistic 
many-body perturbation theory has been devel-
oped and applied to calculation of the energy and 
spectroscopic characteristics of heavy atoms and 
multicharged ions. This is the relativistic many-
body perturbation theory with the optimized 
Dirac-Fock (Dirac-Kohn-Sham) zeroth approxi-
mation and taking into account the nuclear, ra-
diation, exchange-correlation corrections.  It is 
worth to remind that this approach has been suc-
cessfully used to calculate the b-decay parameters 
for a number of allowed (super allowed) transi-
tions and study the chemical bond effect on b-
decay parameters [29]. This approach  has been 
used in our work  to generate a basis of relativis-
tic orbiltals for heavy atoms.  Besides, the correct 
procedures of accounting for the many-body ex-
change-correlation effects and relativistic orbital 
basis optimization (in order to provide a perfor-
mance of the gauge-invariant principle) as well as 
accounting for the highly excited and continuum 
states have been used. 

Earlier it was shown [21-30] that an adequate 
description of the energy and spectral characteris-
tics of the multi-electron atomic systems requires 
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using the optimized basis of wave functions. In 
Ref. [31] a new ab initio optimization procedure 
for construction of the optimized basis had been 
proposed and based on the principle of minimi-
zation of the gauge dependent multielectron con-
tribution ImdEninv  of the lowest QED perturba-
tion theory corrections to the radiation widths of 
atomic levels. The minimization of the functional 
ImdEninv leads to the Dirac-Kohn-Sham-like equa-
tions for the electron density that are numerically 
solved. This procedure has been implemented 
into our approach. In result, the numerical data on 
the hyperfine line collision shifts and broadening 
for some alkali (Rb, Cs), thallium and ytterbium 
atoms in atmosphere of the inert gas (such as He, 
Ke, Xe) are presented and compared with avail-
able theoretical and experimental data (see, for 
example, [1-12]). Besides, new data on the van 
der Waals constavts and other parameters for the 
studied two-atomic systems are presented too. 

2 Optimized atomic perturbation theory 
and kinetic theory of spectral lines

In order to calculate a collision shift of the 
hyperfine structure spectral lines one can use the 
following expression known in the kinetic theory 
of spectral lines shape (see Refs. [6,7,11,12]): 
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Here U(R) is an effective potential of intera-
tomic interaction, which has the central symme-
try in a case of the systems A—B (in our case, 
for example,  A=Rb,Cs; B=He); T is a tem-
perature, w0 is a frequency of the hyperfine 
structure transition in an isolated active atom; 
dw(R)=Dw(R)/w0 is a relative local shift of the 
hyperfine structure line; ( ( )1 g R+ ) is a tempera-
ture form-factor. 

The local shift is caused due to the disposition 
of the active atoms (say, the alkali atom and he-
lium He) at the distance R. In order to calculate an 
effective potential of the interatomic interaction 

further we use the exchange perturbation theory 
formalism (the modified version ЕL-НАV) [9]). 

Since we are interested by the alkali (this atom 
can be treated as a  one-quasiparticle systems, i.e. 
an atomic system with a single valence electron 
above a core of the closed shells) and the rare-
earth atoms (here speech is about an one-, two- or 
even three-quasiparticle system), we use the clas-
sical model for their consideration. The interaction 
of alkali (A) atoms with a buffer (B) gas atom is 
treated in the adiabatic approximation and the 
approximation of the rigid cores. Here it is worth 
to remind very successful model potential simu-
lations of the studied systems (see, for example, 
Refs. [32-41]). 

In the hyperfine interaction Hamiltonian one 
should formally consider as a magnetic dipole 
interaction of moments of the electron and the 
nucleus of an active atom as an electric quadru-
pole interaction (however, let us remind that, as 
a rule, the moments of nuclei of the most (buffer) 
inert gas isotopes equal to zero) [6].

The necessity of the strict treating relativ-
istic effects causes using the following ex-
pression for a hyperfine interaction operator 
HHF (see, eg., [1,5]): 
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where  І – the operator of the nuclear spin 
active atom,  ai – Dirac matrices, mp – proton 
mass, µ  - moment of the nucleus of the active 
atom, expressed in the nuclear Bohr magnetons. 
Of course, the summation in (2) is over all 
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consideration of the active atoms is important 
to describe an  effective interatomic interac-
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in our case (the interaction of an alkali atom 
with an inert gas atom). 

Let us underline that such an approximation 
is also acceptable in the case system “thallium 
atom – an inert gas atom” and some rare-earth 
atoms, in spite of the presence of p-electrons 
in the thallium (in the case of rare-earth at-
oms, the situation is more complicated).
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active atom,  i – Dirac matrices, mp – proton 
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Next, in order to determine a local shift 
within the consistent theory it should be used 
the expression obtained in one of versions of 
the exchange perturbation theory, in particular, 
EL-HAV version (see [1-5,8,9]). The relative 
local shift of the hyperfine structure line is de-
fined with up to the second order in the po-
tential V of the Coulomb interaction of the 
valence electrons and the cores of atoms as 
follows:
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Here S0 is the overlapping integral; С6 is the 
van der Waals coefficient; I is the potential of ion-
ization; Е1a,b is the energy of excitation to the  first 
(low-lying) level of the corresponding  atom. The 
values W1, W2 in Eq. (3a) are the first order non-
exchange and exchange non-perturbation sums 
correspondingly. These values are defined as fol-
lows:  
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where USCF(r)  is the self-conjunctive field, cre-
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where the overlap integrals S0А-B are determined 

by the standard expressions, and the potential ex
B-AU  

is calculated in the framework of the exchange per-
turbation theory [12]: 

                  Uex=(V00 - U00)/(1-S0).                (9)

It should also be noted that as a rule, in the al-
ternative non-relativistic theories of [6-9]  the com-
mutator technique [11] is used when calculating 
the sums of the type (4). Earlier the reason of us-
ing actually approximate non-relativistic methods 
was the lack of reliable information on the wave 
functions of the excited states of the complex at-
oms. Starting approximations in alternative theo-
ries [11,12] were rather simple approximations 
for the electronic wave functions of both active 
and passive atoms. In particular, in Refs. [11] the 
electronic wave functions were approximated by 
simple Slater expression (the approximation of 
the effective charge = Z-approximation ) or sim-
ple analytical approximation formulas by Löwdin 
(L- approximation) and Clementi-Roothaan (C 
- approximation) [42] in studying the shift and 
broadening the hyperfine lines for such atoms as 
He, Rb, Cs etc. In Refs. [12]  the wave functions 
had been determined within the Dirac-Fock ap-
proximation, however, these authors had used 
the approximate non-relativistic expressions to  
describe the interatomic interaction potential. 
Besides, determination of the polarizabilities and 
the van der Waals constants has been performed 
with using the following London’s expressions 
[6,12]: 
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The operator V (i)  (for example, in a case 
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where USCF(r)  is the self-conjunctive field, 
created by an active atom core.  
The useful expressions for approximating the 
interaction potential and shift are presented in 
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where the overlap integrals S0А-B are deter-
mined by the standard expressions, and the po-
tential ex

B-AU  is calculated in the framework of 
the exchange perturbation theory [12]:  
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magnetons. Of course, the summation in 
(2) is over all states of the electrons of 
the system, not belonging to the cores. 
The introduced model of consideration of 
the active atoms is important to describe 
an  effective interatomic interaction po-
tential (an active atom – an passive 
atom), which is centrally symmetric 
(JА=1/2) in our case (the interaction of an 
alkali atom with an inert gas atom).  
Let us underline that such an approxima-
tion is also acceptable in the case system 
―thallium atom – an inert gas atom‖ and 
some rare-earth atoms, in spite of the 
presence of p-electrons in the thallium (in 
the case of rare-earth atoms, the situation 
is more complicated). 
Next, in order to determine a local shift 
within the consistent theory it should be 
used the expression obtained in one of 
versions of the exchange perturbation 
theory, in particular, EL-HAV version 
(see [1-5,8,9]). The relative local shift of 
the hyperfine structure line is defined with 
up to the second order in the potential V 
of the Coulomb interaction of the valence 
electrons and the cores of atoms as fol-
lows: 
   

  ,12
1 6

6
21

0

0















Baa EEER
C

S
SR                                       

                  2,1,, babab EIE  .            (3)                             
 Here S0 is the overlapping integral; С6 is the 
van der Waals coefficient; I is the potential of 
ionization; Е1a,b is the energy of excitation to 
the  first (low-lying) level of the corresponding  
atom. The values 1, 2 in Eq. (3a) are the 
first order non-exchange and exchange non-
perturbation sums correspondingly. These 
values are defined as follows:   
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where '
HFН  = 
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1][
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ra z is the transformed 

operator of the hyperfine interaction;  
zra ][ 1  is Z component of the vector prod-

uct; Z - quantization axis directed along the 
axis of the quasi-molecule; N is the total  
number of electrons, which are taken into 
account in the calculation;  Ek, 
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where  f is the oscillator strength, other nota-

tions are the standard. However, sufficiently large 
error in definition of the van der Waals constants 
could provide a low accuracy of calculating the in-
teratomic potentials. It  is worth to note that the 
authors of the cited works indicate on the suffi-
ciently large error (~ 50% ) in the calculation of 
the collision shifts.  

Let us return to consideration of the van der 
Waals coefficient С6 for the interatomic A-B inter-
action. The van der Waals coefficient may be writ-
ten as  [13,43,44]:

                                                                           (10)

where C6,0 (L) is the isotropic component of 
the interaction and C6,2 (L) is the component cor-
responding to the P2(cosq) term in the expansion 
of the interaction in Legendre polynomials, where 
the angle specifies the orientation in the space-
fixed frame. 

The dispersion coefficients C6,0 (L) and C6,2 (L) 
may be expressed in terms of the scalar and tensor 
polarizabilities );(0 iwLα  and  ) (2 L; iwα evaluated 
at imaginary frequencies [13]. In particular, one 
may write in the helium case as follows:

             
                                                        (11)

where            is the dynamic polarizability of 
He. The polarizabilities at imaginary frequencies 
are defined in atomic units by the following for-
mula:

          
                                                        (12)

where  Eg is the energy of the electronically 
excited state |LgMg > and the z axis lies along the 
internuclear axis. 

Obviously, generally speaking, the calculation 
of the dynamic polarizability and the resulting 
van der Waals constants is connected with a sum-
mation over infinite number of intermediate states 
(the states of the discrete spectrum and integrat-
ing over the states of the continuous spectrum). 

On the other hand, it is known that the space 
of functions of the atomic states can be stretched 
over the space of the Sturm orbitals, which is both 
discrete and countable [6,35,43]. Thus, it allows 
to eliminate a problem of accounting the continu-
ous spectrum within the formally exact approach. 

Naturally, the set of Sturm orbitals should be 
introduced with specially prescribed asymptotics 
that is crucial for the convergence of the spectral 
expansion, including a spectral expansion of the 
corresponding Green’s functions.

3 Relativistic many-body perturbation 
theory with the Kohn-Sham zeroth 
approximation and the Dirac-Sturm method

3.1 Relativistic many-body perturbation 
theory with the Kohn-Sham zeroth 
approximation

As it is well known (see also Refs. [1,7]), the 
non-relativistic Hartree-Fock method is mostly 
used for calculating the corresponding wave func-
tions. More sophisticated approach is based on 
using the relativistic Dirac-Fock wave functions 
(first variant) [15,16]. Another variant is using 
the relativistic wave functions as the solutions of 
the Dirac equations with the corresponding den-
sity functional, i.e within the Dirac-Kohn-Sham 
theory [45-48]. In fact, the theoretical models in-
volved the use of different consistency level ap-
proximations led to results at quite considerable 
variance. 

It is obvious that more sophisticated relativis-
tic many-body methods should be used for cor-
rect treating relativistic, exchange-correlation 
and even nuclear effects in heavy atoms. (includ-
ing the many-body correlation effects, intershell 
correlations, possibly the continuum pressure etc 
[21-30]).  In our calculation we have used the 
relativistic functions, which are generated by the 

 
It should also be noted that as a rule, in the al-
ternative non-relativistic theories of [6-9]  the 
commutator technique [11] is used when calcu-
lating the sums of the type (4). Earlier the rea-
son of using actually approximate non-
relativistic methods was the lack of reliable in-
formation on the wave functions of the excited 
states of the complex atoms. Starting approx-
imations in alternative theories [11,12] were 
rather simple approximations for the elec-
tronic wave functions of both active and pas-
sive atoms. In particular, in Refs. [11] the 
electronic wave functions were approximated 
by simple Slater expression (the approxima-
tion of the effective charge = Z-
approximation ) or simple analytical approx-
imation formulas by Löwdin (L- approxima-
tion) and Clementi-Roothaan (C - approxi-
mation) [42] in studying the shift and 
broadening the hyperfine lines for such 
atoms as He , Rb, Cs etc. In Refs. [12]  the 
wave functions had been determined within 
the Dirac-Fock approximation, however, 
these authors had used the approximate non-
relativistic expressions to  describe the inte-
ratomic interaction potential. Besides, deter-
mination of the polarizabilities and the van 
der Waals constants has been performed with 
using the following London‘s expressions 
[6,12]:  
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where  f is the oscillator strength, other nota-
tions are the standard. However, sufficiently 
large error in definition of the van der Waals 
constants could provide a low accuracy of cal-
culating the interatomic potentials. It  is worth 

to note that the authors of the cited works in-
dicate on the sufficiently large error (~ 50% ) 
in the calculation of the collision shifts.   
Let us return to consideration of the van der 
Waals coefficient С6 for the interatomic A-B 
interaction. The van der Waals coefficient 
may be written as  [13,43,44]: 
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where C6,0 (L) is the isotropic component of 
the interaction and C6,2 (L) is the component 
corresponding to the P2(cos) term in the ex-
pansion of the interaction in Legendre poly-
nomials, where the angle specifies the orienta-
tion in the space-fixed frame.  
The dispersion coefficients C6,0 (L) and C6,2 
(L) may be expressed in terms of the scalar 
and tensor polarizabilities );(0 iwL  and 
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where He is the dynamic polarizability of 
He. The polarizabilities at imaginary fre-
quencies are defined in atomic units by the 
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where  E is the energy of the electronically 
excited state |LM > and the z axis lies along 
the internuclear axis.  
Obviously, generally speaking, the calcula-
tion of the dynamic polarizability and the re-
sulting van der Waals constants is connected 
with a summation over infinite number of in-
termediate states (the states of the discrete 
spectrum and integrating over the states of 
the continuous spectrum).  
On the other hand, it is known that the space 
of functions of the atomic states can be 
stretched over the space of the Sturm orbit-
als, which is both discrete and countable 
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culating the interatomic potentials. It  is worth 
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where  f is the oscillator strength, other nota-
tions are the standard. However, sufficiently 
large error in definition of the van der Waals 
constants could provide a low accuracy of cal-
culating the interatomic potentials. It  is worth 

to note that the authors of the cited works in-
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in the calculation of the collision shifts.   
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Waals coefficient С6 for the interatomic A-B 
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where C6,0 (L) is the isotropic component of 
the interaction and C6,2 (L) is the component 
corresponding to the P2(cos) term in the ex-
pansion of the interaction in Legendre poly-
nomials, where the angle specifies the orienta-
tion in the space-fixed frame.  
The dispersion coefficients C6,0 (L) and C6,2 
(L) may be expressed in terms of the scalar 
and tensor polarizabilities );(0 iwL  and 
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where He is the dynamic polarizability of 
He. The polarizabilities at imaginary fre-
quencies are defined in atomic units by the 
following formula: 
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where  E is the energy of the electronically 
excited state |LM > and the z axis lies along 
the internuclear axis.  
Obviously, generally speaking, the calcula-
tion of the dynamic polarizability and the re-
sulting van der Waals constants is connected 
with a summation over infinite number of in-
termediate states (the states of the discrete 
spectrum and integrating over the states of 
the continuous spectrum).  
On the other hand, it is known that the space 
of functions of the atomic states can be 
stretched over the space of the Sturm orbit-
als, which is both discrete and countable 

 
It should also be noted that as a rule, in the al-
ternative non-relativistic theories of [6-9]  the 
commutator technique [11] is used when calcu-
lating the sums of the type (4). Earlier the rea-
son of using actually approximate non-
relativistic methods was the lack of reliable in-
formation on the wave functions of the excited 
states of the complex atoms. Starting approx-
imations in alternative theories [11,12] were 
rather simple approximations for the elec-
tronic wave functions of both active and pas-
sive atoms. In particular, in Refs. [11] the 
electronic wave functions were approximated 
by simple Slater expression (the approxima-
tion of the effective charge = Z-
approximation ) or simple analytical approx-
imation formulas by Löwdin (L- approxima-
tion) and Clementi-Roothaan (C - approxi-
mation) [42] in studying the shift and 
broadening the hyperfine lines for such 
atoms as He , Rb, Cs etc. In Refs. [12]  the 
wave functions had been determined within 
the Dirac-Fock approximation, however, 
these authors had used the approximate non-
relativistic expressions to  describe the inte-
ratomic interaction potential. Besides, deter-
mination of the polarizabilities and the van 
der Waals constants has been performed with 
using the following London‘s expressions 
[6,12]:  
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where  f is the oscillator strength, other nota-
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large error in definition of the van der Waals 
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culating the interatomic potentials. It  is worth 

to note that the authors of the cited works in-
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the interaction and C6,2 (L) is the component 
corresponding to the P2(cos) term in the ex-
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where  E is the energy of the electronically 
excited state |LM > and the z axis lies along 
the internuclear axis.  
Obviously, generally speaking, the calcula-
tion of the dynamic polarizability and the re-
sulting van der Waals constants is connected 
with a summation over infinite number of in-
termediate states (the states of the discrete 
spectrum and integrating over the states of 
the continuous spectrum).  
On the other hand, it is known that the space 
of functions of the atomic states can be 
stretched over the space of the Sturm orbit-
als, which is both discrete and countable 
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Dirac-Kohn-Sham Hamiltonian [18,27-30]. In a 
number of papers it has been rigorously shown 
that using the optimized basis in calculating the 
atomic electron density dependent properties has 
a decisive role. This topic is in details discussed in 
many Refs. (see, for example, [6,15,28-32,49]). 

As usual, a multielectron atom is described 
by the Dirac relativistic Hamiltonian (the atomic 
units are used):

( ).i i j
i i j

H h(r ) V r r
>

= +∑ ∑                                  
                                                                 (13)

Here, h(r) is one-particle Dirac Hamiltonian 
for electron in a field of the finite size nucleus and 
V is potential of the inter-electron interaction. In 
order to take into account the retarding effect and 
magnetic interaction in the lowest order on pa-
rameter a2 (the fine structure constant) one could 
write [18]:  

                            
                                                                 (14)

where wij is the transition frequency; ai ,aj are 
the Dirac matrices. The Dirac equation potential 
includes the electric potential of a nucleus and 
electron shells and the exchange-correlation po-
tentials. The standard KS exchange potential is as 
follows [45]:    

               
2 1/3( ) (1/ )[3 ( )] .KS

XV r rπ π ρ= −            (15)

In the local density approximation the relativ-
istic potential is [45]:

                   
[ ( )]

[ ( ), ] ,
( )

X
X

E rV r r
r

δ ρ
ρ

δρ
=              (16)

where [ ( )]XE rρ is the exchange energy of the mul-
tielectron system corresponding to the homoge-
neous density ( )rρ , The corresponding correla-
tion functional is [6, 28]:

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rρ ρ= − ⋅ ⋅ + ⋅ ,      (17)

where b is the optimization parameter (for de-
tails see Refs. [6,31,32]). 

As it has been underlined, an adequate de-
scription of the multielectron atom characteris-
tics requires using the optimized basis of wave 
functions. In our work it has been used ab initio 

optimization procedure for construction of the 
optimized basis of the relativistic orbitals. It is 
reduced to minimization of the gauge dependent 
multielectron contribution ImdEninv of the lowest 
QED perturbation theory corrections to the radia-
tion widths of atomic levels. 

The minimization of the functional ImdEninv 
leads to the Dirac-Kohn Sham-like equations for 
the electron density that are numerically solved. 
According to Refs. [31], the gauge dependent 
multielectron contribution can be expressed as 
functional, which contains the multi-electron 
exchange-correlation ones. From the other side, 
using these functionals within relativistic many-
body perturbation theory allows effectively to 
take into account the second –order atomic per-
turbation theory (fourth-order QED perturbation 
theory) corrections. In our work the correspond-
ing functionals of Ref. [34] have been used. As a 
result one can get the optimal perturbation the-
ory one-electron basis. In concrete calculations 
it is sufficient to use more simplified procedure, 
which is reduced to the functional minimization 
using the variation of the correlation potential pa-
rameter b in Eq. (16).  

     The differential equations for the radial 
functions F and G (components of the Dirac 
spinor) are:

( ) ( )1 0,F F m V G
r r

χ ε∂
+ + − + − =

∂

( ) ( )1 0,G G m V F
r r

χ ε∂
+ − + − − =
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where F, G are the large and small components 
respectively; c is the quantum number. 

At large c, the functions F and G vary rapidly at 
the origin; we have ( ) ( ) 1 2 2 2, ,  F r G r r zγ γ χ α−≈ = −
. This creates difficulties in numerical integration 
of the equations in the region r → 0. To prevent 
the integration step from becoming too small it 
is usually convenient to turn to new functions 
isolating the main power dependence: 1f Fr χ−=
, 1g Gr χ−= . The Dirac equations for F and G com-
ponents are transformed as follows [18]:

' ( | |) / ( 2 / ) ,nf f r ZVg ZE Z gχχ χ α α α= − + − − +

' ( | |) / .ng g r ZVf ZE fχχ χ α α= − − +             (19)

[6,35,43]. Thus, it allows to eliminate a prob-
lem of accounting the continuous spectrum 
within the formally exact approach.  
Naturally, the set of Sturm orbitals should be 
introduced with specially prescribed asymp-
totics that is crucial for the convergence of 
the spectral expansion, including a spectral 
expansion of the corresponding Green's func-
tions. 
 
3 Relativistic many-body perturbation 
theory with the Kohn-Sham zeroth 
approximation and the Dirac-Sturm 
method 
3.1 Relativistic many-body perturbation 
theory with the Kohn-Sham zeroth 
approximation 
 
As it is well known (see also Refs. [1,7]), the 
non-relativistic Hartree-Fock method is 
mostly used for calculating the corresponding 
wave functions. More sophisticated approach 
is based on using the relativistic Dirac-Fock 
wave functions (first variant) [15,16]. Anoth-
er variant is using the relativistic wave func-
tions as the solutions of the Dirac equations 
with the corresponding density functional, i.e 
within the Dirac-Kohn-Sham theory [45-48]. 
In fact, the theoretical models involved the 
use of different consistency level approxima-
tions led to results at quite considerable vari-
ance.  
It is obvious that more sophisticated relativis-
tic many-body methods should be used for 
correct treating relativistic, exchange-
correlation and even nuclear effects in heavy 
atoms. (including the many-body correlation 
effects, intershell correlations, possibly the 
continuum pressure etc [21-30]).  In our cal-
culation we have used the relativistic func-
tions, which are generated by the Dirac-
Kohn-Sham Hamiltonian [18,27-30]. In a 
number of papers it has been rigorously 
shown that using the optimized basis in cal-
culating the atomic electron density depen-
dent properties has a decisive role. This topic 
is in details discussed in many Refs. (see, for 
example, [6,15,28-32,49]).  
As usual, a multielectron atom is described 
by the Dirac relativistic Hamiltonian (the 

atomic units are used): 
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Here, h(r) is one-particle Dirac Hamiltonian 
for electron in a field of the finite size nu-
cleus and V is potential of the inter-electron 
interaction. In order to take into account the 
retarding effect and magnetic interaction in 
the lowest order on parameter 2 (the fine 
structure constant) one could write [18]:   
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where ij is the transition frequency; i ,j 
are the Dirac matrices. The Dirac equation 
potential includes the electric potential of a 
nucleus and electron shells and the exchange-
correlation potentials. The standard KS ex-
change potential is as follows [45]:     
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In the local density approximation the rela-
tivistic potential is [45]: 
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where [ ( )]XE r is the exchange energy of the 
multielectron system corresponding to the 
homogeneous density ( )r , The correspond-
ing correlation functional is [6, 28]: 
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where b is the optimization parameter (for 
details see Refs. [6,31,32]).  
As it has been underlined, an adequate de-
scription of the multielectron atom character-
istics requires using the optimized basis of 
wave functions. In our work it has been used 
ab initio optimization procedure for construc-
tion of the optimized basis of the relativistic 
orbitals. It is reduced to minimization of the 
gauge dependent multielectron contribution 
ImEninv of the lowest QED perturbation 
theory corrections to the radiation widths of 
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Here Enc is one-electron energy without the 
rest energy. The boundary values are defined by 
the first terms of the Taylor expansion:

( )( ) ( )0 2 1 ; 1ng V E r Z fχ α χ= − + =  at  
0χ < ,         

( )( )2 20 2 ; 1nf V E Z Z gχ α α= − − =
 at                  

                              
0χ >

.                           (20)

The condition f, g®0 at r® ∞  determines the 
quantified energies of the state  Enc. The system 
of equations (19) is numerically solved by the 
Runge-Kutta method. The details can be found in 
Refs. [21-30].

2.2 The Dirac-Sturm approach

The basic idea of the Dirac-Sturm  approach is 
as follows [6,9,35,43]. In the usual formulation as 
basis functions used system of eigenfunctions of 
the generalized eigenvalue problem for the family 
of operators:

             νννε ΦΛ=Φ− gH )( 0 ,                (21)

where  Н0 – unperturbed Hamiltonian of a system, 
g  is a weighting operator, generally speaking, do 
not commute with the operator Н0;  νν ΦΛ , - ei-
genvalues   and eigenfunctions of equation (21). A 
weighting operator in Eq. (21) is usually chosen so 
that unlike a spectrum of H0, the spectrum of (21) 
is a purely discrete.  Using the orthogonality and 
completeness conditions, it is easy to show that 
the Green operator of the unperturbed problem is 
diagonal in a representation, defined by  a set of 
functions νΦ  and the corresponding expansion is 
as follows: 

            
( ) ( )∑ ΛΦ><Φ=

ν
ννν εε /||0G           (22)

and contains only a single summation over the 
quantum numbers {n}. As the operator H0 we use 
the Dirac-Kohn-Sham Hamiltonian.  The Dirac-
Kohn-Sham equation can be written in the next 
general form [9]:

          0)(])([ =− xuxh nnDKS ε          (23)                        

Along with discrete spectrum (e=en£eF) 
there is a continuous spectrum of the eigen-
values (e>eF), corresponding to the Dirac-
Kohn-Sham virtual orbitals. In the Sturmian 
formulation of the problem one should search 
for the eigen-values   and eigen-functions of 
the equation:

          ννν ϕρλϕε )(])([ xxhDKS =−       (24)
where                                  
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When e<0   equation (24) has a purely dis-
crete spectrum eigenvalues ln=ln(e).

As the weight of the operator there are 
commonly used operators, proportional to 
a part or even all potential energy in the 
Hamiltonian Н0. Further, it is easily to under-
stand that the Fourier-image of the one-particle 
Green’s function in the Dirac-Kohn-Sham ap-
proximation can be represented as an expansion 
on the eigenfunctions of (24) [6,9]:
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where )(~ xνϕ is the Sturm designed function:

∑
=

><−=
N

k
nn kk

uxuxx
1

|)()()(~
ννν ϕϕϕ           (27)

In the case of the single-particle perturbed op-
erator, say,
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=

N

a
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1
)(                (28)

the second-order correction to an energy of the 
atom is determined by the standard expression of 
the following type: 

        
              

                                                                (29)

and it actually contains only the summation over 
the occupied states (core) and virtual orbitals of 
the Dirac-Kohn-Sham-Sturm type relating to a 
purely discrete spectrum. 

If the operator )(xwa  is an interaction with an 
external electric field, the expression (29) deter-
mines the many-electron atom polarizability. Let 
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Along with discrete spectrum (=nF) 
there is a continuous spectrum of the ei-
gen-values (>F), corresponding to the 
Dirac-Kohn-Sham virtual orbitals. In the 
Sturmian formulation of the problem one 
should search for the eigen-values and 
eigen-functions of the equation: 
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When <0   equation (24) has a purely 
discrete spectrum eigenvalues =(). 
As the weight of the operator there are 
commonly used operators, proportional 
to a part or even all potential energy in 
the Hamiltonian Н0. Further, it is easily to 
understand that the Fourier-image of the one-
particle Green's function in the Dirac-Kohn-
Sham approximation can be represented as 
an expansion on the eigenfunctions of (24) 
[6,9]: 
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where )(~ x is the Sturm designed function: 
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the second-order correction to an energy of 
the atom is determined by the standard ex-
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and it actually contains only the summation 
over the occupied states (core) and virtual 
orbitals of the Dirac-Kohn-Sham-Sturm type 
relating to a purely discrete spectrum.  
If the operator )(xwa  is an interaction with 
an external electric field, the expression (29) 
determines the many-electron atom polariza-
bility. Let us illustrate the specific numerical 
implementation of relativistic method of the 
Sturm expansions on the example of the ru-
bidium atom. Calculation of the static polari-
zability is actually reduced to two stages. In 
the first stage one should  solve the system of 
relativistic Dirac-Kohn-Sham equations with 
respect to the Dirac radial functions and the 
Lagrange diagonal parameters 5s,4p, 4s  etc. 
In the second stage of the calculation proce-
dure the system of equations equivalent to 
(24) is solved numerically:   
 

0))|()()((  iiiXCiN brVrVrVci 
                                                                 (30) 
where, as above, VN  is the potential of the 
electron-nuclear interaction, VС is a  mean-
field potential generated by the other elec-
trons; VХ is the Kohn-Sham potential.  
Two parameters i  ,  i  correspond to each 
orbital ―i‖ of a real or Sturmian state. The pa-
rameter  i  =1 for orbitals of the real states. It 
is also important to emphasize that all orbit-
als of the Sturmian supplement of the Eq. 
(26) have an exponential asymptotic behavior 
as r, which coincides with the asymptotic 
behavior of the last real state orbitals in the 
corresponding basis of the real state orbitals. 
In each case, the functions of the accounted 
real states represent a reduced spectral ex-
pansion of the Green's function G. The resi-
dual  part decreases as exp[-r(-2)1/2]  for 
r (  is the eigen energy of the explicitly 
accounted last real state). All orbitals of the 
Sturm supplement have absolutely the same 
asymptotic in the corresponding basis. This 
fact is very significant in terms of conver-
gence of the method. Number of explicitly 
accounted real state functions is determined 
by concrete numerical application of  method 
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us illustrate the specific numerical implementation 
of relativistic method of the Sturm expansions on 
the example of the rubidium atom. Calculation of 
the static polarizability is actually reduced to two 
stages. In the first stage one should  solve the sys-
tem of relativistic Dirac-Kohn-Sham equations 
with respect to the Dirac radial functions and the 
Lagrange diagonal parameters e5s,e4p, e4s  etc. In 
the second stage of the calculation procedure the 
system of equations equivalent to (24) is solved 
numerically:  

0))|()()(( =−+++∇− iiiXCiN brVrVrVci ϕεδα                                                                   
                                                                         (30)
where, as above, VN  is the potential of the elec-
tron-nuclear interaction, VС is a  mean-field po-
tential generated by the other electrons; VХ is the 
Kohn-Sham potential. 

Two parameters ei  , d i  correspond to each or-
bital “i” of a real or Sturmian state. The param-
eter d i  =1 for orbitals of the real states. It is also 
important to emphasize that all orbitals of the 
Sturmian supplement of the Eq. (26) have an ex-
ponential asymptotic behavior as r®¥, which co-
incides with the asymptotic behavior of the last 
real state orbitals in the corresponding basis of 
the real state orbitals. In each case, the functions 
of the accounted real states represent a reduced 
spectral expansion of the Green's function G. The 
residual  part decreases as exp[-r(-2e)1/2]  for r®¥ 
(e  is the eigen energy of the explicitly accounted 
last real state). All orbitals of the Sturm supple-
ment have absolutely the same asymptotic in the 
corresponding basis. This fact is very significant 
in terms of convergence of the method. Number 
of explicitly accounted real state functions is de-
termined by concrete numerical application of  
method to computing studied atomic characteris-
tics. Other details can be found in Refs. [6,9,35].

4 Shift and broadening of the hyperfine 
spectral line for multielectron atoms in an 
atmosphere of the buffer gas

4.1 Shift and broadening of the thallium and 
ytterbium hyperfine line in an atmosphere of 
the inert gas

At first, let us consider the thallium atom in 
atmosphere of the inert gas. Its studying is of a 

great interest as this atom a sufficiently heavy. In 
contrast to more simple alkali atoms (look below) 
the thallium atom contains p-electrons outside 
closed shells and has a nuclear charge Z = 81. 
In Table 1 the theoretical values   of the van der 
Waals constants ( in atomic units ) respectively, 
for atom Tl (Tl - He, Kr, Xe) are listed. There are 
presented our results (*) obtained from our rela-
tivistic calculation by the optimized Dirac-Kohn-
Sham method combined with the Dirac-Sturm 
approach, the calculation results by Batygin et al, 
based on the approximation formulas (10a)-(10c), 
the Hartree-Fock data by Penkin et al, as well as 
experimental data (from refs. [8,9,10-13]). 

It is noteworthy sufficiently large error for 
values of   the van der Waals constants, obtained 
during calculating on basis of formula (10),  and 
standard Hartree-Fock method. 

Table 1  
Theoretical values   of the van der Waals 

constants ( in atomic units ) respectively, for atom 
Tl  (Tl - He, Kr, Xe); see explanations in the text.

TI – 
He

TI – 
Ar

TI- 
Kr

TI- 
Xe

С6
I  (10a)

С6
II   (10b)

С6
III  (10c)

С6  (Hartree-Fock)
С6  (our data a)*

С6  (our datab)*

С6 (experiment)

17.5
20.5
20.33
6.59
12.1
14.5

-

129
148
133
48
106
119
100

180
212
193
71
157
173
150

291
318
296
111
265
289
260

Note:a – calculation with optimization*; b – 
calculation without optimization;

The calculation shows the importance of the 
quality of the atomic wave functions (using an op-
timization and correct account for the exchange-
correlation effects and continuum “pressure” etc.) 
for an adequate description of the corresponding 
constants

In Table 2 there are listed the results of our 
calculation of the interatomic interaction poten-
tial U (R) and the values   of the local shift δω (R) 
( all values   are in atomic units ) of the thallium 
hyperfine spectral line for different values   of the 
internuclear distance in the system TI - He. For 
comparison, similar results of the calculation of 
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the potential U (R) and the local shift δω (R) with 
using the single-configuration Dirac-Fock meth-
od [12] are presented too. 

Table 2 
Local shift and interatomic interaction 

potential (in atomic units) for the pair TI - He.

Dirac-Fock method 
[12]

Our theory [8,9]

R dw(R)•102 U (R)•103 dw(R)•102 U (R) • 
103

5 4.22 7.6 3,92 6.93
6 1.34 2.0 1,21 1.76
7 0.329 0.44 0.27 0.38
8 0.0788 0.099 0.070 0.085
9 0.0032 0.024 0.0025 0.020
10 -0.0145 -0.076 -0.0131 - 0.067
11 - 0.0119 -0.008

In Table 3 we list the results of our calculation 
(as all values   are given in atomic units) interatom-
ic interaction potential U (R) and the values   of the 
local shift δω (R) for pairs TI-Kr, TI-Xe. 

Table 3 
Local shift and interatomic interaction potential 

(in atomic units) for the pair TI – Kr, Xe (see text)

Т1-Kr (Our theory) Т1-Xe  (Our theory)

R dw(R)•102 U(R)•103 dw(R)•102 U(R)•103

5 -14.30 13.24 -19,05 18.31
6 -2.88 6.10 -8.22 5.95
7 -1.44 1.72 -2.67 2.04
8 -0.67 0.49 -1.52 0.65
9 -0.48 0.06 -0.74 0.01
10 -0.35 -0.03 -0.48 - 0.08
11 -0.24 - 0.04 - 0.37 -0.09

Further in Table 4 we present our theoretical 
values   (theory C) for the thallium atom hyperfine 
line collisional shift at the temperature T = 700K 
for a number of the diatomic systems, in particu-
lar, the pairs of TI - He, TI - Kr, Tl-Xe. 

Table 4 
The collisional shift fr (in Hz/Torr) of the thal-

lium hyperfine line for pairs  TI - He, TI - Kr, Tl-
Xe at T = 700oK ;  Experiment and the qualitative 
estimate by Choron-Scheps-Galagher (Virginia 
group); Theory: A- single-configuration Dirac-
Fock method; B – the optimized Dirac-Fock 
method; C- our theory (see text). 

System Т1-Не Т1-Kr Т1-Xe

Experiment 130 ± 30 -490±20 -1000±80

 Qualitative estimate - - -5500

Theory A 155.0 -850.0 -1420 .0

Theory B 139.0 - -

Theory C 137.2 -504 -1052

In Table 5 we present the theoretical data on the 
collisional shift fr (in Hz/Torr) the thallium atom 
hyperfine line at different temperatures (T0K) 
for the systems TI - He, TI - Kr, Tl-Xe: Theory 
A - the single-configuration Dirac-Fock method 
Batygina DF et al. [12]; C- our theory [8,9]. 

As can be seen from the presented data, our 
theory provides a physically reasonable agree-
ment with experimental data on the hyperfine line 
collisional shifts for the pairs of TI-He, TI-Kr, Tl-
Xe.  

Table 5 
The temperature dependence of the colli-

sional shift fr (in Hz/Torr) for pairs  TI - He, TI 
- Kr, Tl-Xe ;  Theory: A- single-configuration 
Dirac-Fock method; C- our theory; 

Pair Т1—Не Т1—Не Т1—Kr Т1—Xe
T, K Theory A Theory C Theory C Theory C 

700 155 137,2 -504 -1052
750 153.0 135,3 -461 -964
800 151 134,1 -422 -899

850 149 133,3 -391 -841

900 147.5 131,4 -362 -794
950 146 129,1 -330 -751

1000 143 126,2 -308 -713
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For comparison, in this table there are also 
listed the results of calculation on the basis of the 
single-configuration Dirac-Fock method Batygina 
DF et al. [12] (theory A), the optimized DF-like 
method [8] (theory B), as well as experimen-
tal data Choron-Scheps-Galagher ( the Virginia 
group) . The qualitative estimate from Ref. [10] 
has been listed as well. In Table 6 we present our 
calculated values  for  adiabatic broadening  Га/р 
(in Hz / Torr) of the thallium atom hyperfine line 
at different temperatures for the TI – He pair: C 
- our theory; A theory [12]. In Table 7 we list the 
similar theoretical data on the Tlatom hyperfine 
line adiabatic broadening of Га/р (in Hz / Torr) for 
the pairs TI - Kr, TI-Xe. 

Table 6  
Adiabatic broadening Га/р (in Hz / Torr) 

for the TI - He: Theory A- single-configura-
tion Dirac-Fock method; C- our theory.

Т, К TI – He
Theory A

TI – He
Theory C

700
800
900
1000

2.83
2.86
2.90
2.89

2.51
2.54
2.58
2.56

Table 7  
Adiabatic broadening Га/р (in Hz / Torr) 

for the TI – Kr, Yl-Xe (our theory).

Т, К TI- Kr TI- Xe

700
800
900
1000

      6.81
      5.89
      5.26
      5.24

      17.3
      14.6
      12.9
      11.5

It is easily to estimate that the ratio values  
  ( Га/р) / fр ~ 1/50 for the system TI - He,  
  ( Га/р) / fр ~ 1/70 for the system TI - Kr and    
( Га/р) / fр ~ 1/60 for the TI-Xe. These estimates 
(at first it had been noted in Ref.[12] ) show that 
well-known in the theory of optical range spec-
tral line broadening Foley law Га ~|∆| ( see, for 
example, [6] ) is incorrect for the spectral lines of 
transitions between components of the hyperfine 

structure. At least this fact is absolutely obvious 
for the thallium atom. 

In any case we suppose that more detailed 
experimental studying are to be very actual and 
important especially a light of availability of the 
theoretical data on temperature dependences of 
the thallium hyperfine line collisional shift and 
broadening.  Obviously, this is also very actual 
from the point of view of the construction the 
thallium quantum frequency measure, as well as 
studying a role of the weak interactions in atomic 
physics and physics of collisions (see, for exam-
ple, [6,10]).

Now let us consider the pair ‘Yb-He”. The 
ground configuration for the ytterbium atom is: 
[Xe]4f146s2 ( term: 1S).  Further we present our 
results for the scalar static polarizability a0 (in 
units of a0

3, a0 is the Bohr radius) and isotropic 
dispersion coefficient C6,0 (in units of  EH×a0

6 

, EH is the Hartree unit of energy). Our data are 
as follows [9]: C6,0= 45.2 and a0=169.3. For com-
parison let us present the corresponding data by 
Dalgarno et al [13]: C6,0= 39.4,  a0=157.3 and by 
Buchachenko et al [44]: C6,0= 44.5. 

In table 8 we present our calculation results 
for the observed fr (in Hz/Torr) shift for the sys-
tem of Yb-Не. 

Table 8 
The observed fr (in, Hz/Torr) shift for the 

system Yb-He (see text)

T, K fr

700 148.1

750 146.0

800 143.8

850 141.5

900 138.9

It is obvious that the pair Yb-He is more com-
plicated system in comparison with the pair of Tl-
He or “alkali atom-He”. Until now there are no 
any experimental or theoretical data for this 
system. So, we believe that our data may be 
considered as the first useful reference
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4.2 Shift and broadening of the alkali atom 
hyperfine line in an atmosphere of the inert gas

Here we present the results of our studying 
hyperfine line collisional shift for  alkali atoms 
(rubidium and caesium) in the atmosphere of the 
helium gas. In Table 9 we present our data on the 
van der Waals constants in the interaction poten-
tial for alkali Rb, Cs atoms with inert gas atoms  
Ne, Kr, Xe, and also available in the literature ex-
perimental data [10,11]. In Table 10 we list the 
results of our calculating (in atomic units) inter-
atomic potentials, local shifts dw(R) for the pair 
Cs-He. Noteworthy is the fact that an accuracy of 
the experimental data for the van der Waals con-
stants does not exceed 10 % for heavy alkali at-
oms. Calculation has shown that the optimization 
of the relativistic orbitals basis and accounting for 
the exchange-correlation effects seem to be very 
important for obtaining adequate accuracy of the 
description of the constants. 

Table 9  
The van der Waals constants (in atomic 

units.) for alkali atoms, interacting with inert 
gas atoms Ne, Kr, Xe (see text).

Pair of atoms Our theory Experiment
Rb-He 42 41
Rb –Kr 484 470
Rb –Xe 758 -
Cs-He 52 50
Cs-Kr 582 570
Cs-Xe 905 -

Table 10.  The interatomic potential (105) 
and local δω(R) shift (105) for Cs-He pair (in 
atomic units; see text)

R δω(R) U (R)
8 4280 610
9 2845 336
10 1890 169
11 955 77
12 482 32
13 251 12.8
14 113 4.1
15 59 1.9

In Table 11 and 12 we present our theoretical 
results for the hyperfine line observed shift fp (1/
Torr) in a case of the Rb-He and Cs-He pairs. The 
experimental and alternative theoretical results by 
Batygin et al [11] for fp are listed too. At present 
time there are no precise experimental data for a 
wide interval of temperatures in the literature. 

Table 11  
The observed fr (10-9 1/Torr) shifts for the 

systems of the Cs-He and corresponding theo-
retical data (see text).

T, K Experi-
ment

Our 
theory

Theory a 
[11]

Theory b
[11]

Theory c
[11]

223 - 178 164 142 169

323 135 137 126 109 129

423 - 123 111 96 114

523 - 112 100 85 103

623 - 105 94 78 96

723 - 98 - - -

823 - 92 - - -
Note:a –calculation with using the He wave 

functions in the Clementi-Rothaane approxima-
tion; b – calculation with using the He wave 
functions in the Z-approximation; 

c –calculation with using the He wave func-
tions in the Löwdin approximation;

Table 12 
The observed fr (10-9 1/Torr) shifts for the 

systems of Rb-Не and corresponding theo-
retical data (see text).

T, K Experi-
ment

Our  
theory

Theory 
a

 [11]

Theory 
b

[11]

Theory 
c

[11]

223 - 113 79 67 81
323 105 101 73 56 75
423 - 89 62 48 64
523 - 80 55 43 56
623 - 73 50 38 50
723 - 71 47 36 47
823 - 69 - - -
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Note:a –calculation with using the He wave 
functions in the Clementi-Rothaane approxima-
tion; b – calculation with using the He wave 
functions in the Z-approximation; 

c –calculation with using the He wave func-
tions in the Löwdin approximation;

The theoretical data from Refs. [11] are ob-
tained on the basis of calculation within the ex-
change perturbation theory with using the He 
wave functions in the Clementi-Rothaane ap-
proximation [42] (column: Theorya),  and in the 
Z-approximation (column: Theoryb), and in the 
Löwdin approximation (column: Theoryc). 

The important feature of the developed opti-
mized perturbation theory approach is using the 
optimized relativistic orbitals basis, an accurate 
accounting for the exchange-correlation and con-
tinuum pressure effects with using the effective 
functionals [18,34]. 

The difference between the obtained theoreti-
cal data and other alternative calculation results 
can be explained by using different perturbation 
theory schemes and different approximations for 
calculating the electron wave functions of heavy 
atoms. It is obvious that the correct account for 
the relativistic and exchange-correlation and con-
tinuum pressure effects will be necessary for an 
adequate description of the energetic and spectral 
properties of the heavy atoms in an atmosphere of 
the heavy inert gases (for example, such as Xe).

  
5 Conclusion

In this chapter a brief review of the experi-
mental and theoretical works on the hyperfine 
structure line collision shifts for heavy atoms in 
an atmosphere of the buffer inert gases is given. 
A new, consistent relativistic perturbation theory 
combined with the exchange perturbation the-
ory, is presented and applied to calculating the 
interatomic potentials, van der Waals constants, 
hyperfine line collision shift and broadening for 
some heavy atoms in an atmosphere of the buffer 
inert gases. It should be noted that the presented 
approach can be naturally generalized in order to 
describe the energy and spectral characteristics of 
other atomic systems and buffer mediums. 

The calculation results on the hyperfine line 
collision shift and broadening for the alkali (Rb, 

Cs), thallium, and ytterbium atoms in an atmo-
sphere of the inert gas (He, Kr, Xe) are listed and 
compared with available alternative theoretical 
and experimental results. The obtained data for 
the   ( Га/р) / fр ratio allowed to confirm that the 
well-known Foley law Га ~ fр in the theory of op-
tical range spectral line broadening is incorrect 
for the spectral lines of transitions between com-
ponents of the hyperfine structure of the heavy 
multielectron atoms.  

The studying hyperfine structure line collision 
shifts and widths for different heavy atomic sys-
tems in the buffer gases opens new prospects in 
the bridging of quantum chemistry and atomic and 
molecular spectroscopy and physics of collisions. 
These possibilities are significantly strengthened 
by a modern experimental laser and other tech-
nologies [10,50-56]. Really, new experimental 
technologies in physics of collisions may provide 
a measurement of the atomic and molecular colli-
sion spectral parameters with very high accuracy.
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OPTIMIZED PERTURBATION THEORY TO CALCULATING THE HYPERFINE LINE SHIFT AND 
BROADENING FOR HEAVY ATOMS IN THE BUFFER GAS

Abstract
It is presented review of a new consistent relativistic approach to determination of collisional 

shift and broadening hyperfine lines for heavy atoms in an atmosphere of the buffer inert gas. It is 
based on the atomic gauge-invariant relativistic perturbation theory and the exchange perturbation 
theory. As illustration, consistent approach is applied to calculating the interatomic potentials, hyper-
fine structure line collision shift and broadening for heavy atoms, in particular, atoms of alkali ele-
ments – rubidium, caesium, and thallium, ytterbium, in an atmosphere of the buffer inert gas.
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УДК 539.184

О. Ю. Хецелиус

ОПТИМИЗИРОВАННЯ ТЕОРИЯ ВОЗМУЩЕНИЙ ДЛЯ ОПРЕДЕЛЕНИЯ СДВИГА И  УШИРЕНИЯ 
ЛИНИЙ СВЕРХТОНКОЙ СТРУКТУРЫ В ТЯЖЕЛЫХ АТОМАХ  В БУФЕРНЫХ ГАЗАХ

Резюме
Представлен обзор нового последовательного релятивистского подхода к определению 

столкновительного сдвига и уширения линии сверхтонкой структуры тяжелых  атомов в атмос-
фере буферных инертных газов. Метод основан на атомной калибровочно-инвариантной тео-
рии возмущений и обменной теории возмущений. В качестве иллюстрации приведен пример 
расчета межатомных потенциалов, столкновительного сдвига и уширения сверхтонких линий 
для тяжелых атомов, в частности, атомов щелочных элементов, таллия, иттербия в атмосфере 
буферных инертных газов.  

Ключевые слова:  релятивистская теория возмущений, столкновительный сдвиг линий 
сверхтонкой структуры
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О. Ю. Хецеліус

ОПТИМІЗОВАНА ТЕОРІЯ ЗБУРЕНЬ ДЛЯ ВИЗНАЧЕННЯ ЗСУВУ ТА УШИРЕННЯ ЛІНІЙ НАДТОНКОЇ 
СТРУКТУРИ У ВАЖКИХ АТОМАХ  В БУФЕРНИХ ГАЗАХ

Резюме
Представлено огляд нового послідовного релятивістського підходу до визначення зсуву та 

уширення лінії надтонкої структури важкого атома в атмосфері буферних інертних газів. Метод 
базується на атомній калібрувально-інваріантній теорії збурень та обмінній теорії збурень. Як 
ілюстрація наведено приклад розрахунку міжатомних потенціалів, зсуву та уширення за ра-
хунок зіткнень надтонких ліній для важких атомів, зокрема, атомів лужних елементів, таллія, 
іттербія в атмосфері буферних інертних газів.  

Ключові слова: релятивістська теорія збурень, зсув за рахунок зіткнень ліній надтонкої 
структури


