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SPECTROSCOPY OF ATOM AND NUCLEUS IN A STRONG LASER FIELD: 
STARK EFFECT AND MULTIPHOTON RESONANCES

The consistent relativistic energy approach to atom in a strong realistic laser field, based on 
the Gell-Mann and Low S-matrix formalism, is applied to studying the resonant multiphoton 
ionization of krypton by intense uv laser radiation and calculating the multiphoton resonances 
shift and width in krypton. An approach to treating the multiphoton resonances in nuclei is 
outlined on example of the 57Fe nucleus.

1.  Introduction

At the present time a physics of multiphoton 
phenomena in atoms, molecules ets has a great 
progress that is stimulated by development of 
new laser technologies (see Refs. [1-10]). The 
appearance of the powerful laser sources allow-
ing to obtain the radiation field amplitude of the 
order of atomic field in the wide range of wave-
lengths results to systematic investigations of the 
nonlinear interaction of radiation with atomic and 
molecular systems [1-14]. At the same time a di-
rect laser-nucleus interactions traditionally have 
been dismissed because of the well known effect 
of small interaction matrix elements [9-11]. Some 
exceptions such as an interaction of x-ray laser 
fields with nuclei in relation to alpha, beta-decay 
and x-ray-driven gamma emission of nuclei have 
been earlier considered. With the advent of new 
coherent x-ray laser sources in the near future, 
however, these conclusions have to be reconsid-
ered. From the design report (look table II in Ref.
[10]) for SASE 1 at TESLA XFEL and param-
eters for current and future ion beam sources, the 
signal rate due to spontaneous emission after real 
excitations of the nuclei can be estimated. For 
nuclei accelerated with an energy resolution of 
0.1% such that 12.4 keV photons produced by 
SASE 1 become resonant with the E1 transition 

in a whole number of nuclei (for example, 153Sm, 
181Ta,  223Ra, 225Ac , 227Th etc). It means that  the 
resonance condition (w~De, where De is a typical 
level spacing, w is a laser frequency) is fulfilled 
[10]. The coherence of the laser light expected 
from new sources ( TESLA XFEL at DESY) may 
allow to access the extended coherence or inter-
ference phenomena. In particular, in conjunction 
with moderate acceleration of the target nuclei it 
allows principally to achieve realization of  multi-
photon phenomena, nuclear Rabi oscillations  or  
more  advanced  quantum  optical schemes in nu-
clei.

The interaction of atoms with the external 
alternating fields, in particular, laser fields, has 
been the subject of intensive experimental and 
theoretical studied (see, for example, Refs. [1-
8, 12-24]). A definition of the k-photon emission 
and absorption probabilities and atomic levels 
shifts, study of dynamical stabilization and field 
ionization etc are the most actual problems to be 
solved. At present time, a progress is achieved in 
the description of the processes of interaction at-
oms with the harmonic emission field [1,12-14]. 
But in the realistic laser field the according pro-
cesses are in significant degree differ from ones 
in the harmonic field. It has been proved a sig-
nificant role of the photon-correlation effects and 
influence of the laser pulse multi-modity. Surely, 
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a number of different theoretical approached has 
been developed in order to give a adequate de-
scription of the atoms in a strong laser field. Here 
one could mention such approaches as the stand-
ard perturbation theory (surely for low laser filed 
intensities), Green function method, the density-
matrix formalism, time-dependent density func-
tional formalism, direct numerical solution of the 
Schrödinger (Dirac) equation, multi-body multi-
photon approach, the time-independent Floquet 
formalism etc (see [1-8,12-24] and Refs. therein). 
The effects of the different laser line shape on 
the intensity and spectrum of resonance fluores-
cence from a two-level atom are studied in Refs.
[1-5,15-17,19-23]. Earlier the relativistic energy 
approach to studying the interaction  of atom with 
a  realistic strong laser  field, based  on  the Gell-
Mann and Low S-matrix formalism, has been de-
veloped. Originally, Ivanov has proposed an idea 
to describe quantitatively a behaviour of an atom 
in a realistic laser field by means studying the ra-
diation emission and absorption lines and further 
the theory of interaction of an atom with the Lor-
enz laser pulse and calculating the corresponding 
lines moments has been in details developed in 
Ref. [19-25]. It has been checked in numerical 
simulation of the multiphoton resonances shifts 
and widths in the hydrogen and caesium. Theo-
ry of interaction of an atom with the Gauss and 
soliton-like laser pulses and calculating the cor-
responding lines moments has been in details 
presented in Refs. [23,26,27]. Here we apply this 
approach to studying the resonant multiphoton 
ionization of krypton by intense uv laser radiation 
and calculating the multiphoton resonances shift 
and width. Besides, at first we also outline the 
corresponding scheme to treating the multiphoton 
resonances in nuclei on example of 57Fe nucleus. 

2.  Relativistic energy approach to atom in 
a strong laser field: Multiphoton resonances

The relativistic energy approach in the differ-
ent realizations and the radiation lines moments 
technique is in details presented in Refs. [19-30]. 
So, here we are limited only by presenting the 
master elements. In the theory of the non-relativ-
istic atom a convenient field procedure is known 

for calculating the energy shifts dE of degenerate 
states. This procedure is connected with the secu-
lar matrix M diagonalization. In constructing M, 
the Gell-Mann and Low adiabatic formula for dE 
is used [20-23,31]. In relativistic theory, the Gell-
Mann and Low formula dE is connected with 
electrodynamical scattering matrice, which in-
cludes interaction with as a laser field as a photon 
vacuum field. A case of interaction with photon 
vacuum is corresponding to standard theory of 
radiative decay of excited atomic states. Surely, 
in relativistic theory the secular matrix elements 
are already complex in the second perturbation 
theory (PT) order. Their imaginary parts are con-
nected with radiation decay possibility. The total 
energy shift is usually presented in the form [23]:

   (1)

where P is the level width (decay possibility). 
Spectroscopy of an atom in a laser field is fully 
defined by position and shape of the radiation 
emission and absorption lines. The lines moments 
mn are strongly dependent upon the laser pulse 
quality: intensity and mode constitution [15-23]. 
Let us describe the interaction “atom-laser field” 
by the Ivanov potential [21,23]:

(2)
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which is connected with the transition a-p (a, p-
discrete levels) with absorption (or emission) of 
the “k” number of photons. For the resonance we 
calculate the following values [20-23]: 

 (3)

                       

where ò ¢dwImEa is the normalizing multiplier; 
wpa is position of the non-shifted line for  transi-
tion a-p, dw(pa|k)  is the line shift under k-photon 
absorption; vpa=wpa+ k×dw(pa|k). The first mo-
ments m1, m2 and m3 determine the atomic line 
centre shift, its dispersion and the asymmetry. To 
find mm, we need to get an expansion of Ea to PT 
series: Ea = å Ea

(2k) (w0).  One may use here the 
Gell-Mann and Low adiabatic formula for dEa :

                                                                   (4)

The representation of the S- matrix in the form 
of the PT series induces the expansion for dEa:

                                                                    (5)

          (6) 
                                                                    

  (7)

  (8)

Here H is the atomic hamiltonian, a (k1, k2,...,kn) 
are the numerical coefficients. The structure of 
matrix elements Sg

(m)  is in details described in 
[19-23].  Here we only note that one may to sim-
plify a consideration by account of the k-photon 
absorption contribution in the first two PT orders. 
Besides, summation on laser pulse is exchanged 
by integration. The corresponding (l+2k+1)-times 
integral on (l+2k) temporal variables and r (l=0,2) 
(integral Ig ) are calculated [19-23]. Finally, after 
some cumbersome transformations one can get 
the expressions for the line moments. The corre-
sponding expressions for the Gaussian laser pulse 
are as follows:

where

The summation in (10) is over all atomic states. 
Let us note that these formulas for the Gaussian 
pulse differ of the Lorenz shape laser pulse ex-
pressions [21-23]. For the soliton-like pulse it is 
necessary to carry out the numerical calculation 
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dure results in a solution of the ordinary differ-
ential equations system for above described func-
tions and integrals. In concrete numerical calcula-
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The construction of the operator wave functions 
basises within the QED PT, the technique of cal-
culating the matrix elements in Egs. (9,10) and 
other details is are presented in Refs. [19-30]. 
The special features of treating the multiphoton 
resonances in a nucleus within the outlined ap-
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tive approach one could use the advanced RMF or 
shell models based on the effective Dirac-Wood-
Saxon type Hamiltonian [32].
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3.  Results and conclusions

Further we present the results of the numeri-
cal simulation for the three-photon resonant, 
four-photon ionization profile of atomic krypton 
(the 4p ® 5d[1/2]1 and 4p ® 4d[3/2]1 three pho-
ton Kr resonances are considered). In Ref. [18] 
it has been performed the experimental studying 
the resonant multiphoton ionization of krypton by 
intense uv (285-310 nm) laser radiation for the 
intensity range 3´1012-1014 W/cm2 . The experi-
ment consisted of the measurement of the number 
of singly charged Kr and Xe ions produced under 
collisionless conditions as a function of laser fre-
quency and intensity. The output of a dye-laser 
system operating at 2.5 Hz   is frequency dou-
bled in a 1-cm potassium dihydrogen phosphate 
(KDP) crystal to give a 0.5-mJ, 1.3-ps, transform-
limited  0.1-nm-bandwidth beam tunable between 
285 and 310 nm. There have been determined the 
corresponding parameters of the 4p ® 5d[1/2]1 (i) 
and 4p ® 4d[3/2]1  (ii) three photon Kr resonanc-
es. The resonance shift is proportional to intensity 
with a width dominated by lifetime broadening 
of the excited state. The corresponding shift and 
width have been found as follows: (i) the shift 
dw0(pa|3)=aI, aexp=3.9 meV/(Tw×cm-2); width 
bexp= 1.4 meV/(Tw×cm-2); (ii) shift dw0(pa|3)=aI, 
aexp=8.0 meV/(Tw×cm-2); width bexp=4 meV/(Tw× 
cm-2). The authors [18] have used quite simple 
model of an effective two-level atom with the as-
sumption of a rate limiting three-photon excita-
tion step followed by rapid one-photon ionization 
from the excited state. As expected, the three-pho-
ton resonances broaden and shift further as the la-
ser pulse intensity is increases. The important fea-
ture of the corresponding profiles is linked with 
available asymmetry [18]. Naturally, it is easy to 
understand that the asymmetric profile is typical 
of realistic laser pulses with the spatially and tem-
porally varying intensity. Besides, the authors of 
Ref. [18] have noticed that while all resonances 
are “blue” shifted, ac Stark shift calculations, 
which are difficult to perform for excited states 
lead to both “blue” and “ red” shifts. Our numeri-
cal simulation results for the 4p ® 5d[1/2]1 (i) and 
4p ® 4d[3/2]1  (ii) three photon Kr resonances are 
as follows: (i) the shift dw0(pa|3)=aI, aexp=3.95 

meV/(Tw×cm-2) and width bexp= 1.5 meV/
(Tw×cm-2); (ii) shift dw0(pa|3)=aI, aexp=8.1 meV/
(Tw×cm-2) and width bexp=4.2 meV/(Tw×cm-2). 
One could conclude that there is a physically 
reasonable agreement of the theoretical and ex-
perimental data.. Analysis shows that the shift 
and width of the multi-photon resonance line for 
the interaction “atom- multimode laser pulse” is 
greater than the corresponding shift and width for 
a case of the “atom- single-mode pulse” (the Lo-
renz pulse model) interaction. From the physical 
point of view it is obviously provided by action 
of the photon-correlation effects and influence 
of the laser pulse multi-modity. A great interest 
represents the possibility of the quantitative con-
struction of the corresponding resonances profiles 
with explanation of the asymmetric nature by 
means calculating sufficiently “large” number of 
the multiphoton transition line moments.  It is in-
teresting to note that such an approach easily ex-
plains the qualitative features of the multiphoton 
resonances lines in the 57Fe nucleus. According 
to Ref. [34], the nuclear multiphoton transitions 
are taking a place in 57Fe nucleus subjected to ra-
dio-frequency electromagnetic field w0=30MHz. 
This picture was experimentally observed in the 
Mössbauer spectra of 57Fe nuclei in Permalloy by 
Tittonen et al [35]. Really, the eight transitions 
are possible between the four hyperfine substates 
of the 14.4 keV excited level e and the two sub-
states of the ground state g in the radio-frequency 
magnetic field [34]. If the static magnetic hyper-
fine splitting of the ground and excited states are 
respectively wg>0 and we>0, the transition fre-
quencies corresponding to forbidden g-ray tran-
sitions are (Ee-Eg)/h±3wg/2±wg/2, where Ee, Eg  
are respectively the energies of the 14.4-keV and 
ground states of the 57Fe nucleus in an absence of 
any external field.   
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of krypton by intense uv laser radiation and calculating the multiphoton resonances shift and width in 
krypton. An approach to treating the multiphoton resonances in nuclei is outlined on example of the 
57Fe nucleus.

Key words: electromagnetic and strong interactions, laser field, multiphoton resonances

УДК 539.182
В. В. Буяджи, А. В. Глушков, Л. Ловетт

СПЕКТРОСКОПИЯ АТОМА И АТОМНОГО ЯДРА В СИЛЬНОМ ЛАЗЕРНОМ ПОЛЕ: 
ЭФФЕКТ ШТАРКА И МНОГОФОТОННЫЕ РЕЗОНАНСЫ

Резюме
Последовательный релятивистский энергетический подход к атому в сильном реалистичном 

лазерном поле, основанный на S-матричном формализме Гелл-Манна и Лоу, применяется для 
изучения резонансной многофотонной ионизации криптона интенсивным ультрафиолетовым 
лазерным излучением и вычисление многофотонных резонансных смещений и ширины в 
криптоне. Подход к рассмотрению многофотонных резонансов в ядрах изложен на примере 
ядра 57Fe.
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многофотонные резонансы.
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СПЕКТРОСКОПІЯ АТОМА І АТОМНОГО ЯДРА В СИЛЬНОМУ ЛАЗЕРНОМУ ПОЛІ: 
ЕФЕКТ ШТАРКА І БАГАТОФОТОННІ РЕЗОНАНСИ

Резюме
Послідовний релятивістський енергетичний підхід до атома в сильному реалістичному 

лазерному полі, оснований на S-матричному формалізмі Гелл-Манна і Лоу, застосовується 
для вивчення резонансної багатофотонної іонізації криптона інтенсивним ультрафіолетовим 
лазерним випромінюванням і обчислення багатофотонних резонансних зміщень і ширини в 
криптоні. Підхід до розгляду багатофотонних резонансів у ядрах викладений на прикладі ядра 
57Fe.

Ключові слова: електромагнітна і сильна взаємодія, лазерне поле, багатофотонні резонанси.


