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THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF 
 MOLECULES: REVIEW OF METHOD

We present the basis’s of the new combined theoretical approach to vibrational structure 
in photoelectron spectra of molecules. The approach is based on the Green’s function 
method, which generalizes the Cederbaum-Domske formalism, and quasiparticle density 
functional theory. It generalizes the known Green’s function approach by It is presented a 
new procedure for determination of the  density of states, which describe the vibrational 
structure in molecular photoelectron spectra

I. Introduction

A number of phenomena, provided by interac-
tion of electrons with vibrations of the atomic 
nuclei in molecules or solids under availability of 
of the electron states degeneration is usually called 
as the Jahn-Teller effect. This interaction may 
lead to  local deformations, which are the reason 
of the structural phase transitions in the solids 
(statical Jahn-Teller effect)or appearance of the 
connected electron-vibrational  states (a dynami-
cal Jahn-Teller effect) [1-4]. Indeed, the physics of 
the interaction of electrons with vibrations of the 
atomic nuclei in molecules or solids is more rich-
er (c.f.[1-111]). One could mention here a great 
field of the resonant collisions of electrons with 
molecules, which are one of the most efficient 
pathways for the transfer of energy from elec-
tronic to nuclear motion. While the correspond-
ing  theory has been refined over the years with 
sophisticated and elaborate non-local treatments 
of the reaction dynamics, such studies have for 
the most part treated the nuclear dynamics in one 
dimension. This situation has resulted from the 
fact that, as the field of electron-molecule scatter-
ing developed, both experimentally and theoreti-
cally, the phenomena of vibrational excitation and 
dissociative attachment were first understood for 
diatomics, and it seemed natural to extend that un-
derstanding to polyatomic molecules using 1-D or 

single-mode models of nuclear motion. However 
a series of experimental measurements of these 
phenomena in small polyatomic molecules have 
proven to be uninterpretable in terms of atomic 
motion with single degree of freedom. Reader 
can find more details about this topic in the recent 
paper by Rescigno et al [4]. 

In last several decades quantum chemistry 
methods has been refined with a sophisticated 
and comprehensive approaches of the correct in-
terelectron correlations and electron-nuclear dy-
namics treatments [9-49]. Very interesting quote 
has been indicated by Bartlett and Musiał and 
earlier by Wilson: “Ab initio quantum chemistry is 
an emerging computational area that is fifty years 
ahead of lattice gauge theory and a rich source of 
new ideas and new approaches to the computation 
of many fermion systems” [26]. Following to ref. 
[26] we repeat that driving these developments 
are the types of problems addressed by quantum 
chemists, as shown in Fig. 1.  Primary among 
these are potential-energy surfaces (PES) which 
describe the behavior of the electronic energy with 
respect to the locations of the nuclei, subject to the 
underlying Born-Oppenheimer or clamped nuclei 
approximation. From the ground- and excited-state 
wave functions one could in principle obtain all 
properties that arise from a solution to vibrational 
Schrödinger equation that gives the frequencies 
and with  derivatives of the dipole moment, the 
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infrared intensities [26-39]. Electronic excited 
states are also accessible along with electronic 
and photo-electron spectra. The properties that 
arise from the one-particle density matrix, such 
as dipole moments, hyperfine coupling constants, 
and electric-field gradients, are readily available.

Figure 1. The nature of quantum chemical 
problems (from ref. [26]).

From even higher-order electric-field deriva-
tives, one obtains hyperpolarizabilities, which 
determine nonlinear optical behavior. From de-
rivatives relative to atomic displacements in mol-
ecules, one obtains anharmonic effects on vibra-
tional-rotational spectra. In result , one could men-
tion that a main objective is an accurate solution of 
the Schrödinger equation for molecules composed 
of comparatively light elements. 

As it is often takes a place, the old multi-body 
quantum theoretical approaches, which have been 
primarily developed in a theory of superfluity and 
superconductivity, and generally speaking in a 
theory of solids, became by the powerful tools for 
developing new conceptions in molecular calcu-
lations [50-65]. Many of them offers a synthesis 
of cluster expansions, Brueckner’s summation 
of ladder diagrams, the summation of ring dia-
grams Gell-Mann and an infinite-order general-
ization of many-body perturbation theory MBPT 
(Kelly, 1969; Bartlett and Silver, 1974a, 1976. 
Using quantum-field methods in molecular theory 
allowed to obtain a very powerful approach for 

correlation in many-electron systems. Only with 
this property are applications to polymers, sol-
ids, or the electron gas possible, and, even for 
small molecules, its effects are numerically quite 
significant. Configuration interaction methods, 
long the focus of the correlation problem in quan-
tum chemistry Shavitt, 1998, do not, in general, 
have this property which is responsible for the 
emphasis on the coupled cluster theory and its 
multi-body perturbation theory approximations 
(Kelly, 1969; Bartlett and Silver, 1974a, 1974b; 
Pople et al., 1976) in chemistry. For more details, 
the history of coupled cluster theory is best told 
from the viewpoint of some of its principal devel-
opers (look review [26]). 

The Green’s method is very well known in a 
quantum theory of field, quantum electrodynamics 
, quantum theory of solids (c.f.[61-63]). Naturally, 
an attractive idea was to use it in the molecular 
calculations. Returning to problem of description 
of the vibrational structure in photoelectron spec-
tra of molecules, it is easily understand that this 
approach has great perspective as it was shown 
by Cederbaum et al (c.f.[65-68]).  One could note 
that the experimental photoelectron (PE) spectra 
usually show a pronounced vibrational structure. 
Many papers have been devoted to treatment of 
the vibrational spectra by construction of potential 
curves for the reference molecule (the molecule 
which is to be ionized) and the molecular ion. 
Usually the electronic Green’s function is defined 
for fixed position of the nuclei. As result, only 
vertical ionization potentials (V.I.P.’s) can be cal-
culated [65]. The cited method, however, requires 
as input data the geometries, frequencies, and 
potential functions of the initial and final states. 
Since in most cases at least a part of these data are 
unavailable, the calculations have been carried 
out with the objective of determining the missing 
data by comparison with experiment. Naturally, 
the Franck-Condon factors are functions of the 
derivatives of the difference between the potential 
curves of the initial and final states with respect to 
the normal coordinates. One could agree here that 
highly accurate calculations are necessary to ob-
tain good results with the above methods. To avoid 
this difficulty and to gain additional information 
about the ionization process, Cederbaum et al [65-
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68] extended the Green’s functions approach to 
include the vibrational effects and showed that 
the Green’s functions method allowed the ab ini-
tio calculation of the intensity distribution of the 
vibrational lines, of the vibrational frequencies of 
the reference molecule and its ions, and of geome-
try shifts due to ionization and particle attachment. 
Besides, a great advancement here is connected 
with a possibility of the quite exact calculation 
of ionization potentials (I.P.’s) for molecules. Ac-
cording to ref.[65], starting from Hartree-Fock 
(HF) calculation [71,72] the electronic Green’s 
functions have been calculated applying a many-
body perturbation expansion. In this method the 
Koopmans’ defect, i.e., the difference between 
the I.P. and the value derived from the Koopmans’ 
theorem, is calculated directly, avoiding the usual 
subtraction of large numbers of roughly equal 
magnitude. 

Further let us remember that for larger mol-
ecules and solids, far more approximate but more 
easily applied methods such as density-functional 
theory (DFT) [40-42] or from the wave-function 
world the simplest correlated model MBPT are 
preferred. Indeed, in the last decades DFT theory 
became by a great, quickly developing field of 
the modern quantum computational chemistry of 
atoms, molecules, solids. Naturally, this approach 
does not allow to reach a spectroscopic accuracy 
in description of the different molecular proper-
ties, nevertheless, the key idea is very attractive 
and can be used in new combined theoretical ap-
proaches. 

 Here we present the basis’s of the new 
combined theoretical approach to vibrational 
structure in photoelectron spectra of molecules. 
The approach is based on the Green’s function 
method and Fermi-liquid DFT formalism [80-
86]. It generalizes the known Green’s function 
approach by Cederbaum-Domcke (we use this 
version as a starting basis). The density of states, 
which describe the vibrational structure in mo-
lecular photoelectron spectra, is calculated with 
the help of combined DFT-Green’s-functions ap-
proach. In addition to exact solution of one-bode 
problem different approaches to calculate reor-
ganization and many-body effects are presented. 
In all cases no data about the molecular ion are 

needed and all transitions except those between 
linear and bent configurations are included. The 
density of states is well approximated by using 
only the first order coupling constants in the one-
particle approximation. It is important that the 
calculational procedure is significantly simplified 
with using the quasiparticle DFT formalism Thus 
quite simple calculation becomes a powerful tool 
in interpreting the vibrational structure of photo-
electron spectra for different molecular systems.

2. The combined Green’s functions and 
density functional approach

2.1 The Hamiltonian of the system. The 
density of states in one –body solution

According to [65], the quantity which contains 
the information about the ionization potentials and 
the molecular vibrational structure due to quick 
ionization is the density of occupied states9:

                                                                     (1)

where 〉Ψ0  is the exact ground state wavefunc-

tion of the reference molecule and  )(tak is an 
electron destruction operator, both in the Heisen-
berg picture. For particle attachment the quantity 
of interest is the density of unoccupied states:
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 Usually in order to calculate the value (1) 
states for photon absorption one should express 
the Hamiltonian of the molecule in the second 
quantization formalism. The corresponding Ham-
iltonian is as follows:
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where x denotes electron coordinates, X denotes 
nuclear coordinates, ΕΕU represents  the Coulomb 
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low to original version of the Cederbaum-Domske 
approach to vibrational structure of the molecular 
spectra. Further the following field operator is 
usually introduced:
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where the фi are Hartre-Forck (HF) one–particle 
functions and the ai are destruction operators for a 
HF particle in the state described by the subscript 

i. Fixing )( 0θθθ = , the Hamiltonian in the oc-
cupation number representation is given by [65]
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where M is the number of normal coordinates.
Choosing R0 as the equilibrium geometry on 

the HF level and introducing dimensionless nor-
mal coordinates Qs one can write the following 
Hamiltonian (the subscript 0 stands for R0):

                                                                     (9)
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following Hamiltonian (the subscript 0 stands 
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where the index set v1 means that at least  k  
and l or i  and j are unoccupied, v2 that at 
most one of the orbitals is unoccupied, and  v3  
that  k  and j or l and  j  are unoccupied.  
Besides, here for simplicity all terms leading 
to anharmonicities are neglected. The s are 
the HF frequencies and the sb   and t

sb  are 
destruction and creation operators for 
vibrational quanta defined by 

                    ),)(2/1( t
sss bbQ               (10) 
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sss bbQ    

The interpretation of the above Hamiltonian is 
given in ref. [3]. The first term EH  describes 
the electronic motion for nuclei fixed at the HF 
ground state geometry. The second term 

 NH describes the motion of the nuclei in the 
harmonic HF potential (the extension to 
anharmonic terms can easily be done). )1(

ENH  

the Coulomb interaction between electrons, 
etc.Below we follow to original version of the 
Cederbaum-Domske approach to vibrational 
structure of the molecular spectra. Further the 
following field operator is usually introduced: 
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where M is the number of normal coordinates. 

Choosing R0 as the equilibrium geometry on 
the HF level and introducing dimensionless 
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where the index set v1 means that at least  k  
and l or i  and j are unoccupied, v2 that at 
most one of the orbitals is unoccupied, and  v3  
that  k  and j or l and  j  are unoccupied.  
Besides, here for simplicity all terms leading 
to anharmonicities are neglected. The s are 
the HF frequencies and the sb   and t

sb  are 
destruction and creation operators for 
vibrational quanta defined by 

                    ),)(2/1( t
sss bbQ               (10) 
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The interpretation of the above Hamiltonian is 
given in ref. [3]. The first term EH  describes 
the electronic motion for nuclei fixed at the HF 
ground state geometry. The second term 

 NH describes the motion of the nuclei in the 
harmonic HF potential (the extension to 
anharmonic terms can easily be done). )1(

ENH  
the Coulomb interaction between electrons, 
etc.Below we follow to original version of the 
Cederbaum-Domske approach to vibrational 
structure of the molecular spectra. Further the 
following field operator is usually introduced: 
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the Hamiltonian in the occupation number 
representation is given by [65] 

)/(),(),( 00 RTRURHH     ,                                

                                                                     (6) 

   
kl

t
j

t
iijkli

t
i

i
iEN aaaaRVaaRєH   )(

2
1)(                         

                    ,)]([ j
t
iikkj

fkij
aaRV




         (7)

 

                          klrreijVijkl
1'2                                         

The )(Ri are the one-particle HF energies 
and f denotes the set of orbitals occupied in the 
HF ground state. As usually in the adiabatic 
approximation one could write the 
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where M is the number of normal coordinates. 

Choosing R0 as the equilibrium geometry on 
the HF level and introducing dimensionless 
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following Hamiltonian (the subscript 0 stands 
for R0): 
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where the index set v1 means that at least  k  
and l or i  and j are unoccupied, v2 that at 
most one of the orbitals is unoccupied, and  v3  
that  k  and j or l and  j  are unoccupied.  
Besides, here for simplicity all terms leading 
to anharmonicities are neglected. The s are 
the HF frequencies and the sb   and t

sb  are 
destruction and creation operators for 
vibrational quanta defined by 

                    ),)(2/1( t
sss bbQ               (10) 
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The interpretation of the above Hamiltonian is 
given in ref. [3]. The first term EH  describes 
the electronic motion for nuclei fixed at the HF 
ground state geometry. The second term 

 NH describes the motion of the nuclei in the 
harmonic HF potential (the extension to 
anharmonic terms can easily be done). )1(

ENH  

the Coulomb interaction between electrons, 
etc.Below we follow to original version of the 
Cederbaum-Domske approach to vibrational 
structure of the molecular spectra. Further the 
following field operator is usually introduced: 
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The )(Ri are the one-particle HF energies 
and f denotes the set of orbitals occupied in the 
HF ground state. As usually in the adiabatic 
approximation one could write the 
eigenfunctions to H  as products 

NE RRx 0,,   
,and further expand )(Ri , 

)(RVijkl , and ),( RUNN  about R0 leaving the 

operators ia and t
ia unchanged: 

 




















)()]()([

)(
2
1)(

0

1

1
00

00

so
s

M

si
j

t
iikkjikjk

fkij

kl
t
j

t
iijkli

t
ii

i

RR
R

aaRVRV

aaaaRVaaRєH

 





















 
 R

TRUaaRRRR
RR NNNi

t
isssos

ss

i
M

ssi
...),(...))((

2
1

000''
0'

2

1',



                                                                    (8)
 

where M is the number of normal coordinates. 

Choosing R0 as the equilibrium geometry on 
the HF level and introducing dimensionless 
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where the index set v1 means that at least  k  
and l or i  and j are unoccupied, v2 that at 
most one of the orbitals is unoccupied, and  v3  
that  k  and j or l and  j  are unoccupied.  
Besides, here for simplicity all terms leading 
to anharmonicities are neglected. The s are 
the HF frequencies and the sb   and t

sb  are 
destruction and creation operators for 
vibrational quanta defined by 

                    ),)(2/1( t
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The interpretation of the above Hamiltonian is 
given in ref. [3]. The first term EH  describes 
the electronic motion for nuclei fixed at the HF 
ground state geometry. The second term 

 NH describes the motion of the nuclei in the 
harmonic HF potential (the extension to 
anharmonic terms can easily be done). )1(

ENH  

the Coulomb interaction between electrons, 
etc.Below we follow to original version of the 
Cederbaum-Domske approach to vibrational 
structure of the molecular spectra. Further the 
following field operator is usually introduced: 
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The )(Ri are the one-particle HF energies 
and f denotes the set of orbitals occupied in the 
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where M is the number of normal coordinates. 
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where the index set v1 means that at least  k  
and l or i  and j are unoccupied, v2 that at 
most one of the orbitals is unoccupied, and  v3  
that  k  and j or l and  j  are unoccupied.  
Besides, here for simplicity all terms leading 
to anharmonicities are neglected. The s are 
the HF frequencies and the sb   and t

sb  are 
destruction and creation operators for 
vibrational quanta defined by 

                    ),)(2/1( t
sss bbQ               (10) 

))(2/1(/ t
sss bbQ    

The interpretation of the above Hamiltonian is 
given in ref. [3]. The first term EH  describes 
the electronic motion for nuclei fixed at the HF 
ground state geometry. The second term 

 NH describes the motion of the nuclei in the 
harmonic HF potential (the extension to 
anharmonic terms can easily be done). )1(

ENH  
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sum in the expression for )1(
ENH  is responsible for 

the geometry shifts and the second one for the 
charge of  frequencies due to electronions. There 
is also a modification of the interaction between 
electrons through the coupling to the nuclear mo-

tion. The term )2(
ENH , which describes this modifi-

cation, is due to its nature less important than )1(
ENH

. The exact solution of the one-body HF problem 
has been given in ref.[65] too. The HF-single-

particle component 0H  of the Hamiltonian (9) is 
as follows:

              
                                                                  

(11)

Correspondingly in the one-particle picture the 
density of occupied states is given by

fktaadteºN k
t
k

ºti
k ∈〉ΦΦ〈=

−

∫
∞

∞−

      ,)()0(
2
1)( 00

0 1


π
,      
(12)

and the density of unoccupied states by

fk

atadteºN t
kk

ºti
k

∉

〉ΦΦ〈=
−

∫
∞

∞−

 

  ,)0()(
2
1)( 00

0 1


π

 

                                                                       

  (13)

with           tHi
k

Hi
k eaeta t 0

1
0

1

)(
−−

−= 

 .                (14)

Here 〉Φ0  is the product of the electronic and 

vibrational ground states, i.e., 〉〉Φ=〉Φ 000 , 

where 〉Φ0  is the ground state to the HF operator 
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ii aaRº is the state containing 

no vibrational quantum, i.e., 00 =〉sb     for  all  
s. From Definitions (12) and (13) it follows im-
mediately that 

      ,00
2
1)( 0

11
~

)(0 〉〈=
−− ±−

∞

∞−
∫ tk

Hitººi
k edteºN 



π  (15)
with

)(~
11

0
t
ss

k
s

M

s
s

t
ss

M

s
bbgbbH ++= ∑∑

==

ω

+ ))(( '''
1',

t
ss

t
ss

k
ss

M

ss
bbbb ++∑

=

γ                                        
                                                                  (16)
where

0'

2

'
0

4
1     ,

2
1









∂∂

∂
±=








∂
∂

±=
ss

ii
ss

s

ii
s QQ

º
Q
ºg γ .                       

                                                           

                                                          (17), (18)

As a first step in the evaluation of Eg. (15) new 
operators                
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with real coefficients slsl
21   , λλ  were introduced in 

ref. [65]. The coefficients slsl
21   , λλ  are now deter-

mined in such a way that 0
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in Eg. (16) and comparing with Eg. (21) we obtain 
the equations
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represents the coupling of the HF particles 
with the nuclear motion. The coupling 
constants are the normal coordinate derivatives 
of the HF one-particle energies. The first sum 
in the expression for )1(

ENH  is responsible for 
the geometry shifts and the second one for the 
charge of  frequencies due to electronions. 
There is also a modification of the interaction 
between electrons through the coupling to the 
nuclear motion. The term )2(

ENH , which 
describes this modification, is due to its nature 
less important than )1(

ENH . The exact solution of 
the one-body HF problem has been given in 
ref.[65] too. The HF-single-particle component 

0H  of the Hamiltonian (9) is as follows: 
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Correspondingly in the one-particle picture the 
density of occupied states is given by 
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Here 0  is the product of the electronic and 
vibrational ground states, i.e., 
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state to the HF operator 
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in Eg. (16) and comparing with Eg. (21) we 
obtain the equations 
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Equation (22) and (23) together with Egs. (18) 
and (19) constitute a system of 2M2 
independent equations for the  2M2 unknown 
coefficients slsl

21   ,  . Solution of this system 
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Equation (22) and (23) together with Egs. (18) 
and (19) constitute a system of 2M2 independent 
equations for the  2M2 unknown coefficients 

slsl
21   , λλ . Solution of this system yields the change 

in normal coordinates in terms of the coupling 

constants 'ssγ . Equations (24)-(26) determine the 

vibrational frequencies sω̂ of tion, the new cou-

pling parameters sĝ and the constant k.
T h e  n e x y  u n i t a r y  o p e r a t o r  
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can be rewritten as follows [13]:
          

   

or using the symbol 〉n̂  for  states belonging to 

operators 〉=〉 nnnccc ss
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ss ˆˆ i.e., , , the density of 
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Further naturally the  δ  function in Eg. (31) 
contains the information about the adiabatic ion-
ization potential and the spacing of the vibra-
tional peaks, whereas the squared matrix element 

20ˆ 〉〈 Un  is the well-known Franck-Condon 
factor, which gives the intensity distribution of the 
vibrational spectrum. Following to ref. [65] one 

can decompose the matrix element 〉〈 0ˆ Un  as
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where 〉〈 0m̂  is the overlap of unshifted wave 

functions of different frequency and  〉〈 mUn ˆˆ  
is the overlap integral between shifted oscillator 
wave functions of the same frequency, which is 
calculated:
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Here k
mL is the generalized Laguerre polynomi-

nal and lll gf ω̂/ˆ
= . A procedure for calculating 

the overlap integrals 〉〈 0m̂ wis described in ref. 
[65]. In order to reveal explicitly the connection 

between the quantities slsl
lf 21 ,, λλ and the geometry 

shifts and frequency changes it  is written as 

                                                                    (35)

where the vector Q denotes the normal coordi-
nates in the ground state of the reference molecule 

and Q̂  denotes the normal coordinates of the ion, 
both on the one-particle level. If  L and  L̂  are the 
transformation matrices from internal to normal 
coordinates in the initial and final states, respec-
tively, R is the change in equilibrium position 

yields the change in normal coordinates in 
terms of the coupling constants 'ss . Equations 
(24)-(26) determine the vibrational frequencies 

s̂ of tion, the new coupling parameters sĝ and 
the constant k. 
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Further naturally the    function in Eg. (31) 
contains the information about the adiabatic 
ionization potential and the spacing of the 
vibrational peaks, whereas the squared matrix 
element 20ˆ  Un  is the well-known 
Franck-Condon factor, which gives the 
intensity distribution of the vibrational 
spectrum. Following to ref. [65] one can 
decompose the matrix element  0ˆ Un  as 
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where  0m̂  is the overlap of unshifted wave 
functions of different frequency and  

 mUn ˆˆ  is the overlap integral between 
shifted oscillator wave functions of the same 
frequency, which is calculated: 
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Here k

mL is the generalized Laguerre 
polynominal and lll gf ̂/ˆ  . A procedure for 

calculating the overlap integrals  0m̂ wis 
described in ref. [65]. In order to reveal 
explicitly the connection between the 
quantities slsl

lf 21 ,,  and the geometry shifts 
and frequency changes it  is written as  
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where the vector Q denotes the normal 
coordinates in the ground state of the reference 
molecule and Q̂  denotes the normal 
coordinates of the ion, both on the one-particle 
level. If  L and  L̂  are the transformation 
matrices from internal to normal coordinates in 
the initial and final states, respectively, R is 
the change in equilibrium position and Г, Г̂ are 
the diagonal matrices of frequencies 
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normal coordinate shift K̂  is related to lf  by 

ll Kf ˆ2 2/1  . The simplification of method is 

possible in case of diagonality of matrix 'ss of 
coupling constants.  
 
2.2  The Cederbaum-Domske approach to 

the many-body problem 
 
Below we give the Cederbaum-Domske 
perturbation theory approach to ab initio 
calculation of  frequencies, geometry shifts, 
and Franck-Condon factors starting from the 
one-particle picture discussed above. In a 
diagrammatic method in order  to obtain the 
function )(єNk  one should calculate the 
Green’s function )(' єGkk first: 
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where T is Wick’s time ordering operator and 
the function )(єNk then follows from relation 
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 ksignєa  , where  is a positive 
infinitesimal. Choosing the unperturbed 
Hamiltonian 0H  to be 

yields the change in normal coordinates in 
terms of the coupling constants 'ss . Equations 
(24)-(26) determine the vibrational frequencies 

s̂ of tion, the new coupling parameters sĝ and 
the constant k. 
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or using the symbol n̂  for  states belonging 
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Further naturally the    function in Eg. (31) 
contains the information about the adiabatic 
ionization potential and the spacing of the 
vibrational peaks, whereas the squared matrix 
element 20ˆ  Un  is the well-known 
Franck-Condon factor, which gives the 
intensity distribution of the vibrational 
spectrum. Following to ref. [65] one can 
decompose the matrix element  0ˆ Un  as 

      
  0ˆˆˆ0ˆ

1

mmUnUn
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where  0m̂  is the overlap of unshifted wave 
functions of different frequency and  

 mUn ˆˆ  is the overlap integral between 
shifted oscillator wave functions of the same 
frequency, which is calculated: 
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Here k

mL is the generalized Laguerre 
polynominal and lll gf ̂/ˆ  . A procedure for 

calculating the overlap integrals  0m̂ wis 
described in ref. [65]. In order to reveal 
explicitly the connection between the 
quantities slsl

lf 21 ,,  and the geometry shifts 
and frequency changes it  is written as  

                           'ˆˆ KJQQ  ,              (35) 
where the vector Q denotes the normal 
coordinates in the ground state of the reference 
molecule and Q̂  denotes the normal 
coordinates of the ion, both on the one-particle 
level. If  L and  L̂  are the transformation 
matrices from internal to normal coordinates in 
the initial and final states, respectively, R is 
the change in equilibrium position and Г, Г̂ are 
the diagonal matrices of frequencies 

 /ˆ  ,/ ss  , then 
-1/2-11/2 LL̂ˆJ  , 

                        RL̂ˆK̂ -11/2 .                   (36) 
The connection between transformation matrix 
J, ’s is given by sl

slsl J 21  , 1
21

 ls
slsl J ; 

normal coordinate shift K̂  is related to lf  by 

ll Kf ˆ2 2/1  . The simplification of method is 

possible in case of diagonality of matrix 'ss of 
coupling constants.  
 
2.2  The Cederbaum-Domske approach to 

the many-body problem 
 
Below we give the Cederbaum-Domske 
perturbation theory approach to ab initio 
calculation of  frequencies, geometry shifts, 
and Franck-Condon factors starting from the 
one-particle picture discussed above. In a 
diagrammatic method in order  to obtain the 
function )(єNk  one should calculate the 
Green’s function )(' єGkk first: 
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where T is Wick’s time ordering operator and 
the function )(єNk then follows from relation 
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 ksignєa  , where  is a positive 
infinitesimal. Choosing the unperturbed 
Hamiltonian 0H  to be 



60

and Г, Ã̂are the diagonal matrices of frequencies 
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possible in case of diagonality of matrix 'ssγ of 
coupling constants. 

2.2  The Cederbaum-Domske approach to 
the many-body problem

Below we give the Cederbaum-Domske pertur-
bation theory approach to ab initio calculation of  
frequencies, geometry shifts, and Franck-Condon 
factors starting from the one-particle picture dis-
cussed above. In a diagrammatic method in order  

to obtain the function )(ºNk  one should calculate 

the Green’s function )(' ºGkk first:
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where T is Wick’s time ordering operator and the 

function )(ºNk then follows from relation
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mal. Choosing the unperturbed Hamiltonian 0H  
to be
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one finds for the corresponding Green’s func-
tions
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The Dyson equation
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relates the Green’s functions to the free ones intro-

ducing a new function )('' ºkkΣ called the (proper) 

self-energy part. In in order to calculate 'kkΣ , a 
well-known diagrammatic method is used. It is 
useful to remind that the sum of Feynman dia-
grams leading to the self-energy part is shown in 
Fig. 1. All notations are standard. 

 
Fig. 1. The sum of diagrams contributing to the 
self-energy part. 

The one-body problem treated above results in 
the exact solution of the Dyson equation with the 
self-energy part given by the infinite number of 
diagrams shown in the first row of Fig. 1 and the 
cor responding Green’s function is as follows [65]:
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The corresponding Dyson-like equation is as 
follows: 
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where kkÔ ′ , is equal to kk ′Σ , less the diagrams 
of the first row in Fig.1.   The perturbation expan-

sion of Ф is shown in Fig. 2 where OB
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Fig. 2. Perturbation expansion of Фkk.

The expression for the sum of the first two dia-
grams appearing in Fig. 2 are written by a standard 
way: 

yields the change in normal coordinates in 
terms of the coupling constants 'ss . Equations 
(24)-(26) determine the vibrational frequencies 
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the constant k. 
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or using the symbol n̂  for  states belonging 
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Further naturally the    function in Eg. (31) 
contains the information about the adiabatic 
ionization potential and the spacing of the 
vibrational peaks, whereas the squared matrix 
element 20ˆ  Un  is the well-known 
Franck-Condon factor, which gives the 
intensity distribution of the vibrational 
spectrum. Following to ref. [65] one can 
decompose the matrix element  0ˆ Un  as 

      
  0ˆˆˆ0ˆ

1
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where  0m̂  is the overlap of unshifted wave 
functions of different frequency and  

 mUn ˆˆ  is the overlap integral between 
shifted oscillator wave functions of the same 
frequency, which is calculated: 
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Here k

mL is the generalized Laguerre 
polynominal and lll gf ̂/ˆ  . A procedure for 

calculating the overlap integrals  0m̂ wis 
described in ref. [65]. In order to reveal 
explicitly the connection between the 
quantities slsl

lf 21 ,,  and the geometry shifts 
and frequency changes it  is written as  
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where the vector Q denotes the normal 
coordinates in the ground state of the reference 
molecule and Q̂  denotes the normal 
coordinates of the ion, both on the one-particle 
level. If  L and  L̂  are the transformation 
matrices from internal to normal coordinates in 
the initial and final states, respectively, R is 
the change in equilibrium position and Г, Г̂ are 
the diagonal matrices of frequencies 

 /ˆ  ,/ ss  , then 
-1/2-11/2 LL̂ˆJ  , 
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The connection between transformation matrix 
J, ’s is given by sl
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normal coordinate shift K̂  is related to lf  by 

ll Kf ˆ2 2/1  . The simplification of method is 

possible in case of diagonality of matrix 'ss of 
coupling constants.  
 
2.2  The Cederbaum-Domske approach to 

the many-body problem 
 
Below we give the Cederbaum-Domske 
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calculation of  frequencies, geometry shifts, 
and Franck-Condon factors starting from the 
one-particle picture discussed above. In a 
diagrammatic method in order  to obtain the 
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where T is Wick’s time ordering operator and 
the function )(єNk then follows from relation 
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Hamiltonian 0H  to be 

yields the change in normal coordinates in 
terms of the coupling constants 'ss . Equations 
(24)-(26) determine the vibrational frequencies 

s̂ of tion, the new coupling parameters sĝ and 
the constant k. 
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or using the symbol n̂  for  states belonging 
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Further naturally the    function in Eg. (31) 
contains the information about the adiabatic 
ionization potential and the spacing of the 
vibrational peaks, whereas the squared matrix 
element 20ˆ  Un  is the well-known 
Franck-Condon factor, which gives the 
intensity distribution of the vibrational 
spectrum. Following to ref. [65] one can 
decompose the matrix element  0ˆ Un  as 

      
  0ˆˆˆ0ˆ

1

mmUnUn
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.  (32) 

where  0m̂  is the overlap of unshifted wave 
functions of different frequency and  

 mUn ˆˆ  is the overlap integral between 
shifted oscillator wave functions of the same 
frequency, which is calculated: 
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Here k

mL is the generalized Laguerre 
polynominal and lll gf ̂/ˆ  . A procedure for 

calculating the overlap integrals  0m̂ wis 
described in ref. [65]. In order to reveal 
explicitly the connection between the 
quantities slsl

lf 21 ,,  and the geometry shifts 
and frequency changes it  is written as  
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where the vector Q denotes the normal 
coordinates in the ground state of the reference 
molecule and Q̂  denotes the normal 
coordinates of the ion, both on the one-particle 
level. If  L and  L̂  are the transformation 
matrices from internal to normal coordinates in 
the initial and final states, respectively, R is 
the change in equilibrium position and Г, Г̂ are 
the diagonal matrices of frequencies 
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-1/2-11/2 LL̂ˆJ  , 
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J, ’s is given by sl
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normal coordinate shift K̂  is related to lf  by 
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possible in case of diagonality of matrix 'ss of 
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Below we give the Cederbaum-Domske 
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and Franck-Condon factors starting from the 
one-particle picture discussed above. In a 
diagrammatic method in order  to obtain the 
function )(єNk  one should calculate the 
Green’s function )(' єGkk first: 
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where T is Wick’s time ordering operator and 
the function )(єNk then follows from relation 
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 ksignєa  , where  is a positive 
infinitesimal. Choosing the unperturbed 
Hamiltonian 0H  to be 
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one finds for the corresponding Green’s 
functions 
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The Dyson equation 
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relates the Green’s functions to the free ones 
introducing a new function )('' єkk called the 
(proper) self-energy part. In in order to 
calculate 'kk , a well-known diagrammatic 
method is used. It is useful to remind that the 
sum of Feynman diagrams leading to the self-
energy part is shown in Fig. 1. All notations 
are standard.  
 

 
Fig. 1. The sum of diagrams contributing to 

the self-energy part  
 
The one-body problem treated above results in 
the exact solution of the Dyson equation with 
the self-energy part given by the infinite 
number of diagrams shown in the first row of 
Fig. 1 and the corresponding Green's function 
is as follows [65]:  
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The corresponding Dyson-like equation is as 
follows:  
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where kkÔ  , is equal to kk  , less the diagrams 
of the first row in Fig.1.   The perturbation 
expansion of Ф is shown in Fig. 2 where 

OB
kkiG  , is symbolized by a double solid line.    

 
Fig. 2. Perturbation expansion of Фkk 

The expression for the sum of the first two 
diagrams appearing in Fig. 2 are written by a 
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The direct method for calculation of Nk() as 
the imaginary part of the corresponding 
Green's function implicitly includes the 
determination of the V. I. P. s of the reference 
molecule and then of Nk   .  The zeros of the 
functions 
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Expanding the ionic energy 1N

kE about the 
equilibrium geometry of the reference 
molecule in a power series of the normal 
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leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, 
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The one-body problem treated above results in 
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where kkÔ  , is equal to kk  , less the diagrams 
of the first row in Fig.1.   The perturbation 
expansion of Ф is shown in Fig. 2 where 
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The direct method for calculation of Nk() as 
the imaginary part of the corresponding 
Green's function implicitly includes the 
determination of the V. I. P. s of the reference 
molecule and then of Nk   .  The zeros of the 
functions 
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Expanding the ionic energy 1N

kE about the 
equilibrium geometry of the reference 
molecule in a power series of the normal 
coordinates of this molecule: 
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leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, 
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one finds for the corresponding Green’s 
functions 
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relates the Green’s functions to the free ones 
introducing a new function )('' єkk called the 
(proper) self-energy part. In in order to 
calculate 'kk , a well-known diagrammatic 
method is used. It is useful to remind that the 
sum of Feynman diagrams leading to the self-
energy part is shown in Fig. 1. All notations 
are standard.  
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The corresponding Dyson-like equation is as 
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where kkÔ  , is equal to kk  , less the diagrams 
of the first row in Fig.1.   The perturbation 
expansion of Ф is shown in Fig. 2 where 
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The direct method for calculation of Nk() as 
the imaginary part of the corresponding 
Green's function implicitly includes the 
determination of the V. I. P. s of the reference 
molecule and then of Nk   .  The zeros of the 
functions 
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where  kop  denotes the kth eigenvalue of 
the diagonal matrix of the one-particle 
energies added to the matrix of the self-energy 
part, are the negative V. I. P. 's for a given 
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Expanding the ionic energy 1N

kE about the 
equilibrium geometry of the reference 
molecule in a power series of the normal 
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leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, 
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The corresponding Dyson-like equation is as 
follows:  
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where kkÔ  , is equal to kk  , less the diagrams 
of the first row in Fig.1.   The perturbation 
expansion of Ф is shown in Fig. 2 where 
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The direct method for calculation of Nk() as 
the imaginary part of the corresponding 
Green's function implicitly includes the 
determination of the V. I. P. s of the reference 
molecule and then of Nk   .  The zeros of the 
functions 
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where  kop  denotes the kth eigenvalue of 
the diagonal matrix of the one-particle 
energies added to the matrix of the self-energy 
part, are the negative V. I. P. 's for a given 
geometry.  Further it is easily to write:   
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Expanding the ionic energy 1N

kE about the 
equilibrium geometry of the reference 
molecule in a power series of the normal 
coordinates of this molecule: 
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leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, 
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The direct method for calculation of Nk(∈) as 
the imaginary part of the corresponding Green’s 
function implicitly includes the determination of 
the V. I. P. s of the reference molecule and then of 
Nk ( )∈ .  The zeros of the functions
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where ( )k
op Σ+∈ denotes the kth eigenvalue of the 

dia gonal matrix of the one-particle energies added 
to the matrix of the self-energy part, are the nega-
tive V. I. P. ‘s for a given geometry.  Further it is 
easily to write:  
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leads to a set of linear equations in the un-
known normal coordinate shifts δQS,
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where sω  are frequencies of the reference mol-
ecule. The new coupling constants are then:
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Further it can be shown [65-67] that the cou-

pling constants lg  and lly ′  are calculated by the 
well-known perturbation expansion of the self-
energy part using the Hamiltonian HEN of Eq. (6).   
In second order one obtains:
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and the coupling constant gl, can be written as
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It is suitable to use further the pole strength of 

the corresponding Green’s function
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                                                                       (62)

Below we firstly give the DFT definition of the 
pole strength corresponding to V. I. P.’s and con-
firm earlier data [65]: pk≈0,8-0,95.   The closeness 
of  pk to 1 in fact means that a role of the multi-

body correlation effects is small ( 0
ll gg ≈ ). 

The above presented results can be usefully 
treated in the terms of the correlation and reor-

                    Ni
t
ii HaaєH 0        (43) 

one finds for the corresponding Green’s 
functions 

           )/()( '
0  aiєєєG kkkkk             (44) 

The Dyson equation 

          
'''''

0

''

0
'' kkkkkk

k
kkkk GGGG          (45) 

relates the Green’s functions to the free ones 
introducing a new function )('' єkk called the 
(proper) self-energy part. In in order to 
calculate 'kk , a well-known diagrammatic 
method is used. It is useful to remind that the 
sum of Feynman diagrams leading to the self-
energy part is shown in Fig. 1. All notations 
are standard.  
 

 
Fig. 1. The sum of diagrams contributing to 

the self-energy part  
 
The one-body problem treated above results in 
the exact solution of the Dyson equation with 
the self-energy part given by the infinite 
number of diagrams shown in the first row of 
Fig. 1 and the corresponding Green's function 
is as follows [65]:  

    tinUntinitG kk
n

kkkkk
OB
kk  ˆexp0ˆexp)(

21  
 

                                                             
,     (47) 
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where kkÔ  , is equal to kk  , less the diagrams 
of the first row in Fig.1.   The perturbation 
expansion of Ф is shown in Fig. 2 where 
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The direct method for calculation of Nk() as 
the imaginary part of the corresponding 
Green's function implicitly includes the 
determination of the V. I. P. s of the reference 
molecule and then of Nk   .  The zeros of the 
functions 
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where  kop  denotes the kth eigenvalue of 
the diagonal matrix of the one-particle 
energies added to the matrix of the self-energy 
part, are the negative V. I. P. 's for a given 
geometry.  Further it is easily to write:   
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Expanding the ionic energy 1N

kE about the 
equilibrium geometry of the reference 
molecule in a power series of the normal 
coordinates of this molecule: 
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leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, 
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one finds for the corresponding Green’s 
functions 
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The Dyson equation 
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relates the Green’s functions to the free ones 
introducing a new function )('' єkk called the 
(proper) self-energy part. In in order to 
calculate 'kk , a well-known diagrammatic 
method is used. It is useful to remind that the 
sum of Feynman diagrams leading to the self-
energy part is shown in Fig. 1. All notations 
are standard.  
 

 
Fig. 1. The sum of diagrams contributing to 

the self-energy part  
 
The one-body problem treated above results in 
the exact solution of the Dyson equation with 
the self-energy part given by the infinite 
number of diagrams shown in the first row of 
Fig. 1 and the corresponding Green's function 
is as follows [65]:  
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The corresponding Dyson-like equation is as 
follows:  
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where kkÔ  , is equal to kk  , less the diagrams 
of the first row in Fig.1.   The perturbation 
expansion of Ф is shown in Fig. 2 where 

OB
kkiG  , is symbolized by a double solid line.    

 
Fig. 2. Perturbation expansion of Фkk 
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diagrams appearing in Fig. 2 are written by a 
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The direct method for calculation of Nk() as 
the imaginary part of the corresponding 
Green's function implicitly includes the 
determination of the V. I. P. s of the reference 
molecule and then of Nk   .  The zeros of the 
functions 

                   kop
kD  ,            (50) 

where  kop  denotes the kth eigenvalue of 
the diagonal matrix of the one-particle 
energies added to the matrix of the self-energy 
part, are the negative V. I. P. 's for a given 
geometry.  Further it is easily to write:   
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Expanding the ionic energy 1N

kE about the 
equilibrium geometry of the reference 
molecule in a power series of the normal 
coordinates of this molecule: 
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leads to a set of linear equations in the 
unknown normal coordinate shifts δQS, 
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ganization effects. Usually it is introduced the 
following expression for an I.P.:
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The first correction term is due to re-
organization, the remaining correction terms are 
due to correlation effects.  Then the coupling con-
stant gl, can be written as
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The second coupling constant can be written
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0
llγ , is defined analogously 0

lg .   

3. Quasiparticle Fermi-liquid DFT

In this chapter we present the  quasiparticle 
Fermi-liquid version of the DFT theory, starting 
from the problem of searching for the optimal 
one-electron representation and following to refs. 
[60-68,111].  Two  decades  ago  Davidson  had  
pointed   the   principal disadvantages of the tradi-
tional representation based on the self-consistent 
field  approach  and  suggested  the  optimal  “nat-
ural orbitals”  representation   [22,23].   Neverthe-
less   there   remain insurmountable calculational 
difficulties in  the  realization  of the Davidson 
program.  One  of the  simplified  recipes  repre-
sents, for  example,   the   Kohn-Sham DFT theory 
[40-42].  In ref. [111] the QED DFT version, based  
on  the formally exact QED perturbation theory 
(PT), has been developed and a new approach to 
construction of the optimized one-quasiparticle 
representation has been proposed. In fact this ap-

proach is based on the energy approach, which is  
well known  in  the theory of radiative  and  non-
radiative  decay  of  the quasi-stationary states for  
multielectron systems. The energy approach uses 
the adiabatic Gell-Mann and Low formula [59] for 
the  energy shift dE with electrodynamic scattering  
matrices. In a modern theory of  molecules there is 
a number of tasks, where an accurate account for 
the complex exchange-correlation effects, includ-
ing the continuum pressure, energy dependence 
of a mass operator etc., is critically important. It 
includes also the calculation of the vibration struc-
ture for the molecular systems. In this case it can 
be very useful the quasiparticle DFT [60]. In order 
to get the master equations and construct an opti-

mal basis of the one-particle wave functions λϕ  
one could use the Green’s function method. Let us 
define the one-particle Hamiltonian for functions 

λϕ  so that the Greens’ function pole part in the 

( λϕ ) representation is diagonal on λ . Starting 
equation is the Dyson equation for multi-electron 
(for example atom or molecule): 

∫ ∑∑ −=−⋅+− )(),,(),,()/2/( ////2 xxxxdxxxGrZp δεεε αα
  

                                                                         (67)
where ),( srx =  are the spatial and spin variables, 

∑ is the mass operator; Z , as usually, a charge 
of a nucleus (nuclei) «α », G is the Green’s func-
tion. In the representation of auxiliary functions 

/
λϕ   the equation (67) has the following form:
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where 1λ  is an index of summation. It is natural to 

choose λϕ  so that the following expression will 
be diagonal:
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                                                                         (69)
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operator etc., is critically important. It includes 
also the calculation of the vibration structure 
for the molecular systems. In this case it can 
be very useful the quasiparticle DFT [60]. In 
order to get the master equations and construct 
an optimal basis of the one-particle wave 
functions   one could use the Green’s 
function method. Let us define the one-particle 
Hamiltonian for functions   so that the 
Greens’ function pole part in the (  ) 
representation is diagonal on  . Starting 
equation is the Dyson equation for multi-
electron (for example atom or molecule):  
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where ),( srx   are the spatial and spin 
variables,  is the mass operator; Z , as 
usually, a charge of a nucleus (nuclei) « », G 
is the Green’s function. In the representation 
of auxiliary functions /

   the equation (67) 
has the following form: 
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where 1  is an index of summation. It is 
natural to choose   so that the following 
expression will be diagonal: 
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Then the Green’s function is diagonal on  : 
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and the functions /
 , which diagonalizes G , 

satisfy to equation as follows: : 
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One could introduce the mixed representation 
for a mass operator as follows:  
 

111 ])(exp[),,(),,( drprrixxpx                            

(72) 

Then equation (71) with account for of the 
expression (72) can be written as follows:  
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It can be shown that an operator ivp   in 
(67) acts on functions which are on the right of 

 ),,( px . So, in order to find the one-
particle energies, defined by the pole part of 
the Green’s function G, it is sufficient to know 
the functions /

  under   . The Greens’ 
function pole part is as follows:  
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The functions ),()( //
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satisfying to following equation:  
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Introducing an expansion for self-energy part 

  into set on degrees 22,, FF ppx   

(here F  and Fp  are the Fermi energy and 
pulse correspondingly) 
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then equation (76) is rewritten as follows: 
 

)()/1(

)(])/()(/2/[ 2
0

2

x

xpppxrZp








 







                    (77) 
The functions   in (77) are orthogonal with 
a weight k

-1= ]/1[1  a . Now one 
can introduce the wave functions of the 
quasiparticles    2/1a , which are, as 
usually, orthogonal with weight 1. For 
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and the functions /
λϕ , which diagonalizes G , sat-

isfy to equation as follows: :

                               (71)

One could introduce the mixed representation 
for a mass operator as follows: 

                       

 (72)

Then equation (71) with account for of the ex-
pression (72) can be written as follows: 
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It can be shown that an operator ivp =  in 
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Introducing an expansion for self-energy part 

∑  into set on degrees 22,, FF ppx −− εε  

(here Fε  and Fp  are the Fermi energy and pulse 
correspondingly):

then equation (76) is rewritten as follows:
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with a weight rk
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can introduce the wave functions of the quasi-

particles λλϕ Φ= − 2/1a , which are, as usually, 
orthogonal with weight 1. For complete defini-

tion of }{ λϕ  it should be determined the values 

ε∂∂∂∂ ∑∑∑ /,/, 2
0 p . Naturally, the equations (77) 

can be obtained on the basis of the variational 
principle, if we start from a Lagrangian of a sys-

tem  qL  (density functional). It should be defined 
as a functional of the following quasiparticle den-
sities: 

        (78)

                          

The densities 0ν  and 1ν  are similar to the HF 
electron density ρ   ( a⋅=νρ ) and kinetical 

energy density correspondingly; the density 2ν  
has no an analog in the HFock or standard Kohn-
Sham theory and appears as result of account for 
the energy dependence of the mass operator ∑
. Lagrangian qL   can be written as sum of a free 
Lagrangian and Lagrangian of interaction: 
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where a free Lagrangian 0
qL  has a standard 

form: 

operator etc., is critically important. It includes 
also the calculation of the vibration structure 
for the molecular systems. In this case it can 
be very useful the quasiparticle DFT [60]. In 
order to get the master equations and construct 
an optimal basis of the one-particle wave 
functions   one could use the Green’s 
function method. Let us define the one-particle 
Hamiltonian for functions   so that the 
Greens’ function pole part in the (  ) 
representation is diagonal on  . Starting 
equation is the Dyson equation for multi-
electron (for example atom or molecule):  
 

   )(),,(),,()/2/( ////2 xxxxdxxxGrZp  
         

(67) 
where ),( srx   are the spatial and spin 
variables,  is the mass operator; Z , as 
usually, a charge of a nucleus (nuclei) « », G 
is the Green’s function. In the representation 
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where 1  is an index of summation. It is 
natural to choose   so that the following 
expression will be diagonal: 
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Then the Green’s function is diagonal on  : 
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One could introduce the mixed representation 
for a mass operator as follows:  
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operator etc., is critically important. It includes 
also the calculation of the vibration structure 
for the molecular systems. In this case it can 
be very useful the quasiparticle DFT [60]. In 
order to get the master equations and construct 
an optimal basis of the one-particle wave 
functions   one could use the Green’s 
function method. Let us define the one-particle 
Hamiltonian for functions   so that the 
Greens’ function pole part in the (  ) 
representation is diagonal on  . Starting 
equation is the Dyson equation for multi-
electron (for example atom or molecule):  
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where ),( srx   are the spatial and spin 
variables,  is the mass operator; Z , as 
usually, a charge of a nucleus (nuclei) « », G 
is the Green’s function. In the representation 
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Introducing an expansion for self-energy part 
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The functions   in (77) are orthogonal with 
a weight k

-1= ]/1[1  a . Now one 
can introduce the wave functions of the 
quasiparticles    2/1a , which are, as 
usually, orthogonal with weight 1. For 

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
start from a Lagrangian of a system  qL  
(density functional). It should be defined as a 
functional of the following quasiparticle 
densities:  
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The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  

int0
qqq LLL  , 

where a free Lagrangian 0
qL  has a standard 

form:  
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(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 
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(80) 
where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  
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where   /2

.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  
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where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 
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where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
refs. [24,25]): 
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where 1p are the Legander polynomials, 
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 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 
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And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a sum 
of the Coulomb and exchange-correlation terms), 
however, it takes into account for the energy de-

pendence of a mass operator∑ :
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where ikβ  are some constants (look below), F is 
an effective potential of the exchange-correlation 
interaction. Let us explain here the essence of 
the introduced constants. Indeed, in some degree 
they have the same essence as  similar constants 
in well-known Landau Fermi  liquid theory and  
Migdal finite Fermi-systems theory. The Coulomb 

interaction part KL looks as follows: 
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where ∑∑ ∂∂= ε/2
.  Regarding the exchange-

correlation potential F, it should be noted the there 
are many possible approximations (directly in the 
DFT and its modern generalizations). Earlier in 
our atomic and molecular theories we use the fol-
lowing form: 

                                                                  

where X is the numerical coefficient. It has been 
obtained in the refs. [74-76] on the basis of cal-
culating the Rayleigh-Schrödinger perturbation 
theory Feynman diagrams of the second and high-
er order (so called polarization diagrams) in the 
Thomas-Fermi approximation. The correspond-
ing relativistic generalization of the potential (82) 
looks as follows [76]:

           

          

where , c is the light velocity. 
Another alternative expression has been in-

troduced by Victor- Laughlin-Taylor (c.f. refs. 
[24,25]):
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where 1p are the Legander polynomials, 
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=θ .  In the local density ap-
proximation in the density functional the potential 
F can be expressed through the exchange-corre-

lation pseudo-potential XCV  as follows [41,42]: 
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Further, one can get the following expressions 

for 
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Here KV  is the Coulomb term  (look above), 

∑ ex
0  is the exchange term. Using the known 

canonical relationship:

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
start from a Lagrangian of a system  qL  
(density functional). It should be defined as a 
functional of the following quasiparticle 
densities:  
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The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  

int0
qqq LLL  , 

where a free Lagrangian 0
qL  has a standard 

form:  
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(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 
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(80) 
where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  
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where   /2

.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  
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where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 
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where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
refs. [24,25]): 
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where 1p are the Legander polynomials, 
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 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
start from a Lagrangian of a system  qL  
(density functional). It should be defined as a 
functional of the following quasiparticle 
densities:  
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The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  

int0
qqq LLL  , 

where a free Lagrangian 0
qL  has a standard 

form:  
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     )/(*0
pq tindrL ,                    

(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 
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(80) 
where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  

     
21212022

1012

||/)(])(

1)[()](1[
2
1

drdrrrrr

rrLK






 


               (81) 

 
where   /2

.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  
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where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 
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where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
refs. [24,25]): 
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where 1p are the Legander polynomials, 

)/(cos 212112 rrrr


 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
start from a Lagrangian of a system  qL  
(density functional). It should be defined as a 
functional of the following quasiparticle 
densities:  
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The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  

int0
qqq LLL  , 

where a free Lagrangian 0
qL  has a standard 

form:  
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pq tindrL ,                    

(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 
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(80) 
where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  
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where   /2

.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  
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where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 
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where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
refs. [24,25]): 
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where 1p are the Legander polynomials, 
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 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
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The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  
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where a free Lagrangian 0
qL  has a standard 

form:  




     )/(*0
pq tindrL ,                    

(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 
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where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  
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.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  
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where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 
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where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
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where 1p are the Legander polynomials, 
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 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
start from a Lagrangian of a system  qL  
(density functional). It should be defined as a 
functional of the following quasiparticle 
densities:  

     




























].[)(

,|)(|)(

,|)(|)(

**
2

2
1

2
0

nr

rnr

rnr

   (78)                           

The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  

int0
qqq LLL  , 

where a free Lagrangian 0
qL  has a standard 

form:  




     )/(*0
pq tindrL ,                    

(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 

212121

2

0,

int )()(),(
2
1 drdrrrrrFLL ki

ki
ikKq 



            

(80) 
where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  

     
21212022

1012

||/)(])(

1)[()](1[
2
1

drdrrrrr

rrLK






 


               (81) 

 
where   /2

.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  












3/1)0(
2

////3/1)0(//

/
1

/3/1)0('

21
3/1)0(

21

/)/)(

/)((

/)((),(

cc

c

c

rrrdr

rrrdr

rrrrrdrXrrF







 

                   )(3/1)0(3/1)0( rdr cc          (82) 
where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 

);/)/

/)()(/)()((

/)()(()(

3/1)0(
2

//

////3/1)0(///
1

//3/1)0(/

2
//

1
//3/1)0(/

21







 


c

cc

c
d
pol

rr

rrdrrrrrdr

rrrrrrdrXrrF







           

 )()(3/1)0(3/1)0( rrdr cc            (83) 
 

where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
refs. [24,25]): 

   

)/()/()(cos

)/()/()(cos1),(

0240141223
2

3
1

'

0230231212
2

2
112

21

rrwrrwp
rr

rrwrrwp
rrr

rrF

d

d












           

(84) 
where 1p are the Legander polynomials, 

)/(cos 212112 rrrr


 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 

complete definition of }{   it should be 
determined the values   /,/, 2

0 p . 
Naturally, the equations (77) can be obtained 
on the basis of the variational principle, if we 
start from a Lagrangian of a system  qL  
(density functional). It should be defined as a 
functional of the following quasiparticle 
densities:  

     




























].[)(

,|)(|)(

,|)(|)(

**
2

2
1

2
0

nr

rnr

rnr

   (78)                           

The densities 0  and 1  are similar to the HF 
electron density    ( a ) and kinetical 
energy density correspondingly; the density 

2  has no an analog in the HFock or standard 
Kohn-Sham theory and appears as result of 
account for the energy dependence of the mass 
operator  . Lagrangian qL   can be written 
as sum of a free Lagrangian and Lagrangian of 
interaction:  

int0
qqq LLL  , 

where a free Lagrangian 0
qL  has a standard 

form:  




     )/(*0
pq tindrL ,                    

(79) 
And an interaction Lagrangian is defined in 
the form, which is characteristic for a standard 
(Kohn-Sham) density functional theory (as a 
sum of the Coulomb and exchange-correlation 
terms), however, it takes into account for the 
energy dependence of a mass operator : 

212121

2

0,

int )()(),(
2
1 drdrrrrrFLL ki

ki
ikKq 



            

(80) 
where ik  are some constants (look below), F 
is an effective potential of the exchange-
correlation interaction. Let us explain here the 
essence of the introduced constants. Indeed, in 
some degree they have the same essence as  
similar constants in well-known Landau Fermi  
liquid theory and  Migdal finite Fermi-systems 

theory. The Coulomb interaction part 
KL looks as follows:  

     
21212022

1012

||/)(])(

1)[()](1[
2
1

drdrrrrr

rrLK






 


               (81) 

 
where   /2

.  Regarding the exchange-
correlation potential F, it should be noted the 
there are many possible approximations 
(directly in the DFT and its modern 
generalizations). Earlier in our atomic and 
molecular theories we use the following form:  












3/1)0(
2

////3/1)0(//

/
1

/3/1)0('

21
3/1)0(

21

/)/)(

/)((

/)((),(

cc

c

c

rrrdr

rrrdr

rrrrrdrXrrF







 

                   )(3/1)0(3/1)0( rdr cc          (82) 
where X is the numerical coefficient. It has 
been obtained in the refs. [74-76] on the basis 
of calculating the Rayleigh-Schrödinger 
perturbation theory Feynman diagrams of the 
second and higher order (so called polarization 
diagrams) in the Thomas-Fermi 
approximation. The corresponding relativistic 
generalization of the potential (82) looks as 
follows [76]: 

);/)/

/)()(/)()((

/)()(()(

3/1)0(
2

//

////3/1)0(///
1

//3/1)0(/

2
//

1
//3/1)0(/

21







 


c

cc

c
d
pol

rr

rrdrrrrrdr

rrrrrrdrXrrF







           

 )()(3/1)0(3/1)0( rrdr cc            (83) 
 

where 2/123/2)0(2 }/)](3[1{)( crr c  , c is 
the light velocity.  
Another alternative expression has been 
introduced by Victor- Laughlin-Taylor (c.f. 
refs. [24,25]): 

   

)/()/()(cos

)/()/()(cos1),(

0240141223
2

3
1

'

0230231212
2

2
112

21

rrwrrwp
rr

rrwrrwp
rrr

rrF

d

d












           

(84) 
where 1p are the Legander polynomials, 
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 .  In the local density 
approximation in the density functional the 
potential F can be expressed through the 

exchange-correlation pseudo-potential XCV  as 
follows [41,42]:  
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                                                                   (85) 
Further, one can get the following expressions 
for 
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 

canonical relationship: 

qqqq LLLH    // **  
after some transformations one can receive the 
expression for the quasiparticle Hamiltonian, 
which is corresponding to a Lagrangian qL : 

2
2022

2
101110001

2
0000

0int0

/
2
1

/
2
1/

/
2
1















XC

XCXC

XC

Kqqqq

V

VV

V

LHHHH

 

(87) 
Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 

22121101 ,,,   give omitted contribution 
to the energy functional (at least in the zeroth 
approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 

density functional theory, then without losing 
a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
principle calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
the ionization cross-sections) [60]: 
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(88) 
The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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is the Kohn-Sham exchange potential, 

c/]3[ 3/12  , and function )(f  is as 
follows: 
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Using the above written formula, one can 
simply define values (61), (88).  As example in 
table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
the entire universality of the constants in the 
last theories is absent, though a range of its 
changing is quite little. Without a detailed 
explanation, we note here that the 
corresponding constants in our theory possess 
the same universality as ones in the Landau 
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The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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is the Kohn-Sham exchange potential, 
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Using the above written formula, one can 
simply define values (61), (88).  As example in 
table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
the entire universality of the constants in the 
last theories is absent, though a range of its 
changing is quite little. Without a detailed 
explanation, we note here that the 
corresponding constants in our theory possess 
the same universality as ones in the Landau 

exchange-correlation pseudo-potential XCV  as 
follows [41,42]:  
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 

canonical relationship: 

qqqq LLLH    // **  
after some transformations one can receive the 
expression for the quasiparticle Hamiltonian, 
which is corresponding to a Lagrangian qL : 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 

22121101 ,,,   give omitted contribution 
to the energy functional (at least in the zeroth 
approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 

density functional theory, then without losing 
a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
principle calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
the ionization cross-sections) [60]: 

 






 




  kkksp PIVF .)..(1                               

(88) 
The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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is the Kohn-Sham exchange potential, 
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Using the above written formula, one can 
simply define values (61), (88).  As example in 
table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
the entire universality of the constants in the 
last theories is absent, though a range of its 
changing is quite little. Without a detailed 
explanation, we note here that the 
corresponding constants in our theory possess 
the same universality as ones in the Landau 
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after some transformations one can receive the ex-
pression for the quasiparticle Hamiltonian, which 

is corresponding to a Lagrangian qL :
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Green’s function [62]. 
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Using the above written formula, one can sim-
ply define values (61), (88).  As example in table 
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scopic factors of some atoms together with avail-
able experimental data and results, obtained in 
the Hartree-Fock theory plus random phase ap-
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follows [41,42]:  
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 

canonical relationship: 

qqqq LLLH    // **  
after some transformations one can receive the 
expression for the quasiparticle Hamiltonian, 
which is corresponding to a Lagrangian qL : 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 

22121101 ,,,   give omitted contribution 
to the energy functional (at least in the zeroth 
approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 

density functional theory, then without losing 
a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
principle calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
the ionization cross-sections) [60]: 
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The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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Using the above written formula, one can 
simply define values (61), (88).  As example in 
table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
the entire universality of the constants in the 
last theories is absent, though a range of its 
changing is quite little. Without a detailed 
explanation, we note here that the 
corresponding constants in our theory possess 
the same universality as ones in the Landau 

exchange-correlation pseudo-potential XCV  as 
follows [41,42]:  
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 

canonical relationship: 

qqqq LLLH    // **  
after some transformations one can receive the 
expression for the quasiparticle Hamiltonian, 
which is corresponding to a Lagrangian qL : 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 

22121101 ,,,   give omitted contribution 
to the energy functional (at least in the zeroth 
approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 

density functional theory, then without losing 
a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
principle calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
the ionization cross-sections) [60]: 
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(88) 
The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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Using the above written formula, one can 
simply define values (61), (88).  As example in 
table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
the entire universality of the constants in the 
last theories is absent, though a range of its 
changing is quite little. Without a detailed 
explanation, we note here that the 
corresponding constants in our theory possess 
the same universality as ones in the Landau 

exchange-correlation pseudo-potential XCV  as 
follows [41,42]:  
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 

canonical relationship: 

qqqq LLLH    // **  
after some transformations one can receive the 
expression for the quasiparticle Hamiltonian, 
which is corresponding to a Lagrangian qL : 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 

22121101 ,,,   give omitted contribution 
to the energy functional (at least in the zeroth 
approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 

density functional theory, then without losing 
a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
principle calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
the ionization cross-sections) [60]: 
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(88) 
The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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Using the above written formula, one can 
simply define values (61), (88).  As example in 
table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
the entire universality of the constants in the 
last theories is absent, though a range of its 
changing is quite little. Without a detailed 
explanation, we note here that the 
corresponding constants in our theory possess 
the same universality as ones in the Landau 
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 

canonical relationship: 

qqqq LLLH    // **  
after some transformations one can receive the 
expression for the quasiparticle Hamiltonian, 
which is corresponding to a Lagrangian qL : 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 

22121101 ,,,   give omitted contribution 
to the energy functional (at least in the zeroth 
approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 

density functional theory, then without losing 
a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
principle calculated by analytical way, but it is 
very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
the ionization cross-sections) [60]: 
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Here KV  is the Coulomb term  (look above), 

 ex
0  is the exchange term. Using the known 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
all, it is obvious that the terms with constants 
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approximation in comparison with others), so 
they can be equal to zero. The value for a 
constant 00  in some degree is dependent 
upon the definition of the potential XCV . If as 

XCV  it is use one of the correct exchange-
correlation potentials from the standard 
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a community of statement, the constant 00  
can be equal to 1. The constant 02  can be in 
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very useful to remember its connection with a 
spectroscopic factor spF of atomic or 
molecular system (it is usually defined from 
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The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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Here KV  is the Coulomb term  (look above), 
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Further let us give the corresponding 
comments regarding the constants ik. First of 
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The term  /  is defined above.  It is easily 
to understand the this definition is in fact 
corresponding to the pole strength of the 
corresponding Green's function [62].  
In further calculation as potential XCV  we use 
the exchange-correlation pseudo-potential 
which contains the correlation (Gunnarsson-
Lundqvist) potential and relativistic exchanger 
Kohn-Sham one [40-42]:  
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table 1 we present our calculational data for 
spectroscopic factors of some atoms together 
with available experimental data and results, 
obtained in the Hartree-Fock theory plus 
random phase approximation. 
Further, let us give a short comment regarding 
an universality of the constants ik. From the 
point of view of the analogous universality of 
the constants in the  well-known Landau 
Fermi-liquid theory and Migdal finite Fermi-
systems theory [62]. Indeed, as we know now, 
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changing is quite little. Without a detailed 
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Table 1
Spectroscopic factors of the external ns2 

shells of some atoms and ions

Atom,
ion

Терм N Fsp *
expF

RPAF~

Ar 1S 3 0,60 0,56
0,70

TI (IV) 1S 3 0,50 0,34
0,60

Xe 1S 5 0,36
TI 2P 6 0,36
Pb+ 2P 6 0,33
Pb 3P 6 0,34
Pb 1D 6 0,34
Pb 1S 6 0,34
Bi+ 3P 6 0,32
Bi 4S 6 0,33
Bi 2D 6 0,33
Bi 2P 6 0,33
Po+ 4S 6 0,31
Po 3P 6 0,31
Po 1D 6 0,31
Po S    1 6 0,31
As+ 3P 6 0,30
As 2P 6 0,30
As- 1S 6 0,31
Rn+ 2P 6 0,29
Rn 1S 6 0,29
Fr+ 1S 6 0,28
Fr 2S 6 0,28
Ra 1S 7 0,43
Ac 2D 7 0,41
Ac 2F 7 0,42
Th 3H 7 0,41
Th 3F 7 0,42
Pa 4I 7 0,42
U 5L 7 0,42

with similar basises of other 1-particle representa-
tions (HF, Hatree-Fock-Slater, Kohn-Sham etc.). 
Naturally, this advancement can be manifested 

during studying those properties of the multi-elec-
tron systems, when accurate account for complex 
exchange-correlation effects, including continuum 
pressure, energy dependence of mass operator etc., 
is critically important.

 
4. The application of the combined Green’s 

function method and quasiparticle DFT approach 
to diatomics

We choose the diatomic molecules of N2, CO 
(and some others) for application of the combined  
Green’s function method and quasiparticle DFT 
approach. In ref. [65] it has been shown that the 
diatomics spectra can be in principle reproduced 
by applying a one-particle theory with account 
of the correlation and reorganiza tion effects. The 
corresponding coupling constants depend on the 
balance of these effects.   The nitrogen molecule 
has been naturally discussed in many papers. 
The valence V. I. P. ‘s of N2 have been calculated 
[61,62,65] by the method of Green’s functions and 
there fore the pole strengths pk are known and the 
mean values qk can be estimated.

In should be reminded that the N2 molecule 
is the classical example where the known Koop-
mans’ theorem even fails in reproducing the se-
quence of the V. I. P. ‘s in the PE spectrum.   From 
the calculation of Cade et al.[71,72] one finds that 
including reorganization the V. I. P. ‘s assigned 
by gσ and uσ improve while for the π V. I. P. the 
good agreement between the Koopmans value and 
the experimental one is lost, leading to the same 
sequence as given by Koopmans’ theorem.   The 
above-mentioned Green’s functions calculation 
which takes account of reorganization and corre-
lation effects leads to the experimental sequence 
of V. I. P.’s.  In Table 2 the experimental V. I. P. 
‘s (a), the one-particle HF energies (b), the V. I. 
P. ‘s calculated by Koopmans’ theorem plus the 
contribution of reorganization (c), the V. I. P. ‘s 
calculated with Green’s functions method (d), the 
combined Green’s functions and DFT approach (e) 
and corresponding pole strengths (d,e) are listed.  
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Table 2 
The experimental and calculated V. I. P.’s 

(in eV) of N2. Rk is the contribution of reorga-
nization; pk stands for pole strength.

O
rbital

Exp
VIP
a - b

k∈
( )c

kk R+∈−

Calcd

V.I.P.,s d
kρ

Calce

V.I.P.,s e
kρ

  
3

gσ

15,6 17,4 16,0 15,5 0,9 15,5 0,9

  
1

uπ

16,9 17,1 15,7 16,8 0,9 16,8 0,9

  
2

uσ

18,8 20,9 19,9 18,6 0,9 18,6 0,8

Therefore, the results, obtained within the 
Green functions approach and combined method 
are very much close. Taking into account a simpli-
fication of the calculational procedure within the 
DFT approach, the generalized Cederbaum et al 
theory  looks more attractive else.  As it’s known, 
of the three bands in the experimental low-energy 
spectrum of N2 molecule  (Fig. 3), only the lπu 
band exhibits a strong vibrational structure.

When a change of frequency due to ionization 
is small, the densi ty of states can be well approxi-
mated using only one pa rameter g:

                       
                                                                    

In case the frequencies change considerably, 
the intensi ty distribution of the most intensive 
lines can analogously be well approximated by 
an effective parameter S. In fig.3 the experimen-
tal and calculated photoelectron spectra for the 
N2.molecule are presented. The uppermost spec-
trum is calculated with S0 (i.e. the constant S cal-
culated with g0 ) and Eq. (70) [13]. The middle 
spectrum is calculated with values of S from Eq. 
(62).  

It is important to note that the original Green’s 
functions and combined Green functions +DFT 

approach coincide in the scale of the figure. In 
a whole the agreement between the calculated 
spectrum (corrected g ) and the experimental one 
is improved. As another example, the molecule 
CO can be considered.

The experimental and calculated photoelectron 
spectra for CO molecule are listed in Fig.4. One 
can see quite physically reasonable agreement be-
tween experiment and theory. The original Green’s 
functions [13] and combined Green’s functions 
+DFT approach practically coincide. On inclusion 
of the anharmonicites it should be mentioned that 
a theory can be generalized by means a standard 
normal coordinate expansion of Hamiltonian to 
third and higher orders and correspondingly the 
theory of the density of states functions Nk devel-
oped above can easily be generalized too.

Figure 3. Experimental [65]and calculated PE 
spectra N2; Uppermost spectrum is calculated 
with S0 and Eq. (70). The middle spectrum is 
calculated with S values from (62) (see text). 

's calculated with Green's functions method 
(d), the combined Green’s functions and DFT 
approach (e) and corresponding pole strengths 
(d,e) are listed.   
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[13]. The middle spectrum is calculated with 
values of S from Eq. (62).   
It is important to note that the original Green’s 
functions and combined Green functions 
+DFT approach coincide in the scale of the 
figure. In a whole the agreement between the 
calculated spectrum (corrected g ) and the 
experimental one is improved. As another 
example, the molecule CO can be considered. 

 
Figure 3. Experimental [65]and calculated PE 
spectra N2; Uppermost spectrum is calculated 
with S0 and Eq. (70). The middle spectrum is 
calculated with S values from (62) (see text).  

 
The experimental and calculated photoelectron 
spectra for CO molecule are listed in Fig.4. 
One can see quite physically reasonable 
agreement between experiment and theory. 
The original Green’s functions [13] and 
combined Green’s functions +DFT approach 
practically coincide. On inclusion of the 
anharmonicites it should be mentioned that a 
theory can be generalized by means a standard 
normal coordinate expansion of Hamiltonian 
to third and higher orders and correspondingly 
the theory of the density of states functions Nk 
developed above can easily be generalized too. 
 

5.  Summary 
We present a new combined theoretical 
approach to vibrational structure in photo-
electron spectra of molecules, which  is based 
on the Green’s function method and DFT. 
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5.  Summary

We present a new combined theoretical ap-
proach to vibrational structure in photo-electron 
spectra of molecules, which  is based on the 
Green’s function method and DFT.

In fact approach presented generalizes the 
standard Green’s function approach [65-68]. The 
density of states, which describe the vibrational 
structure in molecular photoelectron spectra, 
is calculated with the help of combined DFT-
Green’s-functions approach. It is important that 
the calculational procedure is significantly sim-
plified with using the quasiparticle DFT formal-
ism.  

Figure 4. The experimental [65] and calculated 
photoelectron spectra of CO. The upper spec-
trum is calculated with S0 and Eq. (70) (see text).
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THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO 
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF MOLECULES: 
REVIEW OF METHOD

Abstract. We present the basis’s of the new combined theoretical approach to vibrational structure 
in photoelectron spectra of molecules. The approach is based on the Green’s function method, which 
generalizes the Cederbaum-Domske formalism, and quasiparticle density functional theory. It gener-
alizes the known Green’s function approach by It is presented a new procedure for determination of 
the  density of states, which describe the vibrational structure in molecular photoelectron spectra. 
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МЕТОД ФУНКЦИЙ ГРИНА И ТЕОРИЯ ФУНКЦИОНАЛА ПЛОТНОСТИ ДЛЯ 
ОПРЕДЕЛЕНИЯ  КОЛЕБАТЕЛЬНОЙ СТРУКТУРЫ В ФОТОЭЛЕКТРОННЫХ 
СПЕКТРОВ МОЛЕКУЛ: ОБЗОР МЕТОДА

Резюме
Изложены основы нового комбинированного теоретического подхода к определению коле-

бательной структуры в фотоэлектронных спектрах молекул. Подход основан на квазичастич-
ном методе функций Грина, обобщающем формализм Цедербаума-Домске, и квазичастичной 
теории функционала плотности. Приведена процедура вычисления плотности состояний, опи-
сывающей колебательную структуру в молекулярных фотоэлектронных спектрах.

Ключевые слова: теория функционала плотности,  метод функций Грина, фотоэлектронныe 
спектры.
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МЕТОД ФУНКЦІЙ ГРІНА І ТЕОРІЯ ФУНКЦІОНАЛА ГУСТИНИ ДЛЯ ВИЗНАЧЕННЯ 
КОЛИВАЛЬНОЇ СТРУКТУРИ У ФОТОЕЛЕКТРОННИХ СПЕКТРАХ МОЛЕКУЛ: 
ОГЛЯД МЕТОДУ

Резюме
Викладені основи нового комбінованого теоретичного підходу до визначення коливальної 

структури в фотоелектронних спектрах молекул. Підхід заснований на квазічастинковом ме-
тоді функцій Гріна, що узагальнює формалізм Цедербаума-Домске, і квазічастинковій теорії 
функціонала густини. Наведена процедура обчислення густини станів, яка описує коливальну 
структуру в молекулярних фотоелектронних спектрах.

Ключові слова: теорія функціонала густини, метод функцій Гріна, фотоелектронні спектри


