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THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF
MOLECULES: REVIEW OF METHOD

We present the basis’s of the new combined theoretical approach to vibrational structure
in photoelectron spectra of molecules. The approach is based on the Green’s function
method, which generalizes the Cederbaum-Domske formalism, and quasiparticle density
functional theory. It generalizes the known Green’s function approach by It is presented a
new procedure for determination of the density of states, which describe the vibrational

structure in molecular photoelectron spectra

I. Introduction

A number of phenomena, provided by interac-
tion of electrons with vibrations of the atomic
nuclei in molecules or solids under availability of
of the electron states degeneration is usually called
as the Jahn-Teller effect. This interaction may
lead to local deformations, which are the reason
of the structural phase transitions in the solids
(statical Jahn-Teller effect)or appearance of the
connected electron-vibrational states (a dynami-
cal Jahn-Teller effect) [1-4]. Indeed, the physics of
the interaction of electrons with vibrations of the
atomic nuclei in molecules or solids is more rich-
er (c.f.[1-111]). One could mention here a great
field of the resonant collisions of electrons with
molecules, which are one of the most efficient
pathways for the transfer of energy from elec-
tronic to nuclear motion. While the correspond-
ing theory has been refined over the years with
sophisticated and elaborate non-local treatments
of the reaction dynamics, such studies have for
the most part treated the nuclear dynamics in one
dimension. This situation has resulted from the
fact that, as the field of electron-molecule scatter-
ing developed, both experimentally and theoreti-
cally, the phenomena of vibrational excitation and
dissociative attachment were first understood for
diatomics, and it seemed natural to extend that un-
derstanding to polyatomic molecules using 1-D or
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single-mode models of nuclear motion. However
a series of experimental measurements of these
phenomena in small polyatomic molecules have
proven to be uninterpretable in terms of atomic
motion with single degree of freedom. Reader
can find more details about this topic in the recent
paper by Rescigno et al [4].

In last several decades quantum chemistry
methods has been refined with a sophisticated
and comprehensive approaches of the correct in-
terelectron correlations and electron-nuclear dy-
namics treatments [9-49]. Very interesting quote
has been indicated by Bartlett and Musiat and
earlier by Wilson: “Ab initio quantum chemistry is
an emerging computational area that is fifty years
ahead of lattice gauge theory and a rich source of
new ideas and new approaches to the computation
of many fermion systems” [26]. Following to ref.
[26] we repeat that driving these developments
are the types of problems addressed by quantum
chemists, as shown in Fig. 1. Primary among
these are potential-energy surfaces (PES) which
describe the behavior of the electronic energy with
respect to the locations of the nuclei, subject to the
underlying Born-Oppenheimer or clamped nuclei
approximation. From the ground- and excited-state
wave functions one could in principle obtain all
properties that arise from a solution to vibrational
Schrédinger equation that gives the frequencies
and with derivatives of the dipole moment, the



infrared intensities [26-39]. Electronic excited
states are also accessible along with electronic
and photo-electron spectra. The properties that
arise from the one-particle density matrix, such
as dipole moments, hyperfine coupling constants,
and electric-field gradients, are readily available.
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Figure 1. The nature of quantum chemical
problems (from ref. [26]).

From even higher-order electric-field deriva-
tives, one obtains hyperpolarizabilities, which
determine nonlinear optical behavior. From de-
rivatives relative to atomic displacements in mol-
ecules, one obtains anharmonic effects on vibra-
tional-rotational spectra. In result , one could men-
tion that a main objective is an accurate solution of
the Schrodinger equation for molecules composed
of comparatively light elements.

As it is often takes a place, the old multi-body
quantum theoretical approaches, which have been
primarily developed in a theory of superfluity and
superconductivity, and generally speaking in a
theory of solids, became by the powerful tools for
developing new conceptions in molecular calcu-
lations [50-65]. Many of them offers a synthesis
of cluster expansions, Brueckner’s summation
of ladder diagrams, the summation of ring dia-
grams Gell-Mann and an infinite-order general-
ization of many-body perturbation theory MBPT
(Kelly, 1969; Bartlett and Silver, 1974a, 1976.
Using quantum-field methods in molecular theory
allowed to obtain a very powerful approach for

correlation in many-electron systems. Only with
this property are applications to polymers, sol-
ids, or the electron gas possible, and, even for
small molecules, its effects are numerically quite
significant. Configuration interaction methods,
long the focus of the correlation problem in quan-
tum chemistry Shavitt, 1998, do not, in general,
have this property which is responsible for the
emphasis on the coupled cluster theory and its
multi-body perturbation theory approximations
(Kelly, 1969; Bartlett and Silver, 1974a, 1974b;
Pople et al., 1976) in chemistry. For more details,
the history of coupled cluster theory is best told
from the viewpoint of some of its principal devel-
opers (look review [26]).

The Green’s method is very well known in a
quantum theory of field, quantum electrodynamics
, quantum theory of solids (c.f.[61-63]). Naturally,
an attractive idea was to use it in the molecular
calculations. Returning to problem of description
of the vibrational structure in photoelectron spec-
tra of molecules, it is easily understand that this
approach has great perspective as it was shown
by Cederbaum et al (c.f.[65-68]). One could note
that the experimental photoelectron (PE) spectra
usually show a pronounced vibrational structure.
Many papers have been devoted to treatment of
the vibrational spectra by construction of potential
curves for the reference molecule (the molecule
which is to be ionized) and the molecular ion.
Usually the electronic Green’s function is defined
for fixed position of the nuclei. As result, only
vertical ionization potentials (V.I.P.’s) can be cal-
culated [65]. The cited method, however, requires
as input data the geometries, frequencies, and
potential functions of the initial and final states.
Since in most cases at least a part of these data are
unavailable, the calculations have been carried
out with the objective of determining the missing
data by comparison with experiment. Naturally,
the Franck-Condon factors are functions of the
derivatives of the difference between the potential
curves of the initial and final states with respect to
the normal coordinates. One could agree here that
highly accurate calculations are necessary to ob-
tain good results with the above methods. To avoid
this difficulty and to gain additional information
about the ionization process, Cederbaum et al [65-
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68] extended the Green’s functions approach to
include the vibrational effects and showed that
the Green’s functions method allowed the ab ini-
tio calculation of the intensity distribution of the
vibrational lines, of the vibrational frequencies of
the reference molecule and its ions, and of geome-
try shifts due to ionization and particle attachment.
Besides, a great advancement here is connected
with a possibility of the quite exact calculation
of ionization potentials (I.P.’s) for molecules. Ac-
cording to ref.[65], starting from Hartree-Fock
(HF) calculation [71,72] the electronic Green’s
functions have been calculated applying a many-
body perturbation expansion. In this method the
Koopmans’ defect, i.e., the difference between
the I.P. and the value derived from the Koopmans’
theorem, is calculated directly, avoiding the usual
subtraction of large numbers of roughly equal
magnitude.

Further let us remember that for larger mol-
ecules and solids, far more approximate but more
easily applied methods such as density-functional
theory (DFT) [40-42] or from the wave-function
world the simplest correlated model MBPT are
preferred. Indeed, in the last decades DFT theory
became by a great, quickly developing field of
the modern quantum computational chemistry of
atoms, molecules, solids. Naturally, this approach
does not allow to reach a spectroscopic accuracy
in description of the different molecular proper-
ties, nevertheless, the key idea is very attractive
and can be used in new combined theoretical ap-
proaches.

Here we present the basis’s of the new
combined theoretical approach to vibrational
structure in photoelectron spectra of molecules.
The approach is based on the Green’s function
method and Fermi-liquid DFT formalism [80-
86]. It generalizes the known Green’s function
approach by Cederbaum-Domcke (we use this
version as a starting basis). The density of states,
which describe the vibrational structure in mo-
lecular photoelectron spectra, is calculated with
the help of combined DFT-Green’s-functions ap-
proach. In addition to exact solution of one-bode
problem different approaches to calculate reor-
ganization and many-body effects are presented.
In all cases no data about the molecular ion are
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needed and all transitions except those between
linear and bent configurations are included. The
density of states is well approximated by using
only the first order coupling constants in the one-
particle approximation. It is important that the
calculational procedure is significantly simplified
with using the quasiparticle DFT formalism Thus
quite simple calculation becomes a powerful tool
in interpreting the vibrational structure of photo-
electron spectra for different molecular systems.

2. The combined Green’s functions and
density functional approach

2.1 The Hamiltonian of the system. The
density of states in one —body solution

According to [65], the quantity which contains
the information about the ionization potentials and
the molecular vibrational structure due to quick
ionization is the density of occupied states’:

N, (e) = (1/2a) [ dre™ “ (y,fa, (0)a, (Dw,) » (1)
where |‘P0) is the exact ground state wavefunc-

tion of the reference molecule and a,(¢)is an
electron destruction operator, both in the Heisen-
berg picture. For particle attachment the quantity
of interest is the density of unoccupied states:

N, (€)= (1/27) [ dte™ “ (y,fa, (D2, (O)y,) (2)

Usually in order to calculate the value (1)
states for photon absorption one should express
the Hamiltonian of the molecule in the second
quantization formalism. The corresponding Ham-
iltonian is as follows:

H=T.(0/ox)+ T (0/0X)+U(x,X), (3)
where T is the kinetic energy operator for the

electrons, 7y is the kinetic energy operator for the
nuclei, and U represents the interaction

U, X)=Ug (x) +U(X) + U (x,X), (4)

where x denotes electron coordinates, X denotes

nuclear coordinates, Uy represents the Coulomb
interaction between electrons, etc.Below we fol-



low to original version of the Cederbaum-Domske
approach to vibrational structure of the molecular
spectra. Further the following field operator is
usually introduced:

Y(R,0,x)=>Y 4,(x,R,0)a,(R,0) (5)

where the ¢ are Hartre-Forck (HF) one—particle
functions and the a are destruction operators for a
HF particle in the state described by the subscript

i. Fixing (0 =6,), the Hamiltonian in the oc-

cupation number representation is given by [65]

H = Hy (R,60) + Uy (R,6,) + T, (8/6R) , (6)
H gy Ze(R)a,a,+ Z w(Rald a,a,

- Z Z [V:kk] (R)]aitaj’

i kef
Vi =il | ity

The €, (R) are the one-particle HF energies and
f denotes the set of orbitals occupied in the HF
ground state. As usually in the adiabatic approxi-
mation one could write the eigenfunctions to H

(7)

as products

€ (R), Vyu(R),and Uy (R,0) about R leaving

x|Ryy .and further expand

the operators g, and a; unchanged:

H :z *i(Ry)aja; +

Z Vyu(R)aldla,a, -
0
-2 2 Vi (R) Vi (Rl aja; ++). [Z[ EIJ(R_Rm
j kef i

0
,z z(aRaR] (R-R JR.-R,) Ja+..+Uy (R,,0,)+. +T[8R]

il

(8)

where M is the number of normal coordinates.
Choosing R as the equilibrium geometry on
the HF level and introducing dimensionless nor-
mal coordinates Q_one can write the following
Hamiltonian (the subscript 0 stands for R ):
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H =2717%" 2 ( ’WJ (b, +b)[ov,ala ak+(9)
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DA

s,8'=1
t t t _t t t
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] (b, +b,)(b, +

where the index set v, means that at least ¢, and
¢,or ¢, and ¢, are unoccupied, v, that at most one

of the orbitals is unoccupied, and v, that ¢, and

¢,or g and ¢@; are unoccupied. Besides, here for
simplicity all terms leading to anharmonicities are

neglected. The @, are the HF frequencies and the

b, and b! are destruction and creation operators
for vibrational quanta defined by

0, =(1/V2)(b, +b}),

0/00, = (1/~2)(b, — b)) (10)

The interpretation of the above Hamiltonian

is given in ref. [3]. The first term H, describes
the electronic motion for nuclei fixed at the HF

ground state geometry. The second term H, de-
scribes the motion of the nuclei in the harmonic
HF potential (the extension to anharmonic terms

can easily be done). H{ represents the coupling
of the HF particles with the nuclear motion. The
coupling constants are the normal coordinate de-
rivatives of the HF one-particle energies. The first
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sum in the expression for HY is responsible for
the geometry shifts and the second one for the
charge of frequencies due to electronions. There
is also a modification of the interaction between
electrons through the coupling to the nuclear mo-

tion. The term HY’, which describes this modifi-
cation, is due to its nature less important than H
. The exact solution of the one-body HF problem

has been given in ref.[65] too. The HF-single-

particle component H, of the Hamiltonian (9) is
as follows:

M
Hy= Y e(Raa +Y hobb,+ )+
i s=1
d 12| Ok, t t
+z z 2 — [aiai_n[](bs+bs)0+
s=1 i aQ;
1[ &%,
+ —
Zl Z 4[5Qs5st

Correspondingly in the one-particle picture the
density of occupied states is given by

(11)
] lala, -, b, +5 )by +51)

1 T in! t
Nf(”)zﬁj die™ "' (D | al(0)a, (1) D), ke f>

(12)
and the density of unoccupied states by
o 1 K i t
Ni() = | die" (@] a0 0)] @),
k ¢
/ (13)
with a,(t) = &M ake_"hfly"t : (14)

Here |CDO> is the product of the electronic and

Dy) =] )| 0),

vibrational ground states, i.e.,
where |CDO> is the ground state to the HF operator
D °(Ry)ala, and | 0)is the state containing

no vibrational quantum, i.e.,bs| 0)=0 for all
s. From Definitions (12) and (13) it follows im-
mediately that
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0),

N(°) =ﬁj dre"' o] &
— (15)

with

- M M
Hy=3, hobb +3, g /(b +b)
s=1

s=1

M
+ Z j/f'(bs +b§§ bs' +b;')
s,8'=1

(16)

20
61’

gi=+L(aoiJ ?/i :—I—l( j
ToW20e0 ) 7 Talegeo, ),

(17), (18)

As a first step in the evaluation of Eg. (15) new
operators

(b, + Ay b))

M=

CS:

(19)

~
Il
—

with real coefficients A, A, were introduced in

ref. [65]. The coefficients A, A, are now deter-

mined in such a way that ﬁo, expressed in the
new operators, takes the form

M M
H,= Z haclc, +Z g.(c,+cl)+k.

(20)
s=1 s=1
Inserting the inverse transformation
M
b=, he~xe) 1)
1=1

in Eg. (16) and comparing with Eg. (21) we obtain
the equations

Z ho,(A A"+ 4"+
/

2Y p (B -AAE -2 =0 (s#s)
g (22)



D, ho (' Z + 4 ) -
1

=22 (A =BT -2 =0
T

(23)

ha, =§[: ho (A +2), (24
g :; &k +4), (25
k=Y %(h(?)l—ha)l). (26)

/

Equation (22) and (23) together with Egs. (18)
and (19) constitute a system of 2M? independent
equations for the 2M? unknown coefficients

A, A . Solution of this system yields the change
in normal coordinates in terms of the coupling

constants y,.. Equations (24)-(26) determine the
vibrational frequencies @, of tion, the new cou-

pling parameters g and the constant k.
The nexy wunitary operator

M
U=] explfi(c—¢] ~
I=1 diagonalizes H, if
is chosen:
=g/ ho
UHU' = > hdclie, +A° (28)

o _ 1 _ 2 A
with A% =k Z 8 /ho, . Then the equation (14)
can be rewritten as follows [13]:

1 -
N;(¢) :%J‘ dt exp[ih' (€ — ¢, + Ac,)t]
(0| U'exp (i iZcz;sc;cstjm 0)
’ (30)
or using the symbol | ny for states belonging to

operators ¢, 1.e., cécs| ny = nS| ny, the density of
states takes the form

N = D [ G U |0y [6(°-2 A% £n-hd)

iy

(31

Further naturally the & function in Eg. (31)
contains the information about the adiabatic ion-
ization potential and the spacing of the vibra-
tional peaks, whereas the squared matrix element

| (n U |O> is the well-known Franck-Condon
factor, which gives the intensity distribution of the
vibrational spectrum. Following to ref. [65] one

|2

can decompose the matrix element (n |U |O> as

A

(n U| m} m| 0).

Uloy= > <

my-my,

(32)

where (ﬁ1| 0) is the overlap of unshifted wave

functions of different frequency and (ﬁ| U | 1)
is the overlap integral between shifted oscillator
wave functions of the same frequency, which is
calculated:

(n| U

o | 1/2
A s /| m;e _ _
m> :IIZIe 172)f; (n_l'] (_jfl)n, m L::l m (f;Z)

!
(33)
Here L' is the generalized Laguerre polynomi-

nal and f, = g,/h®,. A procedure for calculating

the overlap integrals (n%| 0) wis described in ref.
[65]. In order to reveal explicitly the connection

between the quantities f;, 4,45 and the geometry
shifts and frequency changes it is written as

O=J0+R, (35)

where the vector Q denotes the normal coordi-
nates in the ground state of the reference molecule

and Q denotes the normal coordinates of the ion,

both on the one-particle level. If L and L are the
transformation matrices from internal to normal
coordinates in the initial and final states, respec-
tively, R is the change in equilibrium position
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and I, Aare the diagonal matrices of frequencies
o,/h, & /%, then
J — fw1/2]:-1 LF-I/Z

K=I"['R. (36)

The connection between transformation matrix
J,A’sis given by A + 2 =J,, X -2 =J,"
: normal coordinate shift K is related to f; by
f,=F2""2K, The simplification of method is

possible in case of diagonality of matrix y,.of
coupling constants.

2.2 The Cederbaum-Domske approach to
the many-body problem

Below we give the Cederbaum-Domske pertur-
bation theory approach to ab initio calculation of
frequencies, geometry shifts, and Franck-Condon
factors starting from the one-particle picture dis-
cussed above. In a diagrammatic method in order

to obtain the function N, (°) one should calculate

the Green’s function G, .(?)first:

Gyole) == [~ dte™" (| T{ a,(0)a},(0) } |wy)
(41)
where 7' is Wick’s time ordering operator and the

function N, (°)then follows from relation

N, (€) =almG, (¢ —ain), (42)

a =—sign’, , where nis a positive infinitesi-

mal. Choosing the unperturbed Hamiltonian H,
to be

HO:Z ‘aa +H, (43)

one finds for the corresponding Green’s func-
tions

Gi(©) =5, Me—e,—aim) Y
The Dyson equation
Gy =Gy + z G2y G (45)
o
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relates the Green’s functions to the free ones intro-
ducing a new function X, .(?) called the (proper)

self-energy part. In in order to calculate X, ., a
well-known diagrammatic method is used. It is
useful to remind that the sum of Feynman dia-
grams leading to the self-energy part is shown in
Fig. 1. All notations are standard.

QAR &
-2 [ D

Fig. 1. The sum of diagrams contributing to the
self-energy part.

The one-body problem treated above results in
the exact solution of the Dyson equation with the
self-energy part given by the infinite number of
diagrams shown in the first row of Fig. 1 and the
corresponding Green’s function is as follows [65]:

GE(t) =+5,iexp [— in(g, F Ag)t]x Z‘<ﬁk‘Uk‘0>‘2 exp(Lin, - 1)
" (47

The corresponding Dyson-like equation is as
follows:

OB
Gkk

ZGOB Ebkk kk( ) (48)

where O, is equal to X, , less the diagrams
of the first row in Fig.1. The perturbation expan-

Gkk' (

sion of ® is shown in Fig. 2 where G
bolized by a double solid line.

(0-X-E0- VD -0

Fig. 2. Perturbation expansion of @ ,.

w 1S sym-

The expression for the sum of the first two dia-
grams appearing in Fig. 2 are written by a standard
way:



kly Vvkly)l/klyUnl n jUn,l n
c+E —E,~E,

=2 2

i,jJeF ni,n;,m

lgF
( k[lj

22

i,jJeF ni,n;,n
lgF

kll/ )I/k lz/Un tUn jUn,
€+E -E -k,

(49)

(AJU0) and E, =<, FA e, Fhi,-

Vll_

The direct method for calculation of N,(€) as
the imaginary part of the corresponding Green’s
function implicitly includes the determination of
the V. I. P. s of the reference molecule and then of

N (e) The zeros of the functions

=€ —[e"" +Z(e)]k ,

D.(e) (50)

where (e"" +Z)k denotes the kth eigenvalue of the
diagonal matrix of the one-particle energies added
to the matrix of the self-energy part, are the nega-
tive V. I. P. ‘s for a given geometry. Further it is
easily to write:

(V.1P), =—(e, +F,),

%, () (5D

F =3, (-(v.L.P),)=~ 1-0%, (e,)/0
k k

€

Expanding the ionic energy E, ' about the
equilibrium geometry of the reference molecule
in a power series of the normal coordinates of this
molecule:

g =50-3[ %) o -

15[

s,8'=1

leads to a set of linear equations in the un-
known normal coordinate shifts 6Q,,

(e +F)) _ 5[ (e+F)
( 80, J_Z( 00,00, ijS"

00; (53)

where o, are frequencies of the reference mol-
ecule. The new coupling constants are then:

8 = i(l/\/il@(ek +F; )/an ]o (54)

Y = i(%)[@z(ek +Fk)/an /aQI’]O

Further it can be shown [65-67] that the cou-

pling constants g, and y, are calculated by the
well-known perturbation expansion of the self-
energy part using the Hamiltonian H,, of Eq. (6).
In second order one obtains:

-7,

ksji

-V,

ksji

1% ) 2 1%

sl tukn 5 o

i Ete —€—€, [Tete —€g —¢

/ selF
(58)

) 2

ksij

selF

and the coupling constant g, can be written as

1 o¢, l+g(0/0€) , [-(V.1.P),]

i
“N200, 1-(0/0€)>, [-(.LP)] "’
(59)
where
5 (s Vi {aes_aei_aﬂ
~ [—(VIP)+e —€-€,[ 00, 00, 09,
= aek (/mj V/ﬂji)z
Zq VIP)+e —e—¢,f
(60)

It is suitable to use further the pole strength of
the corresponding Green’s function

P :{1_%21: [_(V-I-P)k]} ;12 p, 20,

(61)

~ g [pk +4.(p. )]7 g =+27"%0¢€, /00,
(62)
Below we firstly give the DFT definition of the
pole strength corresponding to V. I. P.’s and con-
firm earlier data [65]: p,=0,8-0,95. The closeness
of p, to 1 in fact means that a role of the multi-

body correlation effects is small (g, =~ g/ ).
The above presented results can be usefully
treated in the terms of the correlation and reor-
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ganization effects. Usually it is introduced the
following expression for an L.P.:

(Vkik‘ — Vki'k) 1 (Vki'l B Vkil')

I.P) =—¢€, — J s Y b (1-

( )k S ,-E,Z,E“F €, -5 2.5 e,(+e,—ej—e,\ 5")
JleF

_l (ijpq _Vk/‘qp)z (1_5‘” Xl_glv )

2H,(%€Fek+ei—ep—eq (64)
Jje

The first correction term is due to re-
organization, the remaining correction terms are
due to correlation effects. Then the coupling con-
stant g, can be written as

(Vki/l - Vkil/' )Z

(kak)z 1 ;EF S ST TS
~ 0 1 j .
& ~8 +/§ZF(€j_ek)z P (ka{_Vk_ )z
+ kipg kigp (1_5 Xl_5 )
’,',‘é]ﬁF EtE —€,-¢€, i o b
(65)

The second coupling constant can be written

o| &i 1 0o 0 [ g
Vi 71(&0} 4 g an[glo]

7, » is defined analogously g).

(66)

3. Quasiparticle Fermi-liquid DFT

In this chapter we present the quasiparticle
Fermi-liquid version of the DFT theory, starting
from the problem of searching for the optimal
one-electron representation and following to refs.
[60-68,111]. Two decades ago Davidson had
pointed the principal disadvantages of the tradi-
tional representation based on the self-consistent
field approach and suggested the optimal “nat-
ural orbitals™ representation [22,23]. Neverthe-
less there remain insurmountable calculational
difficulties in the realization of the Davidson
program. One of the simplified recipes repre-
sents, for example, the Kohn-Sham DFT theory
[40-42]. Inref. [111] the QED DFT version, based
on the formally exact QED perturbation theory
(PT), has been developed and a new approach to
construction of the optimized one-quasiparticle
representation has been proposed. In fact this ap-
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proach is based on the energy approach, which is
well known in the theory of radiative and non-
radiative decay of the quasi-stationary states for
multielectron systems. The energy approach uses
the adiabatic Gell-Mann and Low formula [59] for
the energy shift d£ with electrodynamic scattering
matrices. In a modern theory of molecules there is
a number of tasks, where an accurate account for
the complex exchange-correlation effects, includ-
ing the continuum pressure, energy dependence
of a mass operator etc., is critically important. It
includes also the calculation of the vibration struc-
ture for the molecular systems. In this case it can
be very useful the quasiparticle DFT [60]. In order
to get the master equations and construct an opti-

mal basis of the one-particle wave functions @,
one could use the Green’s function method. Let us
define the one-particle Hamiltonian for functions

@, so that the Greens’ function pole part in the

(¢, ) representation is diagonal on A. Starting
equation is the Dyson equation for multi-electron
(for example atom or molecule):

(6-p 12+ 2,17,) Gx,x )= [d 'Y (x,x,6) = (x—x')

(67)
where x = (r,s) are the spatial and spin variables,

is the mass operator; Z , as usually, a charge
of a nucleus (nuclei) « & », G is the Green’s func-
tion. In the representation of auxiliary functions

¢//1 the equation (67) has the following form:

2

V4
(-5, —[%—Zr—“ﬁLZ(x,x/,g)]ﬂ )G, =5,
(63)
where ﬂq is an index of summation. It is natural to

choose @, so that the following expression will
be diagonal:

(p? /2= 7, 1, + 2 (xx,8)], = E,(6)-6;

(69)

G, =G, 8,.G,=1/[¢~E,(6)]  (70)

o



and the functions (pﬁ , which diagonalizes G, sat-
isfy to equation as follows: :

(P 12-3 2, Ir)0,(x.8)+
[ X o0 (v ox — E, ()l (x.2) TV

One could introduce the mixed representation
for a mass operator as follows:

>0 p,8) = | X (%, x,,8)expli(r — 1) pli,
(72)

Then equation (71) with account for of the ex-
pression (72) can be written as follows:

[p*/2-2.Z, /1, + (x.p.&)lp;(x,8) =

= E,(6)p; (x,) (73)

It can be shown that an operator p =% in
(67) acts on functions which are on the right of

Z (x, p,&). So, in order to find the one-particle
energies, defined by the pole part of the Green’s
function G, it is sufficient to know the functions

(0//1 under & = & . The Greens’ function pole part
is as follows:

G, =ai5l/(g—gl+iyl) (74)

where

«* =1(1-0E, | &)|,., ,(5E/d¢)|,_, =(PE/d¢) |,

£=¢,

6 =E(&)=(p*12-3 2, 11+ 3 (..
) (75)

The functions (pﬁ (x)= (0//1 (x,&,) are satisfy-
ing to following equation:

[p’ /2_Zza /r, +Z(x>pa5/1)](0,1 =¢,0,(x) (76)
Introducing an expansion for self-energy part

Z into set on degrees X,& —8F,p2 —p12:

(here €, and p are the Fermi energy and pulse
correspondingly):

D (. p.e)=D (0)+(2)./op*)(p’ - pr)+
+(0 foe)Ee— &)+ ...

then equation (76) is rewritten as follows:
[p*/2=2Z, /1,42 (x)+ p(0) /op*) pl®, (x) =

=(1-0) /0 )
( Z £)e, @, (x) (77)

The functions @, in (77) are orthogonal

with a weight r/=a™' =[1-0)_/d¢]. Now one
can introduce the wave functions of the quasi-

particles @, =a 120 4 » which are, as usually,
orthogonal with weight 1. For complete defini-

tion of {@,} it should be determined the values

z O,az /5172:52 /oe - Naturally, the equations (77)
can be obtained on the basis of the variational
principle, if we start from a Lagrangian of a sys-

tem L q (density functional). It should be defined
as a functional of the following quasiparticle den-
sities:

Vo(”):znz ‘q)l(r”za
2

vi()=3n, VO, (1),
7 (78)

vy(r) =2 m [0, ~ D0, .
A

The densities V,, and Vv, are similar to the HF
electron density p (p =V -a) and kinetical

energy density correspondingly; the density Vv,
has no an analog in the HFock or standard Kohn-
Sham theory and appears as result of account for

the energy dependence of the mass operator y°

. Lagrangian Lq can be written as sum of a free
Lagrangian and Lagrangian of interaction:

70 int
L,=L,+L, ,

where a free Lagrangian Lg has a standard
form:
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Jid/ot—¢g,)D,,

= Idr; n,® (79)

And an interaction Lagrangian is defined in
the form, which is characteristic for a standard
(Kohn-Sham) density functional theory (as a sum
of the Coulomb and exchange-correlation terms),
however, it takes into account for the energy de-

pendence of a mass operatorz

Lmt L N ZIﬁZkF(I’l,rz)V (r])Vk(I"z)dr]drz (80)

tk()

where [, are some constants (look below), F is
an effective potential of the exchange-correlation
interaction. Let us explain here the essence of
the introduced constants. Indeed, in some degree
they have the same essence as similar constants
in well-known Landau Fermi liquid theory and
Migdal finite Fermi-systems theory. The Coulomb

interaction part L looks as follows:

1
Le==2 [11=3 00k ()1 -

S W) 1 1y | dirlr (81)

where >, =030 Regarding the exchange-
correlation potential £, it should be noted the there
are many possible approximations (directly in the
DFT and its modern generalizations). Earlier in
our atomic and molecular theories we use the fol-

lowing form:
F(ror) = X([drp™" (1) = rlr = 1| -

—(jdr P =7
J‘dr// (0)1/3(1”//)/‘ / Vzb/<p(0)1/3

<P >=[drp™ () (82)

where X is the numerical coefficient. It has been
obtained in the refs. [74-76] on the basis of cal-
culating the Rayleigh-Schrodinger perturbation
theory Feynman diagrams of the second and high-
er order (so called polarization diagrams) in the
Thomas-Fermi approximation. The correspond-
ing relativistic generalization of the potential (82)
looks as follows [76]:
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Fo (i) = X(Jdr' p™ o) = | =] -
—(J.dr/ (0)1/3(r Yo(r )/"’1 U‘dr// (0)1/3(}"//)0(}’//)/

I = < 5

<P = [ (e) (83)

where , c is the light velocity.

Another alternative expression has been in-
troduced by Victor- Laughlin-Taylor (c.f. refs.
[24,25]):

N 1 a
F(’l,”z)zf_27:2171(005912)“’3(”2 Ir)ws(ry /79) =
2 I

o
- 3‘13 p,(cos @) w, (r, /1w, (ry /7))
nr

(84)
where p,are the Legander polynomials,

- >
cos@), =rr( rr,). In the local density ap-
proximation in the density functional the potential
F can be expressed through the exchange-corre-

lation pseudo-potential Vg as follows [41,42]:
Wy !Ovy - 0(r =1).

F(’i,’ﬁ) = (85)

Further, one can get the following expressions
for > =—sL/& |

2o=U=2 W +25+

+ %,BooszXC 16V Vi + BV [ OV vy +

+ By Vo [ OV -V, + By OV | OV VeV, +
+ B0 Vo | Ve Vs + BV | OV, -V,
z = LoV xc OV Vo + P10V 1OV vy +
+ BV 1OV, -y

Z = L0, 0V 1 OVy - Vy+ B0V 1OV -V, +
+ﬂ22

Ve IOV, Vs
(86)
Here Vj is the Coulomb term (look above),

Zg is the exchange term. Using the known
canonical relationship:

H,=®,0L, /&, +®,6L, /&, - L,



after some transformations one can receive the ex-
pression for the quasiparticle Hamiltonian, which

is corresponding to a Lagrangian Lq :
0 int 0
H,=H,+H =H, - L+
1
+5ﬂ005VXC [V, -V +
1
+ BV e 6V vy -, +5ﬁ115VXC vy v =

1
- EﬂZZWXC /5‘/0 'Vz2
(87)

Further let us give the corresponding comments
regarding the constants b,. First of all, it is obvious

that the terms with constants ﬂopﬂll:ﬂlbﬂzz
give omitted contribution to the energy functional
(at least in the zeroth approximation in compari-
son with others), so they can be equal to zero. The

value for a constant f,, in some degree is depen-
dent upon the definition of the potential V. . If

as V_ itis use one of the correct exchange-cor-
relation potentials from the standard density func-
tional theory, then without losing a community of

statement, the constant S, can be equal to 1. The

constant £ can be in principle calculated by
analytical way, but it is very useful to remember

its connection with a spectroscopic factor F’ p Of
atomic or molecular system (it is usually defined
from the ionization cross-sections) [60]:

-2y | (g8
FSP_{I 662""[ (V~I-P~)k]J ( )

The term 03 Jog is defined above. It is easily
to understand the this definition is in fact corre-
sponding to the pole strength of the corresponding
Green’s function [62].

In further calculation as potential V. we use
the exchange-correlation pseudo-potential which
contains the correlation (Gunnarsson-Lundqvist)
potential and relativistic exchanger Kohn-Sham
one [40-42]:

Ve = (@)W, (r)—0,0333-In[1+18,376- p'* ()]

(89)
where ¥, = —(1/ M3 - p(r)]"

is the Kohn-Sham exchange potential,

0=[37*p]"?/c, and function f(@) is as fol-
lows:

£(@)=3m[6+ (6% +1)"*1/[206> +1)""*1-1/2 (90)

Using the above written formula, one can sim-
ply define values (61), (88). As example in table
1 we present our calculational data for spectro-
scopic factors of some atoms together with avail-
able experimental data and results, obtained in
the Hartree-Fock theory plus random phase ap-
proximation.

Further, let us give a short comment regard-
ing an universality of the constants 5. From the
point of view of the analogous universality of
the constants in the well-known Landau Fermi-
liquid theory and Migdal finite Fermi-systems
theory [62]. Indeed, as we know now, the entire
universality of the constants in the last theories
is absent, though a range of its changing is quite
little. Without a detailed explanation, we note here
that the corresponding constants in our theory
possess the same universality as ones in the Lan-
dau Fermi-liquid theory and Migdal finite Fermi-
systems theory. More detailed explanation requires
a careful check. Further it is obvious that omit-
ting the energy dependence of the mass operator

(i.e. supposing B, =0) the quasiparticle density
functional theory can be resulted in the standard
Kohn-Sham theory.

Note: F, - experimental value of spectro-

scopic factor; Fjyp, is the value, obtained in the
random phase approximation with exchange.

In this essence the presented approach to defini-

tion of the functions basis {® ) of a Hamiltonian

H, can be treated as an improved in comparison
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Table 1
Spectroscopic factors of the external ns”
shells of some atoms and ions

Atom, Tepm N o .

ion F exp
Frpa

Ar 1 3 0,60 0,56
0,70

T 1 3 0,50 0,34
0,60

Xe 1. 5 0,36

TI 2, 6 0,36

Pb” 2, 6 0,33

Pb 3, 6 0,34

Pb 1. 6 0,34

Pb 1. 6 0,34

Bi* 3, 6 0,32

Bi 4, 6 0,33

Bi 2, 6 0,33

Bi 2, 6 0,33

Po* 4. 6 0,31

Po 3, 6 0,31

Po 1, 6 0,31

Po S 1 6 0,31

As* 3, 6 0,30

As 2, 6 0,30

As 1, 6 0,31

Rn” 2, 6 0,29

Rn 1, 6 0,29

Fr' 1. 6 0,28

Fr 2. 6 0,28

Ra 1, 7 0,43

Ac 2, 7 041

Ac 2. 7 0,42

Th 3. 7 0,41

Th 3. 7 0,42

Pa 4, 7 0,42

U 5, 7 0,42

with similar basises of other 1-particle representa-
tions (HF, Hatree-Fock-Slater, Kohn-Sham etc.).
Naturally, this advancement can be manifested
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during studying those properties of the multi-elec-
tron systems, when accurate account for complex
exchange-correlation effects, including continuum
pressure, energy dependence of mass operator etc.,
is critically important.

4. The application of the combined Green’s
function method and quasiparticle DFT approach
to diatomics

We choose the diatomic molecules of N,, CO
(and some others) for application of the combined
Green’s function method and quasiparticle DFT
approach. In ref. [65] it has been shown that the
diatomics spectra can be in principle reproduced
by applying a one-particle theory with account
of the correlation and reorganization effects. The
corresponding coupling constants depend on the
balance of these effects. The nitrogen molecule
has been naturally discussed in many papers.
The valence V. L. P. ‘s of N, have been calculated
[61,62,65] by the method of Green’s functions and
therefore the pole strengths p, are known and the
mean values g, can be estimated.

In should be reminded that the N, molecule
is the classical example where the known Koop-
mans’ theorem even fails in reproducing the se-
quence of the V. I. P. ‘s in the PE spectrum. From
the calculation of Cade ef al.[71,72] one finds that
including reorganization the V. I. P. ‘s assigned
by o,and o, improve while for the = V. I. P. the
good agreement between the Koopmans value and
the experimental one is lost, leading to the same
sequence as given by Koopmans’ theorem. The
above-mentioned Green’s functions calculation
which takes account of reorganization and corre-
lation effects leads to the experimental sequence
of V. I. P.’s. In Table 2 the experimental V. I. P.
‘s (a), the one-particle HF energies (b), the V. I.
P. ‘s calculated by Koopmans’ theorem plus the
contribution of reorganization (c), the V. I. P. ‘s
calculated with Green’s functions method (d), the
combined Green’s functions and DFT approach ()
and corresponding pole strengths (d,e) are listed.



Table 2

The experimental and calculated V. 1. P.’s

(in eV) of N,. R, is the contribution of reorga-
nization; p, stands for pole strength.

2 5’1‘5 ) Calc! || cae
S 1. S| | ViBs| P [ VIRs | pf
156 [ 174 [ 160 [ 155 [09 | 155 [009
3
O-g
69 [17.0 [ 157 [ 168 |09 | 168 |09
|
7[1/[
88 209 [ 199 [ 186 [09 [18.6 [0S
2
O-u

Therefore, the results, obtained within the
Green functions approach and combined method
are very much close. Taking into account a simpli-
fication of the calculational procedure within the
DFT approach, the generalized Cederbaum et al
theory looks more attractive else. As it’s known,
of the three bands in the experimental low-energy
spectrum of N, molecule (Fig. 3), only the I
band exhibits a strong vibrational structure.

When a change of frequency due to ionization
is small, the density of states can be well approxi-
mated using only one parameter g:

0 n

Sle-¢, +Ae, +n-hd),

S= g2 (fla))ﬁ2 (70)

In case the frequencies change considerably,
the intensity distribution of the most intensive
lines can analogously be well approximated by
an effective parameter S. In fig.3 the experimen-
tal and calculated photoelectron spectra for the
N,.molecule are presented. The uppermost spec-
trum is calculated with S’ (i.e. the constant S cal-
culated with g° ) and Eq. (70) [13]. The middle
spectrum is calculated with values of S from Eq.
(62).

It is important to note that the original Green’s
functions and combined Green functions +DFT

approach coincide in the scale of the figure. In
a whole the agreement between the calculated
spectrum (corrected g ) and the experimental one
is improved. As another example, the molecule
CO can be considered.

The experimental and calculated photoelectron
spectra for CO molecule are listed in Fig.4. One
can see quite physically reasonable agreement be-
tween experiment and theory. The original Green’s
functions [13] and combined Green’s functions
+DFT approach practically coincide. On inclusion
of the anharmonicites it should be mentioned that
a theory can be generalized by means a standard
normal coordinate expansion of Hamiltonian to
third and higher orders and correspondingly the
theory of the density of states functions N, devel-
oped above can easily be generalized too.

!
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18.75(9) 16.69(1)
re
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.
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Figure 3. Experimental [65]and calculated PE

spectra N ; Uppermost spectrum is calculated

with S° and Eq. (70). The middle spectrum is
calculated with S values from (62) (see text).
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5. Summary

We present a new combined theoretical ap-
proach to vibrational structure in photo-electron
spectra of molecules, which is based on the
Green’s function method and DFT.

In fact approach presented generalizes the
standard Green’s function approach [65-68]. The
density of states, which describe the vibrational
structure in molecular photoelectron spectra,
is calculated with the help of combined DFT-
Green’s-functions approach. It is important that
the calculational procedure is significantly sim-
plified with using the quasiparticle DFT formal-
ism.

.,||1“|

35 NSRS U -

1000 L

14.01(8}

Count sec’!

Figure 4. The experimental [65] and calculated
photoelectron spectra of CO. The upper spec-
trum is calculated with S° and Eq. (70) (see text).
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UDC 539.186
A. V. Glushkov

THE GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL APPROACH TO
VIBRATIONAL STRUCTURE IN THE PHOTOELECTRON SPECTRA OF MOLECULES:
REVIEW OF METHOD

Abstract. We present the basis’s of the new combined theoretical approach to vibrational structure
in photoelectron spectra of molecules. The approach is based on the Green’s function method, which
generalizes the Cederbaum-Domske formalism, and quasiparticle density functional theory. It gener-
alizes the known Green’s function approach by It is presented a new procedure for determination of
the density of states, which describe the vibrational structure in molecular photoelectron spectra.

Key words: density functional theory, Green’s function method, photoelectron spectra

VYK 539.186
A. B. Iywikos

METO/ ®YHKIIUN T'PUHA Y TEOPUSA ®YHKIIMOHAJA IIJIOTHOCTH JJIsA
OIIPEJEJIEHUSA KOJEBATEJBbHOM CTPYKTYPBI B ®OTOJIEKTPOHHBIX
CIIEKTPOB MOJVIEKYJI: OB30P METOJA

Pe3rome

W3105eHbI OCHOBBI HOBOI'O KOMOMHHUPOBAHHOTO TEOPETHUECKOTO MOIX0/1a K OMPEACICHHIO KOJe-
0arenbHON CTPYKTYpHhI B (DOTOIEKTPOHHBIX CIIEKTpax MoJiekyin. [1onxon ocHOBaH Ha KBa3W4yacTHY-
HOM Metoze (yHkiui [punHa, obobmaromem Gopmanusm Llenepdayma-JlomMcke, 1 KBa3HUaCTUIHOMN
TCOpHUn q)YHKHHOHaJ'Ia IIJIOTHOCTH. HpI/IBCIleHa npoucaypa BeIYHUCICHUSA IIJIOTHOCTHU COCTOﬂHHﬁ, OIIHn-
ChIBAIOIIICH KOJIeOATEIbHYIO CTPYKTYPY B MOJICKYJISIPHBIX (DOTORICKTPOHHBIX CIIEKTpaXx.

KroueBble cjioBa: Teopus pyHKIIMOHANA IUIOTHOCTH, MeTo[ hyHKuui [ pruHa, GOTOIIIEKTpOHHBIE
CIIEKTPBI.

VYJIK 539.182
O. B. I'iywrxos

METOJ ®YHKIIII I'PTHA I TEOPISI ®YHKIIOHAJIA TYCTHHM 151 BUSHAYEHHS
KOJIUBAJIbLHOI CTPYKTYPHU Y ®OTOEJEKTPOHHUX CIIEKTPAX MOJIEKY.JI:
OIS METOLY

Pesrome

BuknanaeHi oCHOBH HOBOTO KOMOIHOBAaHOTO TEOPETHUYHOTO MIIXOAY 0 BU3HAYCHHS KOJUBAIBHOT
CTPYKTYpH B (POTOEIEKTPOHHUX CHEKTpax MojeKyi. [linxix 3acHOBaHWI Ha KBa3iYaCTHHKOBOM Me-
Tomi ¢yHkuii ['pina, mo y3arampHioe Gopmainizm Llenepbayma-J/lomcke, 1 KBa3iYaCTUHKOBIN Teopil
¢dynkuionana ryctuau. HaBenena mporenypa oOUUCIIEHHs TYCTUHU CTaHIB, SIKa OTHCY€E KOJUBAIBHY
CTPYKTYPY B MOJIEKYISIPHUX (DOTOECIEKTPOHHHX CIIEKTPaXx.

Karouosi cioBa: Teopis (pyHKIioHana rycTuHU, MeTon GyHKIIN [ piHa, (OTOETEKTPOHHI CIEKTPH
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