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SPECTROSCOPY OF AUTOIONIZATION RESONANCES IN 
SPECTRA OF BARIUM: NEW SPECTRAL DATA 

We applied a generalized energy approach (Gell-Mann and Low S-matrix 
formalism) combined with the relativistic multi-quasiparticle (QP) perturbation theory 
(PT) with the Dirac-Kohn-Sham zeroth approximation to studying  autoionization 
resonances (AR) in complex atoms and ions, in particular, energies for the Rydberg  
barium with accounting for the exchange-correlation, relativistic

1. Introduction

Here we continue our investigations of study-
ing the autoionization state and AR in spectra of 
complex atoms and ions. Let us note [1] that tradi-
tionally an investigation of spectra, spectral, radi-
ative and autoionization characteristics for  heavy 
and superheavy elements atoms and multicharged 
ions is of a great interest for further development 
atomic and nuclear theories and different appli-
cations in the plasma chemistry, astrophysics, la-
ser physics, etc. (look Refs. [1–10]). Theoretical 
methods of calculation of the spectroscopic char-
acteristics for heavy atoms and ions may be di-
vided into a few main groups [1-6]. First, the well 
known, classical multi-configuration Hartree-Fo-
ck method (as a rule, the relativistic effects are 
taken into account in the Pauli approximation 
or Breit hamiltonian etc.) allowed to get a great 
number of the useful spectral information about 
light and not heavy atomic systems, but in fact 
it provides only qualitative description of spec-
tra of the heavy and superheavy ions. Second, the 
multi-configuration Dirac-Fock (MCDF) method 
is the most reliable version of calculation for mul-
tielectron systems with a large nuclear charge. In 
these calculations the one- and two-particle rela-
tivistic effects are taken into account practically 
precisely. In this essence it should be given spe-
cial attention to two very general and important 

computer systems for relativistic and QED calcu-
lations of atomic and molecular properties devel-
oped in the Oxford group and known as GRASP 
(“GRASP”, “Dirac”; “BERTHA”, “QED”) (look 
[1-5] and refs. therein). In particular, the BER-
THA program embodies a new formulation of 
relativistic molecular structure theory within the 
framework of relativistic QED. This leads to a 
simple and transparent formulation of Dirac-
Hartree-Fock-Breit (DHFB) self-consistent field 
equations along with algorithms for molecular 
properties, electron correlation, and higher order 
QED effects. The DHFB equations are solved by 
a direct method based on a relativistic generaliza-
tion of the McMurchie-Davidson algorithm [4].

In this paper we applied a new relativistic ap-
proach [11-15] to relativistic studying the auto-
ionization characteristics of the barium atom. Let 
us note that new approach in optics and spectros-
copy of heavy atomic systems is the combined the 
generalized energy approach and the gauge-in-
variant QED many-QP PT with the Dirac-Kohn-
Sham (DKS) “0” approximation (optimized 1QP  
representation) and an accurate accounting for 
relativistic, correlation, nuclear, radiative effects. 
In refs. [11-15, 17-20]. It has been in etails pre-
sented, so here we give only the fundamental as-
pects. The generalized gauge-invariant version of 
the energy approach has been further developed 
in Refs. [12,13]. 
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2. Relativistic approach in autoionization 
spectroscopy of heavy atoms

In relativistic case the Gell-Mann and Low 
formula expressed an energy shift DE through the 
QED scattering matrix including the interaction 
with as the photon vacuum field as the laser field. 
The first case is corresponding to definition of the 
traditional radiative and autoionization character-
istics of multielectron atom. The wave function 
zeroth basis is found from the Dirac-Kohn-Sham 
equation with a potential, which includes the ab 
initio (the optimized model potential or DF po-
tentials, electric and polarization potentials of 
a nucleus; the Gaussian or Fermi forms of the 
charge distribution in a nucleus are usually used) 
[5]. Generally speaking, the majority of complex 
atomic systems possess a dense energy spectrum 
of interacting states with essentially relativis-
tic properties. Further one should realize a field 
procedure for calculating the energy shifts DE 
of degenerate states, which is connected with the 
secular matrix M diagonalization [8-12]. The sec-
ular matrix elements are already complex in the 
second order of the PT. Their imaginary parts are 
connected with a decay possibility. A total energy 
shift of the state is presented in the standard form:

                                           

Re Im Im 2E i E E∆Ε = ∆ + ∆ ∆ = −Γ ,(1)

where Γ is interpreted as the level width, and the 
decay possibility Ρ = Γ . The whole calculation 
of the energies and decay probabilities of a non-
degenerate excited state is reduced to the calcula-
tion and diagonalization of the M. The jj-coupling 
scheme is usually used. The complex  secular ma-
trix M is represented in the form [9,10]:  

( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +
                                                                      (2)

where ( )0M  is the contribution of the vacuum dia-
grams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. ( )0M  is a real matrix, proportional 
to the unit matrix. It determines only the general 
level shift. We have assumed ( )0 0.M =  The di-

agonal matrix ( )1M  can be presented as a sum of 
the independent 1QP contributions. For simple 
systems (such as alkali atoms and ions) the 1QP 
energies can be taken from the experiment. Sub-
stituting these quantities into (2) one could have 
summarized  all the contributions of the 1QP di-
agrams of all orders of the formally exact QED 
PT. However, the necessary experimental quan-
tities are not often available. So, the optimized 
1-QP representation is the best one to determine 
the zeroth approximation. The correlation cor-
rections of the PT high orders are taken into ac-
count within the Green functions method (with 
the use of the Feynman diagram’s technique). All 
correlation corrections of the second order and 
dominated classes of the higher orders diagrams 
(electrons screening, polarization, particle-hole 
interaction, mass operator iterations) are taken 
into account [10-14].  In the second order, there 
are two important kinds of diagrams: polariza-
tion and ladder ones. Some of the ladder diagram 
contributions  as well as some of the 3QP dia-
gram contributions in all PT orders have  the same 
angular symmetry as the 2QP diagram contribu-
tions of the first order [10-12]. These contribu-
tions have been summarized by a modification of 
the central potential, which must now include the 
screening (anti-screening) of the core potential of 
each particle by two others. The additional poten-
tial modifies the 1QP orbitals and energies. Then 
the secular matrix is : ( ) ( )1 2M M M+ 


, where ( )1M  

is the modified 1QP matrix (diagonal), and ( )2M  
the modified 2QP one. ( )1M  is calculated by sub-
stituting the modified 1QP energies), and ( )2M  by 
means of the first PT order formulae for ( )2M , 
putting the modified radial functions of the 1QP 
states in the interaction radial  integrals. Let us 
remind that in the QED theory, the photon prop-
agator D(12) plays the role of this interaction. 
Naturally, an analytical form of D depends on 
the gauge, in which the electrodynamic potentials 
are written. In general, the results of all approxi-
mate calculations depended on the gauge. Natu-
rally the correct result must be gauge invariant. 
The gauge dependence of the amplitudes of the 
photoprocesses in the approximate calculations is 
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a well known fact and is in details investigated 
by Grant, Armstrong, Aymar-Luc-Koenig, Glush-
kov-Ivanov [1,2,5,9]. Grant has investigated the 
gauge connection with the limiting non-relativ-
istic form of the transition operator and has for-
mulated the conditions for approximate functions 
of the states, in which the amplitudes are gauge 
invariant. These results remain true in an energy 
approach as the final formulae for the probabili-
ties coincide in both approaches. In ref. [16] it has 
been developed a new version of the approach to 
conserve gauge invariance. Here we applied it to 
get the gauge-invariant procedure for generating 
the relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width is 
defined by the square of interaction matrix ele-
ment [9]: 

                        

(3)
The real part of the interaction matrix element 

can be expanded in terms of Bessel functions 
[5,8]:

                               
(4)

The Coulomb part Qul
λQ  is expressed in the radi-

al integrals Rl , angular coefficients Sl  as follows:

                                                                                                                                                      
                                             (5)

where ReQl(1243) is as follows:  

(6)
where f is the large component of radial part 

of the 1QP state Dirac function and function Z is :                                                            

( ) [ ] ( ) ( )]2
3/[/2 13

2
1

2
1

13
1 +Γ=

+

+ λωααω λ
λ

λ
λ rrJZZ .

(7)
The angular coefficient is defined by standard 

way as above [3]. The calculation of radial inte-
grals ReRl(1243) is reduced to the solution of a 
system of  differential equations:  

                                              (8)

In addition,  у3(∞)=ReRl(1243), у1(∞)=Xl(13). 
The system of differential equations includes also 

equations for functions f/r|æ|-1, g/r|æ|-1, ( )1
λZ , ( )2

λZ . 
The formulas for the autoionization (Auger) decay 
probability include the radial integrals Ra(akgb), 
where one of the functions describes electron in 
the continuum state. When calculating this inte-
gral, the correct normalization of the function Yk 
is a problem. The correctly normalized function 
should have the following asymptotic at  r→0:

                                  (9)
When integrating the master system, the func-

tion is calculated simultaneously:      

                                             (10)
It can be shown that at r→∞, N(r)→Nk, where 

Nk is the normalization of functions  fk, gk of con-
tinuous spectrum satisfying the condition (9). 
Other details can be found in refs.[10-13,16-20].

3. Results and conclusions

In table 1 we present  the data for energies  
(cm-1) of the barium autoionization resonances 
4fnf, n = 15 (averaged over the fine structure) 
measured experimentally and calculated on the 
basis of our theory and multichannel quantum de-
fect method (MCQD) with the empirical fit (de 
Graaf et al) [2]. An analysis shows quite physical-
ly reasonable agreement between the theoretical 
and experimental results. But some difference, in 
our opinion, can be explained by different accu-
racy of estimates of the radial integrals, using the 
different type basises (gauge invariance conserva-
tion or a degree of accounting for the exchange-
correlation effects) and some other additional 
calculation approximations. In our theory there 
are used more optimized basises of the orbitals in 
comparison with the MCQD). 

In ref. [14] (see also [5,12]) it has been predict-
ed a new spectroscopy  effect of the giant chang-
ing of the AS ROD width in a sufficiently weak 
electric field (for two pairs of the Tm, Gd AR). 
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(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
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(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 
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where ReQ(1243) is as follows:   
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where f is the large component of radial part of 
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The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
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of a system of  differential equations:   
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(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 
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When integrating the master system, the 
function is calculated simultaneously:       
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It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 

invariant procedure for generating the 
relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width 
is defined by the square of interaction matrix 
element [9]:  
                        

          













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

 

(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
                               

       


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r  

(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 

       
       3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~12431243Re~Re Qul





SRSR

SRSRQ l



                                                                                                                                                                                                    

(5) 
where ReQ(1243) is as follows:   
 

                  rZrZrfrfrfrfrrdrR 11
24221311

2
2

2
111243Re  

(6) 
where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
                                                      

       ]2
3/[/2 13

2
1

2
1

13
1 



  



 rrJZZ . 

(7) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   

   
   

      

















.
,
,

12
3124213

21
422

21
311














rrZffyffyy
rrZffy
rrZffy

                                              

(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 

                                                        

      

    





















.δkrcosαZω

,δkrsinαZω
λω

g
f

2
12

2
12

2
1                                   

(9) 
 
When integrating the master system, the 
function is calculated simultaneously:       

                                             
          2

1
2222   ZgZfrN kkkkk

(10) 

It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 

invariant procedure for generating the 
relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width 
is defined by the square of interaction matrix 
element [9]:  
                        

          













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

 

(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
                               

       


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r  

(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 

       
       3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~12431243Re~Re Qul





SRSR

SRSRQ l



                                                                                                                                                                                                    

(5) 
where ReQ(1243) is as follows:   
 

                  rZrZrfrfrfrfrrdrR 11
24221311

2
2

2
111243Re  

(6) 
where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
                                                      

       ]2
3/[/2 13

2
1

2
1

13
1 



  



 rrJZZ . 

(7) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   

   
   

      

















.
,
,

12
3124213

21
422

21
311














rrZffyffyy
rrZffy
rrZffy

                                              

(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 

                                                        

      

    





















.δkrcosαZω

,δkrsinαZω
λω

g
f

2
12

2
12

2
1                                   

(9) 
 
When integrating the master system, the 
function is calculated simultaneously:       

                                             
          2

1
2222   ZgZfrN kkkkk

(10) 

It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 

invariant procedure for generating the 
relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width 
is defined by the square of interaction matrix 
element [9]:  
                        

          













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

 

(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
                               

       


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r  

(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 

       
       3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~12431243Re~Re Qul





SRSR

SRSRQ l



                                                                                                                                                                                                    

(5) 
where ReQ(1243) is as follows:   
 

                  rZrZrfrfrfrfrrdrR 11
24221311

2
2

2
111243Re  

(6) 
where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
                                                      

       ]2
3/[/2 13

2
1

2
1

13
1 



  



 rrJZZ . 

(7) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   

   
   

      

















.
,
,

12
3124213

21
422

21
311














rrZffyffyy
rrZffy
rrZffy

                                              

(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 

                                                        

      

    





















.δkrcosαZω

,δkrsinαZω
λω

g
f

2
12

2
12

2
1                                   

(9) 
 
When integrating the master system, the 
function is calculated simultaneously:       

                                             
          2

1
2222   ZgZfrN kkkkk

(10) 

It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 

invariant procedure for generating the 
relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width 
is defined by the square of interaction matrix 
element [9]:  
                        

          













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

 

(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
                               

       


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r  

(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 

       
       3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~12431243Re~Re Qul





SRSR

SRSRQ l



                                                                                                                                                                                                    

(5) 
where ReQ(1243) is as follows:   
 

                  rZrZrfrfrfrfrrdrR 11
24221311

2
2

2
111243Re  

(6) 
where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
                                                      

       ]2
3/[/2 13

2
1

2
1

13
1 



  



 rrJZZ . 

(7) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   

   
   

      

















.
,
,

12
3124213

21
422

21
311














rrZffyffyy
rrZffy
rrZffy

                                              

(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 

                                                        

      

    





















.δkrcosαZω

,δkrsinαZω
λω

g
f

2
12

2
12

2
1                                   

(9) 
 
When integrating the master system, the 
function is calculated simultaneously:       

                                             
          2

1
2222   ZgZfrN kkkkk

(10) 

It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 

invariant procedure for generating the 
relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width 
is defined by the square of interaction matrix 
element [9]:  
                        

          













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

 

(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
                               

       


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r  

(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 

       
       3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~12431243Re~Re Qul





SRSR

SRSRQ l



                                                                                                                                                                                                    

(5) 
where ReQ(1243) is as follows:   
 

                  rZrZrfrfrfrfrrdrR 11
24221311

2
2

2
111243Re  

(6) 
where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
                                                      

       ]2
3/[/2 13

2
1

2
1

13
1 



  



 rrJZZ . 

(7) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   

   
   

      

















.
,
,

12
3124213

21
422

21
311














rrZffyffyy
rrZffy
rrZffy

                                              

(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 

                                                        

      

    





















.δkrcosαZω

,δkrsinαZω
λω

g
f

2
12

2
12

2
1                                   

(9) 
 
When integrating the master system, the 
function is calculated simultaneously:       

                                             
          2

1
2222   ZgZfrN kkkkk

(10) 

It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 

invariant procedure for generating the 
relativistic DKS orbital bases (abbreviator of 
our method: GIRPT). The autoionization width 
is defined by the square of interaction matrix 
element [9]:  
                        

          













 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

 

(3) 
The real part of the interaction matrix element 
can be expanded in terms of Bessel functions 
[5,8]: 
                               

       


0
21

2
1

2
1

2112

12 cos
2

cos


 

rrPrJrJ
rrr

r  

(4) 
The Coulomb part Qul

Q  is expressed in the radial 
integrals R , angular coefficients S  as follows: 

       
       3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~12431243Re~Re Qul





SRSR

SRSRQ l



                                                                                                                                                                                                    

(5) 
where ReQ(1243) is as follows:   
 

                  rZrZrfrfrfrfrrdrR 11
24221311

2
2

2
111243Re  

(6) 
where f is the large component of radial part of 
the 1QP state Dirac function and function Z is :                                                             
                                                      

       ]2
3/[/2 13

2
1

2
1

13
1 



  



 rrJZZ . 

(7) 
The angular coefficient is defined by standard 
way as above [3]. The calculation of radial 
integrals ReR(1243) is reduced to the solution 
of a system of  differential equations:   
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(8) 
In addition,  у3()=ReR(1243), у1()=X(13). 
The system of differential equations includes 
also equations for functions f/ræ-1, g/ræ-
1,  1

Z ,  2
Z . The formulas for the autoionization 

(Auger) decay probability include the radial 
integrals R(k), where one of the functions 
describes electron in the continuum state. When 
calculating this integral, the correct 
normalization of the function k is a problem. 

The correctly normalized function should have 
the following asymptotic at  r0: 
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(9) 
 
When integrating the master system, the 
function is calculated simultaneously:       

                                             
          2

1
2222   ZgZfrN kkkkk

(10) 

It can be shown that at r, N(r)Nk, where 
Nk is the normalization of functions  fk, gk of 
continuous spectrum satisfying the condition 
(9). Other details can be found in refs.[10-13,16-
20]. 

 
3. Results and conclusions 

 
In table 1 we present  the data for 

energies (cm-1) of the barium autoionization 
resonances 4fnf, n = 15 (averaged over the fine 
structure) measured experimentally and 
calculated on the basis of our theory and 
multichannel quantum defect method (MCQD) 
with the empirical fit (de Graaf et al) [2]. An 
analysis shows quite physically reasonable 
agreement between the theoretical and 
experimental results. But some difference, in 
our opinion, can be explained by different 
accuracy of estimates of the radial integrals, 
using the different type basises (gauge 
invariance conservation or a degree of 
accounting for the exchange-correlation effects) 
and some other additional calculation 
approximations. In our theory there are used 
more optimized basises of the orbitals in 
comparison with the MCQD).  

In ref. [14] (see also [5,12]) it has been 
predicted a new spectroscopy  effect of the giant 
changing of the AS ROD width in a sufficiently 
weak electric field (for two pairs of the Tm, Gd 
AR). Following to [5], let us remind that any 
two states of different parity can be mixed by 
the external electric field. The mixing leads to 
redistribution of the autoionization widths. In 
the case of degenerate or near-degenerate 
resonances this effect becomes observable even 
at a moderately weak field. 
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Following to [5], let us remind that any two states 
of different parity can be mixed by the external 
electric field. The mixing leads to redistribution 
of the autoionization widths. In the case of de-
generate or near-degenerate resonances this effect 
becomes observable even at a moderately weak 
field.

Table 1. 
Energies (cm-1) of autoionization resonanc-

es 4fnf, n = 15 (averaged over the fine struc-
ture) measured experimentally and calculated 

on the basis of our theory and multichannel 
quantum defect method (MCQD) with the 

empirical fit (de Graaf et al) 

АС J Exp. MCQD Our
work

4f5/215f7/2
4f7/215f5/2
4f7/215f7/2
4f5/215f7/2
4f5/215f5/2
4f7/215f7/2
4f7/215f5/2
4f5/215f5/2
4f5/215f7/2
4f7/215f5/2
4f7/215f7/2
4f5/215f5/2
4f5/215f7/2
4f7/215f7/2
4f7/215f5/2
4f5/215f7/2

6
6
6
5
5
5
5
4
4
4
4
3
3
3
3
2

89 758.4±0.5
89 993.6±0.5
89 926.6±5.0
89 726.3±1.0
89 749.2±0.5
89 951.0±0.5
-
89 705.6±0.5
-
89 937.8±2.0
89 951.0±2.0
-
89 741.5±2.0
89 969.3±2.0
-
89 766.5±5.0

89759.1
89992.4
89937.1
89718.7
89748.6
89952.9
-
89706.8
-
89937.2
89951.8
-
89738.0
89972.0
-
89774.7

89758.8
89993.6
89926.8
89726.9
89749.7
89951.6
89942.3
89705.4
89718.5
89937.6
89951.5
89728.5
89740.9
89969.8
89953.4
89767.8

In the Tm one could deal with ROD nd and 
nf series, converging to the same ionization limit, 
i.e. they are nearly degenerate states of different 
parity. Among them one can find some pairs of nd 
and nf states with widths Г, differing by several 
orders. So, we could suggest that the phenomeno-
logical effect of giant broadening of the Rydberg 
AS could take a place in the barium atom too, 
however, the corresponding detailed investiga-
tion is required.  
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