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ADVANCED RELATIVISTIC MODEL POTENTIAL APPROACH TO 
CALCULATION OF RADIATION TRANSITION PARAMETERS IN 
SPECTRA OF MULTICHARGED IONS

The combined relativistic energy approach and relativistic many-body perturbation 
theory with the zeroth order optimized one-particle approximation are used for calculation 
of the Li-like ions (Z=11-42,69,70) energies and oscillator strengths of radiative transitions 
from the ground state to the low-excited and Rydberg states, in particular, 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12). The comparison of the calculated oscillator strengths with available 
theoretical and experimental (compillated) data is performed.

1.  Introduction

The research on the spectroscopic and struc-
tural properties of highly ionized atoms has a 
fundamental importance in many fields of atomic 
physics (spectroscopy, spectral lines theory), as-
trophysics, plasma physics, laser physics and so 
on. It should be mentioned that the correct data 
about radiative decay widths, probabilities and 
oscillator strengths of atomic transitions are 
needed in astrophysics and laboratory, thermonu-
clear plasma diagnostics and in fusion research. 
In this light, an special interest attracts studying 
the spectral characteristics of the He-, Li etc like 
ions. There have been sufficiently many reports 
of calculations and compilation of energies and 
oscillator strengths for the Li-like ions and other 
alkali-like ions (see, for example, [1–16]). Par-
ticularly, Martin and Wiese have undertaken a 
critical evaluation and compilation of the spectral 
parameters for Li-like ions (Z=3-28) [1,2]. The 
results of the high-precision non-relativistic cal-
culations of the energies and oscillator strengths 
of 1s22s¡1s22p for Li-like systems up to Z = 50 
are presented in Refs. [9-14]. The  Hylleraas-type 
variational method and the 1/Z expansion method 
have been used. Chen Chao and Wang Zhi-Wen 
[14] have listed the nonrelativistic dipole-length, 

-velocity and -acceleration absorption oscillator 
strengths for the 1s22s–1s22p transitions of the 
LiI isoelectronic sequence on the basis of calcu-
lation within a full core plus correlation method 
with using multiconfiguration interaction wave 
functions. Fully variational nonrelativistic Har-
tree-Fock wavefunctions have been used by Biè-
mont in calculation of the 1s2n2L (n <8 =s, p, 
d or f; 3 < Z<22) states of the LiI isoelectronic 
sequence [16]. In many papers the Dirac-Fock 
method, model potential approach, quantum de-
fect approximation in the different realizations 
have been used for calculating  the energies and 
oscillator strengths of the Li-like ions (see Refs.
[1-17]). The consistent QED calculations of the 
energies, ionization potentials, hyperfine struc-
ture constants for the Li-like ions are performed 
in Refs. [18-21].  However, it should be stated 
that for Li-like ions with higher Z, particularly for 
their high-excited (Rydberg) states, there is not 
enough precise information available in litera-
tures. In our paper the combined relativistic en-
ergy approach [22-26] and relativistic many-body 
perturbation theory with the zeroth order opti-
mized one-particle representation [26] are used 
for calculation the Li-like ions (Z=11-42,69,70) 
energies and oscillator strengths of radiative tran-
sitions from ground state to low-excited and Ry-
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dberg states.. The comparison of the calculated 
oscillator strengths with available theoretical and 
experimental (compillated) data is performed.

2.  The theoretical method

In the relativistic energy approach [4,5,22-
25] the imaginary part of electron energy shift of 
an atom is  directly connected with the radiation 
decay possibility (transition  probability). An ap-
proach, using the Gell-Mann and Low formula 
with the QED scattering matrix, is used in treat-
ing the relativistic atom. The total energy shift of 
the state is usually presented in the form:

                DE = ReDE + i G/2                   (1)

where G is interpreted as the level width, and 
the decay possibility P = G. The imaginary part 
of electron energy of the system, which is defined 
in the lowest order of perturbation theory as [4]: 

          (2)

where (a>n>f)  for electron and (a<n<f)  for 
vacancy. The matrix element is determined as fol-
lows:

The separated terms of the sum in (3) represent 
the contributions of different channels and a prob-
ability of the dipole transition is: 

                                      (4)

The corresponding oscillator strength :  
                                 ,       where g is the degen-

eracy degree,  l is a wavelength in angstrems (Ǻ). 
Under calculating the matrix elements (3) one 
should use the angle symmetry of the task and 

write the expansion for potential sin|w|r12/r12  on 
spherical functions as follows [2]: 

·

where J  is the Bessel function of first kind and 
(l)= 2l + 1. This expansion is corresponding to 
usual multipole one for probability of radiative 
decay. Substitution of the expansion (5) to matrix 
element of interaction gives as follows [20]: 

    
                         

where ji is the total single electron momen-
tums, mi – the projections; QQul is the Coulomb 
part of interaction, QBr - the Breit part. Their de-
tailed definitions are presented in Refs. [4,20]. 
The relativistic wave functions are calculated by 
solution of the Dirac equation with the potential, 
which includes the “outer electron- ionic core” 
potential and polarization potential [29]. In order 
to describe interaction of the outer electron with 
the He-like core the Ivanova-Ivanov model po-
tential [4] has been used. The calibration of the 
single model potential parameter has been per-
formed on the basis of the special ab initio proce-
dure within relativistic energy approach [24] (see 
also [5]). 

In Ref.[18] the lowest order multielectron ef-
fects, in  particular,  the gauge dependent radiative 
contribution Im dEninv for the certain  class  of the 
photon propagator calibration is treated. This val-
ue is considered to be the typical  representative 
of the electron correlation effects, whose minimi-
zation is a reasonable criterion in the searching 
for the optimal one-electron basis of  the  rela-
tivistic many-body perturbation theory. The mini-
mization of the density functional Im dEninv leads 
to the integral-differential equation that can be 
solved using one of the standard numerical codes. 
Therefore, it provides the construction of the op-
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where (>n>f)  for electron and (<n<f)  for 
vacancy. The matrix element is determined 
as follows: 
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where ji is the total single electron 
momentums, mi – the projections; QQul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The relativistic wave 
functions are calculated by solution of the 
Dirac equation with the potential, which 
includes the “outer electron- ionic core” 
potential and polarization potential [29]. In 
order to describe interaction of the outer 
electron with the He-like core the Ivanova-
Ivanov model potential [4] has been used. 
The calibration of the single model potential 
parameter has been performed on the basis of 
the special ab initio procedure within 
relativistic energy approach [24] (see also 
[5]).  

In Ref.[18] the lowest order 
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gauge dependent radiative contribution Im 
Eninv for the certain  class  of the photon 
propagator calibration is treated. This value 
is considered to be the typical  representative 
of the electron correlation effects, whose 

theoretical and experimental (compillated) 
data is performed. 
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[4,5,22-25] the imaginary part of electron 
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relativistic atom. The total energy shift of the 
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where J  is the Bessel function of first kind 
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includes the “outer electron- ionic core” 
potential and polarization potential [29]. In 
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where J  is the Bessel function of first kind 
and ()= 2 + 1. This expansion is 
corresponding to usual multipole one for 
probability of radiative decay. Substitution of 
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where ji is the total single electron 
momentums, mi – the projections; QQul is the 
Coulomb part of interaction, QBr - the Breit 
part. Their detailed definitions are presented 
in Refs. [4,20]. The relativistic wave 
functions are calculated by solution of the 
Dirac equation with the potential, which 
includes the “outer electron- ionic core” 
potential and polarization potential [29]. In 
order to describe interaction of the outer 
electron with the He-like core the Ivanova-
Ivanov model potential [4] has been used. 
The calibration of the single model potential 
parameter has been performed on the basis of 
the special ab initio procedure within 
relativistic energy approach [24] (see also 
[5]).  

In Ref.[18] the lowest order 
multielectron effects, in  particular,  the 
gauge dependent radiative contribution Im 
Eninv for the certain  class  of the photon 
propagator calibration is treated. This value 
is considered to be the typical  representative 
of the electron correlation effects, whose 
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timized one-particle representation. All calcula-
tions are performed on the basis of the numeral 
code Superatom-ISAN (version 93).

3.  Results

We applied the above described approach to 
calculating the energies and oscillator strengths 
of transitions in spectra of the Li-like ions (Z=11-
42,69,70). There are considered the radiative 
transitions from ground state to the low-excited 
and Rydberg states, particularly, 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12). To test the obtained re-
sults, we compare our calculation data on the 
oscillator strengths values for some Li-like ions 
with the known theoretical and compillated re-
sults [1,2,8]. 

As an example, in table 1 we present the  os-
cillator strengths values for the 2s1/2 – 2p1/2,3/2 
transitions in Li-like ions S13+  , Ca17+ , Fe23+  , Zn27+, 
Zr37+ , Mo39+ , Sn47+ , Tm66+ , Yb67+ . The DF cal-
culation data by Zilitis [6] and the “best” compil-
lated (experimental) data [1,2] for the low-Z Li-
like ions are listed in table 1 for comparison too.  

Table 1 
Oscillator strengths of the 2s1/2 – 2p1/2,3/2 

transitions in Li-like ions

Method DF [6] DF [6] [2] [2] Our Our
Ion 2s1/2–

2p1/2

2s1/2–
2p3/2

2s1/2–
2p1/2

2s1/2–
2p3/2

2s1/2–
2p1/2

2s1/2–
2p3/2

S13+ 0.0299 0.0643 0.030 0.064 0.0301 0.0641
Ca17+ 0.0234 0.0542 0.024 0.054 0.0236 0.0541
Fe23+ 0.0177 0.0482 0.018 0.048 0.0179 0.0481
Zn27+ 0.0153 0.0477 – – 0.0156 0.0475
Zr37+ 0.0114 0.0543 – – 0.0118 0.0540
Mo39+ – – 0.011 0.056 0.0107 0.0556
Sn47+ 0.0092 0.0686 – – 0.0095 0.0684
Tm66+ – – – – 0.0071 01140
Yb67+ 0.0067 0.1170 – – 0.0069 0.1167

It should be reminded that the experimental 
data on the oscillator strengths for many (espe-
cially, high-Z) Li-like ions are absent. In a whole, 
there is a physically reasonable agreement be-
tween the listed data. The important features of 
the approach used are using the optimized one-
particle representation and account for the polar-

ization effect. it should be noted that an estimate 
of the gauge-non-invariant contributions (the 
difference between the oscillator strengths val-
ues calculated with using the transition operator 
in the form of “length” and “velocity”) is about 
0.3%, i.e. the results, obtained with using the dif-
ferent photon propagator gauges (Coulomb, Ba-
bushkon, Landau) are practically equal. 

In table 2 we present the oscillator strengths 
values for the 2s1/2 – npj  (n=3-18, j=1/2) transi-
tions in spectrum of the Li-like ion Zr37+.  The 
quantum defect approximation (QDA) [6,27], the 
DF oscillator strengths calculation results by Zili-
tis [6] and some compillated (experimental) data 
by Martin-Weiss [1] are listed too. 

It is self-understood that the QDA oscilla-
tor strengths data become more exact with the 
growth of the principal quantum number. At the 
same time the accuracy of the DF  data may be 
decreased. The agreement between the Martin-
Weiss data and our is sufficiently good. 

Table 2 
Oscillator strengths of the 2s1/2 – np1/2 tran-

sitions in Zr37+.

Transition QDA [6] DF [6] Our data

2s1/2–3p1/2 13.7 13.3 13.684

–4p1/2 - 3.22 3.232

–6p1/2 - - 0.682

–8p1/2 0.258 0.257 0.260

–10p1/2 0.126 0.124 0.125

–16p1/2 0.0291 0.0285 0.0287

–18p1/2 - - 0.0216
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Abstract
The combined relativistic energy approach and relativistic many-body perturbation theory with 

the zeroth order optimized one-particle approximation are used for calculation of the Li-like ions 
(Z=11-42,69,70) energies and oscillator strengths of radiative transitions from the ground state to the 
low-excited and Rydberg states, in particular, 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). The comparison 
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Резюме
Комбинированный релятивистский энергитический подход и релятивистская теория 

возмущений многих тел с оптимизированным одночастичным приближением нулевого порядка 
используются для расчета Li-подобных ионов (Z = 11-42,69,70) энергии и силы осцилляторов 
радиационных переходов из основного состояния в низкие возбужденные и ридберговские 
состояния, в частности, 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). Сравнение расчетных сил 
осцилляторов с имеющимися теоретическими и экспериментальными данными выполнено.
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Резюме
Комбінований релятивістський енергетичний підхід і релятивістська теорія збурень багатьох 

тіл з оптимізованим одночастковим наближенням нульового порядку використовується 
для розрахунку Li-подібних іонів (Z = 11-42,69,70) енергії і сили осцилляторів радіаційних 
переходів із основного стану в низькі збуджені та рідбергівські стани, зокрема, 2s1/2 – np1/2,3/2, 
np1/2,3/2-nd3/2,5/2 (n=2-12). Порівняння розрахованих сил осцилляторів з наявними теоретичними 
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