Yu. V. Dubrovskaya, T. A. Florko, D. E. Sukharev

Odessa National Polytechnical University, 1, Shevchenko av., Odessa, Ukraine Odessa State Environmental University, 15, Lvovskaya str., Odessa, Ukraine e-mail: nucdubr@mail.ru

ATOMIC CHEMICAL COMPOSITION EFFECT ON THE BETA DECAY PROBABILITIES FOR ³⁵CL, ²⁴¹PU

Within a new theoretical scheme for sensing the atomic chemical environment effect on the beta decay characteristics there are presented numerical results for chemical environment effect on the beta decay for $^{35}\text{Cl},~^{241}\text{Pu}$. Despite on the relative smallness of the atomic chemical environment effect on the β

1. Introduction

In this paper we go on studying the atomic chemical environment effect on the beta decay characteristics and consider chemical environment effect on the beta decay for 35Cl, 241Pu. Let us remind [10,11] that though in a modern nuclear physics there is a number of principally new problems, connected with an unprecedented progress in the physical experiment, nevertheless the classical problems, including the beta decay or low energy nucleus-nucleus collision etc. are remained under intensive theoretical and experimental interest (c.f.[1-11]). This paper goes on our investigations on estimating the beta decay characteristics and sensing an influence of the chemical environment on the b decay parameters with using an optimal theoretical schemes (c.f.[11-16]). In last years a calculating the b decay processes and sensing an influence of the chemical environment on the beta b characteristics attracts a great interest especially due to the new experimental studies of the b decay for a number of nuclei [1-10]. A number of experimental and theoretical papers appeared where the different aspects of the b decay theory and accounting for different factors are considered. One of the important topics is problem to get the data about the neutrino mass from the beta decay spectra shape. An exact value of the half-decay period for the whole number of heavy radioactive nuclei is important for standardisation of data about their properties. Disagreement between different experimental data regarding the b-decay in heavy radioactive nuclei is provided by different chemical environment radioactive nucleus. For example, such disagreement in data on the half-decay period for the ²⁴¹Pu (see, for example, ref. [1,5,8,9]) is explained in some papers by special beta decay channel. The beta particle in this channel does not transit into free state, but it occupies the external free atomic level. According to ref. [1-5], differences in population of these levels are to be a reason of an influence of the chemical environment on the beta decay. So, a sensing the chemical environment effect on the beta decay is very important to be studied as within a consistent, high accurate theoretical calculation scheme as experimental high precise measurement. Under theoretical consideration of the problem, one has to consider the following effects: i.). A changing electron wave functions because of the changing atomic electric field due to the difference in the valence shells occupation numbers in different chemical substances; ii). A changing up limit of integration under calculating the Fermi integral function in different chemical substances [1,6]. As a rule, the beta particle and neutrino bring away the difference between energies of the mother and daughter atoms. This difference energy is equal to sum of values, provided by atomic nucleus reconstruction and atomic electron shell reconstruction. The entire

energy of electron shell of an atom in the different chemical compounds is different. Due to the changing the nuclear charge Z on unite during the beta decay, this entire energy of electron shell of an atom changes in different chemical compounds by different way; iii). Together with beta decay and ejection of the beta particle out atom it is possible additional channel when the beta electron occupies non-occupied place on the bonded external orbitals of atom. As a rule, special tables [9] for the Fermi function and integral Fermi function is used for calculating the beta spectrum shape. In ref. [9] calculation scheme is based on the non-relativistic Hartree-Fock-Slater approach, but the finite size of nucleus is taken into account. In paper [4] the relativistic Dirac-Fock (DF) method was used. Note that the DF approach is the most wide spread method of calculation, but, as a rule, the corresponding orbitals basis's are not optimized. Some problems are connected with correct definition of the nuclear size effects, QED corrections etc. We are applying below the gauge invariant DF (GIDF) type approach [11-17] for estimating the atomic chemical environment effect on the b decay characteristics for 35Cl, 241Pu.

2. Method

The details of our approach have been presented earlier (see, for example, [10,11,17,18]), here we are limited by the key ideas. As it is well known a distribution of the b particles on energy in the permitted transitions is as follows [9]:

$$dW_{\beta}(E)/dE = \frac{1}{2\pi^3} G^2 \cdot F(E, Z) \cdot E \cdot p \cdot (E_0 - E)^2 \cdot |M|^2.$$
 (1)

Here G is the weak interaction constant; E and $p=(E^2-1)^{1/2}$ are an entire energy and pulse of beta particle; $E_0=I+(E_{bn}\ /m_ec^2)$, E_{bn} is the boundary energy of β -spectrum; $|\mathbf{M}|$ is a matrix element, which is not dependent upon an energy in a case of the permitted β - transitions.

As usually for calculation of the b decay shape and decay half period one should use the tables of the Fermi function and integral Fermi function. The Fermi function F and integral Fermi function f are defined as follows:

$$F(E,Z) = \frac{1}{2p^2} (g_{-1}^2 + f_{+1}^2),$$
 (2a)

$$f(E_0, Z) = \int_{1}^{E_0} F(E, Z) \cdot E \cdot p \cdot (E_0 - E)^2 dE.$$
(2b)

Here f_{+l} and g_{-l} are the relativistic electron radial functions; the indexes $\pm l = c$, where c = (l-j)/(2j+1). Two schemes of calculation are usually used: i). the relativistic electron radial wave functions are calculated on the boundary of the spherical nucleus with radius R_0 (it has done in ref. [4]); ii). the values of these functions in the zero are used (see ref. [9]).

The normalisation of electron radial functions f_i and g_i provides the behaviour of these functions for large values of radial valuable as follows:

$$g_{\varkappa}(r) \rightarrow r^{-1}[(E+1)/E]^{1/2} \sin(pr + \delta_{\varkappa}),$$
 (3a)

$$f_{\varkappa}(r) \rightarrow r^{-1}(\varkappa/|\varkappa|) [(E-1)/E]^{1/2} \cos(pr + \delta_{\varkappa})$$
(3b)

An effect of interaction in the final state between beta electron and atomic electrons with an accuracy to $(aZ/v)^2$ is manifested and further accounted for in the first non-vanishing approximation [8]. This contribution changes the energy distribution of the beta electron on value and is derived in Ref. [1].

As method of calculation of the relativistic atomic fields and electron wave functions, we have used the GIDF approach [10,11]. The potential of Dirac equation includes also the electric and polarization potentials of a nucleus (the gaussian form of charge distribution in the nucleus was used).

All correlation corrections of the PT second and high orders (electrons screening, particle-hole interaction etc.) are accounted for [5]. The GIDF equations for N-electron system are written and contain the potential:

$$V(r)=V(r|nlj)+V_{ex}+V(r|R),$$

which includes the electrical and polarization potentials of the nucleus. The part V_{α} accounts for exchange inter-electron interaction. Note that a procedure of the exchange account in the GIDF scheme is similar to one in the usual DF approach. Regarding the GIDKS scheme, it is

Table 2 The atomic chemical environment effect on the b decay probability $^{241}Pu \rightarrow ^{241}Am$. Changing the half-period $T_{1/2}$ (our data)

Decay of neutral atom

similar to usual DKS scheme. The optimization
of the orbital basises is realized by iteration
algorithm within gauge invariant QED procedure
(look its application in the beta-decay theory
[5]). Approach allows calculating the continuum
wave functions, taking into account fully an
effect of exchange of the continuum electron with
electrons of the atom. Note that this is one of the
original moments of the paper. Another original
moment is connected with using the consistent
QED gauge invariant procedure for optimization
of the electron functions basis's. Numerical
calculation and analysis shows that used methods
allow getting the results, which are more precise
in comparison with analogous data, obtained with
using non-optimized basis's. The details of the
numerical procedure are presented in ref. [11-17].

Decay of fleatial atom				
Atom	E_{bn} , eV	$f(E_{bn},Z)$	Δf/f . %	
Pu ⁽⁰	20800 20815	1,72248(- 3) 1,72615(- 3)	0,3	
Decay of ionized atom				
Ion	E_{bn} , eV	$f(E_{bn},Z)$	Δf/f . %	
Pu ⁽²⁺⁾	20785 20800	1,71725(- 3) 1,72099(- 3)	0,3	

3. Results and conclusions

In Table 1 we present presents our data on the atomic chemical environment effect on the probability of β decay $^{35}\text{Cl} \rightarrow ^{35}\text{Ar}$. From the physical viewpoint it is understandable that the quantitative effect of the chemical environment of part of the decay is sufficiently small.

The situation (compared with Cl) changes in the transition to the consideration of the decay $^{241}Pu \rightarrow \,^{241}Am$. In Table 2 there are presented the corresponding results for the decay $^{241}Pu \rightarrow \,^{241}Am$, including the value of $\Delta f/f = -\Delta T_{1/2}/T_{1/2}$.

Table 1 The atomic chemical environment effect on the b decay probability $^{35}Cl \rightarrow ^{35}Ar$; Changing the half-period $T_{1/2}$ (our data)

Decay of neutral atom				
Atom	E_{bn} , eV	Δf/f . %		
C1(°)	4948000 4948200	0,003		
Decay of ionized atom				
Ion	E_{bn} , eV	Δf/f . %		
Cl (-1)	4947800 4948000	0,003		

Analysis for two versions of data shows that there are obtained give similar results, and, in particular, very similar values for the changing $T_{1/2}$ when the ionic parameter is changed. Regarding the value of the integral Fermi function, the characteristic value for the decay of ionized chlorine is less than in the case of neutral chlorine, respectively chlorine ionized decay is slower. The value of the Fermi function is greater for the neutral Cl and, therefore, β-decay of the neutral Cl is faster. As it can be seen from Table 2, the corresponding difference in the values of $T_{\mbox{\scriptsize 1/2}}$ for Pu is about 0,3%.In conclusion let us note that our conclusions fully coincide with analysis and conclusions, presented in [1]. Despite on the relative smallness of the atomic chemical environment effect on the b decay probabilities for corresponding decays, the situation may be significantly changed under consideration of the beta decay for the heavy elements.

References

- 1. Glushkov A.V., Khetselius O.Yu., Lovett L., Electron-b-nuclear spectroscopy of atoms and molecules and chemical environment effect on the b-decay parameters// Advances in the Theory of Atomic and Molecular Systems Dynamics, Spectroscopy, Clusters, and Nanostructures. Series: Progress in Theoretical Chemistry and Physics, Eds. Piecuch P., Maruani J., Delgado-Barrio G., Wilson S. (Berlin, Springer).-2009.-Vol. 20.-P. 125-172.
- 2. Tegen R., Beta decay of the free neutron and a (near) degenerate neutrino mass//Nucl.Phys.A.-2002.-Vol.706.-P.193-202.
- 3. Izosimov I. N., Kazimov A. A., Kalinnikov V. G., Solnyshkin A. A. and Suhonen J., Beta-decay strength measurement, total beta-decay energy determination and decay-scheme completeness testing by total absorption gammaray spectroscopy// Phys. Atom. Nucl.-2004.-Vol. 67, N10.-1876-1882.
- 4. Kopytin I. V., Karelin K. N., and Nekipelov A. A. Exact inclusion of the coulomb field in the photobeta decay of a nucleus and problem of bypassed elements// Phys. Atom. Nucl.-2004.-Vol. 67, N8.-P.1429-1441.
- Band I.M., Listengarten M.A., Trzhaskovskaya M.B., Possibility of beta decay in model of atom of the Hartree-Fock-Dirac and influence of chemical composition on the beta decay// Izv. AN USSR.-1987.-Vol.51,N11.-P.1998-200
- 6. Glushkov A.V., Laser- electron-b-nuclear spectroscopy of atomic and molecular systems and chemical environment effect on the b-decay parameters:

 Review //Photoelectronics.-2010.-N19.-P.28-42.
- 7. Karpeshin F.,Trzhaskovskaya M.B., Gangrskii Yu.P.,Resonance Internal Conversion in Hydrogen-Like Ions // JETP.-2004.-Vol.99, N2.-P.286-289.
- 8. Kaplan I., Endpoint energy in the molecular beta spectrum, atomic mass defect and the negative $m_{\nu_e}^2$ puzzle// J.Phys.G.: Nucl.Part.Phys.-1997.-

- Vol.23.-P.683-692.
- 9. Drukarev E.G., Strikman M.I., Final state interactions of beta electrons and related phenomena// JETP.-1986. Vol.64(10).-P.1160-1168.
- 10. Gelepov B.C., Zyryanova L.N., Suslov Yu.P. Beta processes.-Leningrad: Nauka, 1992.-372p.
- 11. Malinovskaya S.V., Dubrovskaya Yu.V., Vitavetskaya L.A., Advanced quantum mechanical calculation of the beta decay probabilities// Low Energy Antiproton Phys. (AIP).-2005.-Vol.796.-P.201-205.
- 12. Malinovskaya S.V., Dubrovskaya Yu.V., Zelentzova T.N., The atomic chemical environment effect on the b decay probabilities: Relativistic calculation// Kiev University Bulletin. Series Phys.-Math.–2004.-№4.-C.427-432.
- 13. Glushkov A.V., Malinovskaya S.V., Dubrovskaya Yu.V., Sensing the atomic chemical composition effect on the b decay probabilities // Sensor Electr. & Microsyst. Techn.-2005.-N1.-P.16-20.
- 14. Dubrovskaya Yu.V., The atomic chemical environment and beta electron final state interaction effect on beta decay probabilities// Photoelectronics.-2005.-N14.-P.86-88.
- 15. Dubrovskaya Yu.V., The beta electron final state interaction effect on beta decay probabilities// Photoelectronics.-2006.-N15.-P.92-94.
- 16. Turin A.V., Khetselius O.Yu., Dubrovskaya Yu.V, The beta electron final state interaction effect on beta decay probabilities for ⁴²Se nucleus within relativistic Hartree-Fock approach//Photoelectronics.-2007.-N16.-P.120-122..
- 17. Dubrovskaya Yu.V., Atomic chemical composition effect on the beta decay probabilities//Photoelectronics.-Vol.22.-P.124-129.
- 18. Dubrovskaya Yu.V., Sukharev D.E., Vitavetskaya L.A., Relativistic theory of the beta decay: Environment and final state interaction effects// Photoelectronics.-2011.-Vol.20.-P.113-116

This article has been received within 2014

Yu. V. Dubrovskaya, T. A. Florko, D. E. Sukharev

ATOMIC CHEMICAL COMPOSITION EFFECT ON THE BETA DECAY PROBABILITIES FOR $^{35}\text{Cl},\,^{241}\text{Pu}$

Abstract

Within a new theoretical scheme for sensing the atomic chemical environment effect on the beta decay characteristics there are presented numerical results for chemical environment effect on the beta decay in the ³⁵Cl, ²⁴¹Pu . Despite on the relative smallness of the atomic chemical environment effect on the b decay probabilities for corresponding decays, the situation may be significantly changed under consideration of the beta decay for the heavy elements.

Key words: atomic chemical composition effect, beta decay probability

УДК 539.135

Ю. В. Дубровская, Т. А. Флорко, Д. Е. Сухарев

АТОМНЫЙ ЭФФЕКТ ВЛИЯНИЯ ХИМИЧЕСКОГО ОКРУЖЕНИЯ НА ВЕРОЯТНОСТЬ БЕТА РАСПАДА ДЛЯ 35 Cl, 241 Pu

Резюме

В рамках новой теоретической схемы вычисления эффекта влияния химического окружения на характеристики b распада представлены численные оценки влияния химического окружения на b распад ³⁵Cl, ²⁴¹Pu. Несмотря на относительную малость эффекта влияния химического окружения на вероятность бета-распада, ситуация существенно изменяется в случае бета-распада тажелых элементов.

Ключевые слова: влияние химического окружения, вероятность бета распада.

УДК 539.135

Ю. В. Дубровська, Т. О. Флорко, Д. Є. Сухарев

АТОМНИЙ ЕФЕКТ ВПЛИВУ ХІМІЧНОГО ОТТОЧЕННЯ НА ІМОВІРНІСТЬ БЕТА РОЗПАДУ ДЛЯ 35 Cl, 241 Pu

Резюме

На основі нової теоретичної схеми обчислення ефекту впливу хімічного отточення на характеристики в розпаду представлені чисельні оцінки впливу хімічного отточення на в розпад ³⁵Cl, ²⁴¹Pu. Недивлячись на відносну малість ефекту впливу хімічного отточення на імовірність бета-розпаду, ситуація суттєво змінюється у випадку бета-розпаду важких елементів.

Ключові слова: вплив хімічного отточення, імовірність бета розпаду