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SIMULATION CHAOTIC DYNAMICS OF COMPLEX SYSTEMS AND 
DEVICES WITH USING CHAOS THEORY, GEOMETRIC ATTRACTORS, 
AND QUANTUM NEURAL NETWORKS

Nonlinear simulation and forecasting chaotic evolutionary dynamics of complex systems  
can be effectively performed using the concept of compact geometric attractors.  We are 
developing a new approach to analyze and forecasting complex systems evolutionary 
dynamics based on the concept of geometric attractors, chaos theory methods and algorithms 
for quantum neural network simulation.

In recent years a considerable number of works, 
including an analysis from the perspective of the 
theory of dynamical systems and chaos, fractal 
sets, is devoted to time series analysis of dynami-
cal characteristics of physics and other systems 
[1-11]. In a series of papers [10-20] the authors 
have attempted to apply some of these methods 
in a variety of the physical, geophysical, hydro-
dynamic problems. In connection with this, there 
is an extremely important task on development of 
new, more effective approaches to the nonlinear 
modelling and prediction of chaotic processes in 
different complex systems. 

In this work nonlinear simulation and forecast-
ing chaotic evolutionary dynamics of complex 
systems  are carried out using the concept of com-
pact geometric attractors [17-20].  We are devel-
oping a new approach to analyze complex system 
dynamics based on the concept of geometric at-
tractors, chaos theory methods and algorithms for 
quantum neural network simulation

The basic idea of the construction of our ap-
proach to prediction of chaotic processes in com-
plex systems is in the use of the traditional concept 
of a compact geometric attractor in which evolves 
the measurement data, plus the implementation of 
neural network algorithms. The existing so far in 

the theory of chaos prediction models are based 
on the concept of an attractor, and are described 
in a number of papers (e.g. [1-8]). 

From a mathematical point of view, it is a 
fact that in the phase space of the system an or-
bit continuously rolled on itself due to the action 
of dissipative forces and the nonlinear part of the 
dynamics, so it is possible to stay in the neighbor-
hood of any point of the orbit y (n) other points 
of the orbit yr (n), r = 1, 2, ..., NB, which come 
in the neighborhood y (n) in a completely differ-
ent times than n. Of course, then one could try 
to build different types of interpolation functions 
that take into account all the neighborhoods of the 
phase space and at the same time explain how the 
neighborhood evolve from y (n) to a whole fam-
ily of points about y (n+1). Use of the informa-
tion about the phase space in the simulation of 
the evolution of some physical (geophysical etc.) 
process in time can be regarded as a fundamental 
element in the simulation of random processes. 

In terms of the modern theory of neural sys-
tems, and neuro-informatics (e.g. [11]), the pro-
cess of modelling the evolution of the system 
can be generalized to describe some evolutionary 
dynamic neuro-equations (miemo-dynamic equa-
tions). Imitating the further evolution of a com-
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plex system as the evolution of a neural network 
with the corresponding elements of the self-study, 
self- adaptation, etc., it becomes possible to sig-
nificantly improve the prediction of evolutionary 
dynamics of a chaotic system. Considering the 
neural network with a certain number of neurons, 
as usual, we can introduce the operators Sij synap-
tic neuron to neuron ui uj, while the corresponding 
synaptic matrix is reduced to a numerical matrix 
strength of synaptic connections: W = | | wij | |. 
The operator is described by the standard activa-
tion neuro-equation determining the evolution of 
a neural network in time:
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where 1<i<N. 
From the point of view of the theory of chaotic 

dynamical systems, the state of the neuron (the 
chaos-geometric interpretation of the forces of 
synaptic interactions, etc.) can be represented by 
currents in the phase space of the system and its 
the topological structure is obviously determined 
by the number and position of attractors. To de-
termine the asymptotic behavior of the system it 
becomes crucial a information aspect of the prob-
lem, namely, the fact of being the initial state to 
the basin of attraction of a particular attractor. 

Modelling each physical attractor by a re-
cord in memory, the process of the evolution of 
neural network, transition from the initial state 
to the (following) the final state is a model for 
the reconstruction of the full record of distorted 
information, or an associative model of pattern 
recognition is implemented.  The domain of at-
traction of attractors are separated by separatrices 
or certain surfaces in the phase space. Their struc-
ture, of course, is quite complex, but mimics the 
chaotic properties of the studied object. Then, as 
usual, the next step is a natural construction pa-
rameterized nonlinear function F (x, a), which 
transforms:  

y(n) →     y(n + 1) = F(y(n), a),

and then to use the different ( including neural 
network) criteria for determining the parameters 
a (see below). The easiest way to implement this 
program is in considering the original local neigh-
borhood, enter the model(s) of the process occur-

ring in the neighborhood, at the neighborhood 
and by combining together these local models, 
designing on a global nonlinear model. The latter 
describes most of the structure of the attractor. 

Although, according to a classical theorem 
by Kolmogorov-Arnold -Moser, the dynamics 
evolves in a multidimensional space, the size and 
the structure of which is predetermined by the ini-
tial conditions, this, however, does not indicate a 
functional choice of model elements in full com-
pliance with the source of random data. One of 
the most common forms of the local model is the 
model of the Schreiber type [3] (see also [17-20]). 

Nonlinear modelling of chaotic processes can 
be based on the concept of a compact geometric 
attractor, which evolve with measurements. Since 
the orbit is continually folded back on itself by the 
dissipative forces and the non-linear part of the 
dynamics, some orbit points yr(k), r = 1, 2, …, NB 
can be found in the neighbourhood of any orbit 
point y(k), at that the points yr(k) arrive in the 
neighbourhood of y(k) at quite different times 
than k. Then one could build the different types 
of interpolation functions that take into account 
all the neighborhoods of the phase space, and ex-
plain how these neighborhoods evolve from y (n) 
to a whole family of points about y (n + 1). Use of 
the information about the phase space in model-
ling the evolution of the physical process in time 
can be regarded as a major innovation in the mod-
elling of chaotic processes.

This concept can be achieved by construct-
ing a parameterized nonlinear function F(x, a), 
which transform y(n) to y(n+1)=F(y(n), a), and 
then using different criteria for determining the 
parameters a. Further, since there is the notion of 
local neighborhoods, one could  create a model 
of the process occurring in the neighborhood, 
at the neighborhood and by combining together 
these local models to construct a global nonlinear 
model that describes most of the structure of the 
attractor.

As shown Schreiber [3], the most common 
form of the local model is very simple:
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where D n - the time period for which a forecast . 
The coefficients )(k

ja , may be determined 
by a least-squares procedure, involving only 
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points s(k) within a small neighbourhood around 
the reference point. Thus, the coefficients will 
vary throughout phase space. The fit procedure 
amounts to solving (dA + 1) linear equations for 
the (dA + 1) unknowns. When fitting the parame-
ters a, several problems are encountered that seem 
purely technical in the first place but are related to 
the nonlinear properties of the system. If the sys-
tem is low-dimensional, the data that can be used 
for fitting will locally not span all the available 
dimensions but only a subspace, typically. There-
fore, the linear system of equations to be solved 
for the fit will be ill conditioned. However, in the 
presence of noise the equations are not formally 
ill-conditioned but still the part of the solution 
that relates the noise directions to the future point 
is meaningless .Other modelling techniques are 
described, for example, in [3,10, 17-20].

Assume the functional form of the display is 
selected, wherein the polynomials used or other 
basic functions. Now, we define a characteristic 
which is a measure of the quality of the curve fit 
to the data and determines how accurately match 
y (k + 1) with F (y (k), a), calling it by a local 
deterministic error:

 
           eD(k) = y(k + 1) - F(y(k), a).             (3)

The cost function for this error is called W (e). 
If the mapping F (y, a), constructed by us, is local, 
then one has for each adjacent to y (k) point, y (r) 
(k) (r = 1, 2, ..., NB),

        )(r
Dε (k) = y(r, k + 1) - F(y(r)(k), a),    (4)

where y (r, k + 1) - a point in the phase space 
which evolves y (r, k). To measure the quality of 
the curve fit to the data, the local cost function is 
given by

                 
[ ]∑

∑

=

=

−

ε
=ε

B

B

N

r

N

r

r
D

krk

k
kW

1

2

1

2)(

),()(

)(
),(

yy
           (5)

and the parameters identified by minimizing W 
(e, k), will depend on a.

Furthermore, formally the neural network al-
gorithm is launched, in particular, in order to make 
training  the neural network system equivalent to 
the reconstruction and interim forecast the state 

of the neural network (respectively, adjusting the 
values of the coefficients). The starting point is a 
formal knowledge of the time series of the main 
dynamic parameters of a chaotic system, and 
then to identify the state vector of the matrix of 
the synaptic interactions ||wij|| etc. Of course, the 
main difficulty here lies in the implementation of 
the process of learning neural network to simulate 
the complete process of change in the topological 
structure of the phase space of the system and use 
the output results of the neural network to adjust 
the coefficients of the function display. 

Further we consider implemetatiom of the 
quantum neural networks algorithm into general 
scheme of studying chaotic dynamics. The basic 
aspects of theory of the photon echo based neural 
networks are stated previously (see, for example, 
[10,11, 18,21,22]). So here we mention only the 
essential elements. Photon echo is a nonlinear 
optical effect, in fact this is the phenomenon of 
the four wave interaction in a nonlinear medium 
with a time delay between the laser pulses. One 
promising approach to the realization of an quan-
tum  neural network is proposed in refs. [11,18]. 
We have used a  software package for numeri-
cal modeling of the dynamics of the photon echo 
neural network, which imitates evolutionary dy-
namics of the complex system.  It has the fol-
lowing key features: multi-layering, possibility 
of introducing training, feedback and controlled 
noise. There are possible the different variants of 
the connections matrix determination and binary 
or continuous sigmoid response (and so on) of the 
model neurons. In order to imitate a tuition pro-
cess we have carried out numerical simulation of 
the neural networks  for recognizing a series of 
patterns (number of layers  N=5, number of im-
ages р=640; the error function: 

                                                                      (6)

where O(p,k) – neural networks output k for im-
age p and t(p,k) is the trained image р for output 
к; SSE is determined from a procedure of minimi-
zation; the output error is  RMS=sqrt(SSE/Pmax);  
As neuronal function there is used function of 
the form: )]exp(1/[1)( xxf δ−+= . In our calculation 
there is tested the function  f(x,T)=exp[(xT)4] too. 

The result of the PC simulation (with using our 
neural networks package NNW-13-2003 [11]) of 

the dynamics of the photon echo neural 
network, which imitates evolutionary 
dynamics of the complex system.  It has the 
following key features: multi-layering, 
possibility of introducing training, feedback 
and controlled noise. There are possible the 
different variants of the connections matrix 
determination and binary or continuous 
sigmoid response (and so on) of the model 
neurons. In order to imitate a tuition process 
we have carried out numerical simulation of 
the neural networks  for recognizing a series 
of patterns (number of layers  N=5, number 
of images р=640; the error function:  
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where O(p,k)   neural networks output k for 
image p and t(p,k) is the trained image р for 
output к; SSE is determined from a procedure 
of minimization; the output error is  
RMS=sqrt(SSE/Pmax);  As neuronal function 
there is used function of the form: 

)]exp(1/[1)( xxf  . In our calculation there 
is tested the function  f(x,T)=exp[(xT)4] too.  

The result of the PC simulation (with 
using our neural networks package NNW-13-
2003 [11]) of dynamics of the quantum 
multilayer neural networks with the input 
sinusoidal pulses is listed in fig.1. Fig. 2 
demonstrates the results of modeling the 
dynamics of multilayer neural network for 
the case of noisy input sequence. The input 
signal was the Gaussian-like  pulse with 
adding a noise with intensity D. At a certain 
value of the parameter D (the variation 
interval .0001-0.0040 ) the network training 
process and signal playback is optimal. The 
optimal value of D is 0.0017 . A coherency 
of input and output is optimal for the 
indicated optimal noise level. Thus, a 
stochastic resonance effect is in fact 
discovered in our PC experiment. In our 
view, this phenomenon is apparently typical 
for the neural network system. Obviously, 
one should search for the same effect for 
human tuition process. Analysis of the PC 
experiment results allows to make conclusion 
about sufficiently high-quality processing the 
input signals of very different shapes and 

complexity by a photon echo based neural 
network. 
 

 
Fig. 1. The results of modeling the 

dynamics of multilayer neural networks with 
sinusoidal input pulse 
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Fig. 2. The results of modeling the 

dynamics of multilayer neural for the case of 
noisy input sequence. 

 
 

The most fundamental feature of the 
approach in development is combined using 
elements of of a  chaos theory, concept of a 
compact geometric attractor, and one of the 
neural network algorithms, or, in a more 
general definition of a model of artificial 
intelligence. The meaning of the latter is 
precisely the application of neural network to 
simulate the evolution of the attractor in 
phase space, and training most neural 
network to predict (or rather, correct) the 
necessary coefficients of the parametric form 
of functional display. Using phase space 
information on the evolution in time and 
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dynamics of the quantum multilayer neural net-
works with the input sinusoidal pulses is listed in 
fig.1. Fig. 2 demonstrates the results of modeling 
the dynamics of multilayer neural network for the 
case of noisy input sequence. The input signal was 
the Gaussian-like  pulse with adding a noise with 
intensity D. At a certain value of the parameter D 
(the variation interval .0001-0.0040 ) the network 
training process and signal playback is optimal. 
The optimal value of D is 0.0017 . A coherency 
of input and output is optimal for the indicated 
optimal noise level. Thus, a stochastic resonance 
effect is in fact discovered in our PC experiment. 
In our view, this phenomenon is apparently typi-
cal for the neural network system. Obviously, 
one should search for the same effect for human 
tuition process. Analysis of the PC experiment re-
sults allows to make conclusion about sufficiently 
high-quality processing the input signals of very 
different shapes and complexity by a photon echo 
based neural network.

Fig. 1. The results of modeling the dynamics 
of multilayer neural networks with sinusoidal 
input pulse.

The most fundamental feature of the approach 
in development is combined using elements of of 
a  chaos theory, concept of a compact geometric 
attractor, and one of the neural network algo-
rithms, or, in a more general definition of a model 
of artificial intelligence. The meaning of the lat-
ter is precisely the application of neural network 
to simulate the evolution of the attractor in phase 
space, and training most neural network to pre-
dict (or rather, correct) the necessary coefficients 
of the parametric form of functional display. Us-
ing phase space information on the evolution in 

time and results of the of quantum neural network 
modelling techniques can be considered as one of 
the fundamentally approaches in forecasting cha-
otic dynamics of the really very complex systems.

Fig. 2. The results of modeling the dynamics 
of multilayer neural for the case of noisy input 
sequence.
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И КВАНТОВЫХ НЕЙРОСЕТЕЙ 

Резюме
Нелинейное моделирование и прогнозирование хаотических эволюционных динамик слож-

ных систем может быть эффективно выполнено с использованием концепции компактных гео-
метрических аттракторов. Мы развиваем эффективный подход для анализа и прогнозирования 
нелинейной эволюционной динамики сложных систем, основанный на концепции геометриче-
ских аттракторов, методов теории хаоса и алгоритмов для моделирования квантовой нейрон-
ной сети. 
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може бути ефективно виконане з використанням концепції компактних геометричних аттрак-
торів. Ми розвиваємо ефективний підхід для аналізу й прогнозування нелінійної еволюційної 
динаміки складних систем, оснований на концепції геометричних аттракторів, методів теорії 
хаосу і алгоритмів для моделювання квантової нейронної мережі. 
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