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CALCULATION  OF AUGER-ELECTRON ENERGIES FOR SOME SOLIDS 

Within a new relativistic approach there are presented the calculation data on the 
Auger electron transition energies for solids of As and Ag. New data on the Auger-electron 
energies for atoms and solids of the As and Ag are analyzed and compared with alternative 
theoretical semiempirical equivalent core approximation results, obtained by Larkins as 
well as experimental data. There is physically reasonable agreement between theory and 
experiment.

1. Introduction

This work goes on our investigation in a field 
of theoretical Auger spectroscopy of atoms and 
solids [1,2].   In Refs. [1-7] there were presented 
the calculation data on the Auger electron transi-
tion energies for a whole number of atomic sys-
tems and solids, in particular, alkali and transient 
metals and inert gases. Here we present the Auger 
electron energy data for As and Ag.  

In eRefs. [1,2] it has been indicated that the 
Auger electron spectroscopy remains an effec-
tive method to study the solids electron structure, 
chemical composition of solid surfaces and near-
surface layers [8-12]. Sensing the Auger spectra 
in atomic systems and solids gives the important 
data for the whole number of scientific and tech-
nological applications. So called  two-step model 
is used most widely when calculating the Auger 
decay characteristics [8-14]. Since the vacancy 
lifetime in an inner atomic shell is rather long 
(about 10-17 to 10-14s), the atom ionization and the 
Auger emission are considered to be two inde-
pendent processes. In the more correct dynamic 
theory of the Auger effect [9] the processes are 
not believed to be independent from one another. 
The fact is taken into account that the relaxation 
processes due to Coulomb interaction between 
electrons and resulting in the electron distribu-
tion in the vacancy field have no time to be over 
prior to the transition. In fact, a consistent Auger 
decay theory has to take into account correctly a 
number of correlation effects, including the ener-

gy dependence of the vacancy mass operator, the 
continuum pressure, spreading of the initial state 
over a set of configurations etc. Now it is clear 
that an account of the relativistic and exchange-
correlation effects is very important for the ad-
equate description of the Auger spectra of atoms 
and solids.   This problem is partly solved in this 
paper. As basic approach to calculating the Au-
ger spectra of solids we use a new approach [1-7], 
basing on the S-matrix formalism by Gell-Mann 
and Low and relativistic perturbation theory (PT) 
formalism [13]. Earlier the method has been ap-
plied to calculation of the Auger-electron spectra 
(transitions), the ionization cross-sections of in-
ner shells in various atomic systems and solids 
[1-7]. Here we are limited only by the key topics. 
Other details can be, for example,  found in Refs. 
[1-5].

2. Method

Within the frame of the relativistic many-body 
theory , the Auger transition probability and the 
Auger line intensity are defined by the square of 
an electron interaction matrix element having the 
form: 
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to subdivision of the potential into Coulomb 
part cos||r12/r12 and Breat one, 
cos||r1212/r12. The real part of the 
electron interaction matrix element is 
determined using expansion in terms of 
Bessel functions:  
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where J is the 1st order Bessel function, 
()=2+1. The Coulomb part Qul

Q  is 
expressed in terms of the radial integrals R  

and the angular coefficients S  [13]: 
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                                                                   (4) 
where f is the large component of radial part 
of single electron state Dirac function; 
function Z and angular coefficient are defined 
in refs. [2-4,13]. The other items in (3) 
include small components of the Dirac 
functions; the sign «» means that in (3) the 
large radial component fi is to be changed by 
the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  

The Breit interaction is known to 
change considerably the Auger decay 
dynamics in some cases. The Breit part of Q 
is defined in [7,13]. The Auger width is 
obtained from the adiabatic Gell-Mann and 
Low formula for the energy shift [7]. 
Namely, according to [1,7], the Auger level 
width with a vacancy nljm  can be 
represented as:  
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The partial items of the 
 k

sum 

answer to contributions of -1()-1K 
channels resulting in formation of two new 
vacancies  and one free electron k: 
k=+–. The final expression for the 
width in the representation of jj-coupling 
scheme of single-electron moments is given 
by the corresponding sum on over all 
possible decay channels.  

The basis of the electron state 
functions was determined by the solution of 
Dirac equation (integrated numerically using 
the Runge-Cutt method). The contribution of 
the lower order PT corrections to the energies 
of the auger transitions is carried out 
according to the methodology [11,12,14]. 
The calculation of radial integrals 
ReR(1243) is reduced to the solution of a 
system of  differential equations [13]:   
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In addition,   
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real part of the electron interaction matrix ele-
ment is determined using expansion in terms of 
Bessel functions: 

                                              
                                                                      (2)

where J is the 1st order Bessel function, (l)=2l+1. 

The Coulomb part Qul
λQ  is expressed in terms of 

the radial integrals Rl  and the angular coefficients 
Sl  [13]:
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Namely, according to [1,7], the Auger level width 
with a vacancy nalajama  can be represented as: 

                                              
                                                                       (5)

       
                                                                     (6)

The partial items of the 
            

sum answer to 

contributions of a-1→(bγ)-1K channels resulting in 

formation of two new vacancies bγ and one free 
electron k: wk=wa+wb–wa. The final expression 
for the width in the representation of jj-coupling 
scheme of single-electron moments is given by 
the corresponding sum on over all possible decay 
channels. 

The basis of the electron state functions was 
determined by the solution of Dirac equation 
(integrated numerically using the Runge-Cutt 
method). The contribution of the lower order PT 
corrections to the energies of the auger transi-
tions is carried out according to the methodol-
ogy [11,12,14]. The calculation of radial integrals 
ReRl(1243) is reduced to the solution of a system 
of  differential equations [13]:  

( )( ) λ+
λ ωα=′ 21

311 rrZffy            

              ( )( ) λ+
λ ωα=′ 21

422 rrZffy    (7)                                       

[ ] ( )( ) λ−
λ ωα+=′ 12

3124213 rrZffyffyy

In addition,  
у3(∞)=ReRl(1243),
у1(∞)=Xl(13).
The formulas for the Auger decay probability 

include the radial integrals Ra(akγb), where one 
of the functions describes electron in the contin-
uum state. The energy of an electron formed due 
to a transition  jkl  is defined by the difference 
between energies of atom with a hole at j level 
and double-ionized atom at kl levels in final state:

      (8)

In order to take into account the dynamic corre-
lation effects, the equation (8) can be rewritten as:  

                                  (9)

where the item D takes into account the dy-
namic correlation effects (relaxation due to hole 
screening  with electrons etc.) To take these ef-
fects into account, the set of procedures elabo-
rated in the atomic  theory [2,3] is used. For solid 
phase, the more precise form of equation (9) is as 
follows: 
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where f is the large component of radial part 
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large radial component fi is to be changed by 
the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  

The Breit interaction is known to 
change considerably the Auger decay 
dynamics in some cases. The Breit part of Q 
is defined in [7,13]. The Auger width is 
obtained from the adiabatic Gell-Mann and 
Low formula for the energy shift [7]. 
Namely, according to [1,7], the Auger level 
width with a vacancy nljm  can be 
represented as:  
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vacancies  and one free electron k: 
k=+–. The final expression for the 
width in the representation of jj-coupling 
scheme of single-electron moments is given 
by the corresponding sum on over all 
possible decay channels.  

The basis of the electron state 
functions was determined by the solution of 
Dirac equation (integrated numerically using 
the Runge-Cutt method). The contribution of 
the lower order PT corrections to the energies 
of the auger transitions is carried out 
according to the methodology [11,12,14]. 
The calculation of radial integrals 
ReR(1243) is reduced to the solution of a 
system of  differential equations [13]:   
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where J is the 1st order Bessel function, 
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the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  
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width in the representation of jj-coupling 
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by the corresponding sum on over all 
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functions was determined by the solution of 
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where J is the 1st order Bessel function, 
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expressed in terms of the radial integrals R  

and the angular coefficients S  [13]: 
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where f is the large component of radial part 
of single electron state Dirac function; 
function Z and angular coefficient are defined 
in refs. [2-4,13]. The other items in (3) 
include small components of the Dirac 
functions; the sign «» means that in (3) the 
large radial component fi is to be changed by 
the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  

The Breit interaction is known to 
change considerably the Auger decay 
dynamics in some cases. The Breit part of Q 
is defined in [7,13]. The Auger width is 
obtained from the adiabatic Gell-Mann and 
Low formula for the energy shift [7]. 
Namely, according to [1,7], the Auger level 
width with a vacancy nljm  can be 
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channels resulting in formation of two new 
vacancies  and one free electron k: 
k=+–. The final expression for the 
width in the representation of jj-coupling 
scheme of single-electron moments is given 
by the corresponding sum on over all 
possible decay channels.  

The basis of the electron state 
functions was determined by the solution of 
Dirac equation (integrated numerically using 
the Runge-Cutt method). The contribution of 
the lower order PT corrections to the energies 
of the auger transitions is carried out 
according to the methodology [11,12,14]. 
The calculation of radial integrals 
ReR(1243) is reduced to the solution of a 
system of  differential equations [13]:   
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where J is the 1st order Bessel function, 
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and the angular coefficients S  [13]: 
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where f is the large component of radial part 
of single electron state Dirac function; 
function Z and angular coefficient are defined 
in refs. [2-4,13]. The other items in (3) 
include small components of the Dirac 
functions; the sign «» means that in (3) the 
large radial component fi is to be changed by 
the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  

The Breit interaction is known to 
change considerably the Auger decay 
dynamics in some cases. The Breit part of Q 
is defined in [7,13]. The Auger width is 
obtained from the adiabatic Gell-Mann and 
Low formula for the energy shift [7]. 
Namely, according to [1,7], the Auger level 
width with a vacancy nljm  can be 
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channels resulting in formation of two new 
vacancies  and one free electron k: 
k=+–. The final expression for the 
width in the representation of jj-coupling 
scheme of single-electron moments is given 
by the corresponding sum on over all 
possible decay channels.  

The basis of the electron state 
functions was determined by the solution of 
Dirac equation (integrated numerically using 
the Runge-Cutt method). The contribution of 
the lower order PT corrections to the energies 
of the auger transitions is carried out 
according to the methodology [11,12,14]. 
The calculation of radial integrals 
ReR(1243) is reduced to the solution of a 
system of  differential equations [13]:   
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In addition,   

у3()=ReR(1243), 

у1()=X(13). 
The formulas for the Auger decay probability 
include the radial integrals R(k), where 
one of the functions describes electron in the 
continuum state. The energy of an electron 
formed due to a transition  jkl  is defined by 
the difference between energies of atom with 
a hole at j level and double-ionized atom at kl 
levels in final state: 
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In order to take into account the 

dynamic correlation effects, the equation (8) 
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where the item  takes into account the 
dynamic correlation effects (relaxation due to 
hole screening  with electrons etc.) To take 
these effects into account, the set of 
procedures elaborated in the atomic  theory 
[2,3] is used. For solid phase, the more 
precise form of equation (9) is as follows:  
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where Es is a correction for the binding 
energy change in the solid; Rrel, the same for 
out-of-atom relaxation; e takes into account 
the work of output. Other details can be 
found in Refs. [1-7]. 
 

3. Some results 
In table 1 we present our calculation 

data on Auger-electron energies for As and 
Ag (column B) and also the semi-empirical 
method under Larkins’ equivalent core 
approximation (from [8,9] (column A) as 
well as experimental data [2]. The calculation 
accuracy using the Larkins’ method is within 
about 2a few V as an average. As earlier 

calculation show, our  approach provides 
more accurate results that is due to a 
considerable extent to more correct 
accounting for the exchange-correlation 
effects. Especially physically reasonable 
accuracy has reached for alkali and alkali-
earth elements. At the same time atoms of the 
transient metals are related to significantly 
more complex systems and a role of different 
exchange-correlation effects is of a critical 
importance. However, we believe that an 
approach used can be improved at this case 
too.  

Table 1. Experimental and theoretical data 
for Auger electron energy: Exp-experiment;  
А, semi-empirical method - [8,9]; B- present 

paper; 
 
Solid Auger line Exp Theory: 

A 
Theory: 

D 
As L3M4,5M4,5 1G4 1226,4 1227,1 1226,6 
Ag M5N4,5N4,5 1G4 353.4 358.8 354.8 
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accuracy has reached for alkali and alkali-
earth elements. At the same time atoms of the 
transient metals are related to significantly 
more complex systems and a role of different 
exchange-correlation effects is of a critical 
importance. However, we believe that an 
approach used can be improved at this case 
too.  
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for Auger electron energy: Exp-experiment;  
А, semi-empirical method - [8,9]; B- present 
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у1()=X(13). 
The formulas for the Auger decay probability 
include the radial integrals R(k), where 
one of the functions describes electron in the 
continuum state. The energy of an electron 
formed due to a transition  jkl  is defined by 
the difference between energies of atom with 
a hole at j level and double-ionized atom at kl 
levels in final state: 
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In order to take into account the 

dynamic correlation effects, the equation (8) 
can be rewritten as:   
                                   

);,()()()(),( 1212
J

S
J

S
A LlklEkEjELjklE                                 

                                                                  (9) 
where the item  takes into account the 
dynamic correlation effects (relaxation due to 
hole screening  with electrons etc.) To take 
these effects into account, the set of 
procedures elaborated in the atomic  theory 
[2,3] is used. For solid phase, the more 
precise form of equation (9) is as follows:  
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where Es is a correction for the binding 
energy change in the solid; Rrel, the same for 
out-of-atom relaxation; e takes into account 
the work of output. Other details can be 
found in Refs. [1-7]. 
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about 2a few V as an average. As earlier 

calculation show, our  approach provides 
more accurate results that is due to a 
considerable extent to more correct 
accounting for the exchange-correlation 
effects. Especially physically reasonable 
accuracy has reached for alkali and alkali-
earth elements. At the same time atoms of the 
transient metals are related to significantly 
more complex systems and a role of different 
exchange-correlation effects is of a critical 
importance. However, we believe that an 
approach used can be improved at this case 
too.  

Table 1. Experimental and theoretical data 
for Auger electron energy: Exp-experiment;  
А, semi-empirical method - [8,9]; B- present 

paper; 
 
Solid Auger line Exp Theory: 

A 
Theory: 

D 
As L3M4,5M4,5 1G4 1226,4 1227,1 1226,6 
Ag M5N4,5N4,5 1G4 353.4 358.8 354.8 

 
References 

1. Nikola L.V., Ignatenko A.V., Shakhman 
A.N., Relativistic theory of Auger (auto-
ionization) decay of excited states in 
spectrum of multicharged ion// 
Photoelectronics.- 2010.-N19.-P.61-64. 

2. Nikola L.V., Resonant Auger spectro-
scopy of the atoms of inert gases //Photo-
electronics.-2011.-Vol.20.-P.104-108. 

3. Svinarenko A.A., Nikola L.V., Prepelitsa 
G.P., Tkach T., Mischenko E., The Auger 
(autoionization) decay of excited  states 
in spectra of multicharged ions: 
Relativistic theory//Spectral Lines Shape 
(AIP, USA).-2010.-Vol.16.-P.94-98. 

4. Ambrosov S.V., Glushkov A.V., Nikola 
L.V., Sensing the Auger spectra for 
solids: New quantum approach// Sensor 
Electr. and Microsyst. Techn.-2006.-N3.-
P.46-50. 

5. Nikola L.V., Quantum calculation of 
Auger spectra for Na, Si  atoms and 



169

relaxation; eФ takes into account the work of out-
put. Other details can be found in Refs. [1-7].

3. Some results

In table 1 we present our calculation data on 
Auger-electron energies for As and Ag (column 
B) and also the semi-empirical method under Lar-
kins’ equivalent core approximation (from [8,9] 
(column A) as well as experimental data [2]. The 
calculation accuracy using the Larkins’ method is 
within about 2a few V as an average. As earlier 
calculation show, our  approach provides more ac-
curate results that is due to a considerable extent 
to more correct accounting for the exchange-cor-
relation effects. Especially physically reasonable 
accuracy has reached for alkali and alkali-earth 
elements. At the same time atoms of the transient 
metals are related to significantly more complex 
systems and a role of different exchange-correla-
tion effects is of a critical importance. However, 
we believe that an approach used can be improved 
at this case too. 

Table 1. Experimental and theoretical data for 
Auger electron energy: Exp-experiment; 

А, semi-empirical method - [8,9]; B- present 
paper;

Solid Auger line Exp Theory: 
A

Theory: 
D

As L3M4,5M4,5 
1G4

1226,4 1227,1 1226,6

Ag M5N4,5N4,5 
1G4

353.4 358.8 354.8
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CALCULATION  OF AUGER-ELECTRON ENERGIES FOR SOME SOLIDS 

Abstract
Within a new relativistic approach there are presented the calculation data on the Auger electron 

transition energies for solids of As and Ag. New data on the Auger-electron energies for atoms and 
solids of the As and Ag are analyzed and compared with alternative theoretical semiempirical equiva-
lent core approximation results , obtained by Larkins as well as experimental data. There is physically 
reasonable agreement between theory and experiment.
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РАСЧЕТ ЭНЕРГИЙ ОЖЕ-ЭЛЕКТРОНОВ ДЛЯ ТВЕРДЫХ ТЕЛ

Резюме
В рамках нового релятивистского подхода выполнен расчет энергий Оже переходов для ряда 

твердых тел. Новые данные по Оже-электронным энергиям для As и Ag анализируются и срав-
ниваются с альтернативными теоретическими полуэмпирическими данными, полученными в 
приближении эквивалентного остова Larkins, а также экспериментальными результатами.. По-
лучено достаточно хорошее согласие теории и эксперимента.
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РОЗРАХУНОК ЕНЕРГІЙ ОЖЕ ЕЛЕКТРОНІВ ДЛЯ ТВЕРДИХ ТІЛ

Резюме
В межах нового релятивістського підходу виконано розрахунок енергій Оже переходів для 

ряду твердих тіл. Нові дані по Оже-електронним енергіям для As і Ag аналізуються і порівню-
ються з альтернативними теоретичними напівемпіричними даними, отриманими у наближенні 
еквівалентного остову Larkins а також експериментальними результатами. Получено достатньо 
добре узгодження теорії та експерименту..

Ключові слова: Оже-спектроскопія,  атоми, тверді тела


