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ATOM OF HYDROGEN AND WANNIER-MOTT EXCITON 
IN CROSSED ELECTRIC  AND MAGNETIC FIELDS

Spectroscopy of atoms in the crossed external electric and magnetic fields is 
investigated on the basis of the operator perturbation theory. The data for ground 
state energies of the hydrogen atom in sufficiently weak crossed external electric 
and magnetic fields are calculated. Generalization of the method on a case of the 
Wannier-Mott excitons in the bulk semiconductors in a case of the crossed fields is 
given.   

1. This work goes on our investigations of the 
multi-electron atomic systems and excitons in 
semiconductrs in an external electric field (the 
Stark effect) [1-17]. The remarkable Stark effect 
has a long history and until recently it was be-
lieved that the Stark effect is fully understood and 
fundamental problems remained (look [1-16]).  
However, an observation of the Stark effect in a 
constant (DC) electric field near threshold in hy-
drogen and alkali atoms led to the discovery of 
resonances extending into the ionization continu-
um by Glab et al and Freeman et al (c.f.[1]). Cal-
culation of the characteristics of these resonances 
as well as the Stark resonances in the strong elec-
tric field and crossed electric and magnetic fields  
remains very important problem of as modern 
atomic physics as physics of semiconductors 
(speech is about excitons in bulk semiconductors, 
quantum dots , wires etc.). 

It should be noted that the same class of prob-
lems has been arisen in a physics of  semicon-
ductors (c.f.[14-17]). It is well known that the 
availability of excitons in semiconductors re-
sulted experimentally in the special form of the 
main absorption band edge and appearance of 
discrete levels structure (f.e. hydrogen-like spec-
trum in Cu2O). Beginning from known papers of 

Gross-Zaharchenya, Thomas and Hopfield et al 
(c.f.[13-17]), a calculation procedure of the Stark 
effect for exciton spectrum attracts a deep inter-
est permanently.  Very interesting physics occurs 
in a case of the excitons in quantum dots, wires 
etc, where the other geometry and energetics in 
comparison with the bulk semiconductor makes 
the field effect more intrigues. The exciton states 
in the quantum dots have been studied in a num-
ber of papers and have been observed by photo-
luminescence experiments (c.f. [14-17]). Natu-
rally, the electronic states in quantum dots (wires) 
depends on either the confining potential and the 
interacting force between the particles. Now the 
electric field effect on the electron-hole states and 
on the confined excitonic states is often referred 
to the quantum confined Stark effect. In this pa-
per we are interested by spectroscopy of atoms in 
the crossed external electric and magnetic fields. 
Method studying is based on the operator pertur-
bation theory  and analysis of the level statistics 
in spectra. Generalization of method on a case of 
the Wannier-Mott excitons in the  bulk semicon-
ductors is given.    

2. As our approach to strong field DC Stark ef-
fect was presented in a series of papers (see, for 
example, [1-6]), here we are limited only by the 
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key aspects. According to [1,2], the essence of 
operator perturbation theory approach is the in-
clusion of the well known method of “distorted 
waves approximation” in the frame of the formal-
ly exact perturbation theory. According to [2,3], 
the Schrödinger equation for the electronic eigen-
function taking into account the uniform DC elec-
tric field (the field strength is F)and the field of 
the nucleus (Coulomb units are used: a unit is h2 

/Ze2 m and a unit of  mZ2 e4 /h2 for energy) looks 
like:

    [-(1 - N/Z) / r + F z - 0,5Δ - E ] ψ = 0    (1)

where  E is the electronic energy, Z — charge of 
nucleus, N —  the number of electrons in atomic 
core. Our approach allow to use more adequate 
forms for the core potential (c.f.[25-27]). Accord-
ing to standard quantum defect theory (c.f.[3]), 
relation between quantum defect value μl, elec-
tron energy E and principal quantum number n 
is: μl=n-z*(-2E)-1/2. As it is known, in an electric 
field all the electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, parabol-
ic, azimuthal: n=n1+ n2+m+1). Then the quan-
tum defect in the parabolic co-ordinates n(n1n2m) 
is connected with the quantum defect value of the 
free (F=0) atom by the following relation [3]:  

After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g: 

coupled through the constraint on the separation 
constants: β1+β2=1.

For the uniform electric field  F(t) =F. In ref. 
[11], the uniform electric field ε in  (3) and (4)  
was  substituted  by  model function  F(t) with pa-
rameter t (t = 1.5 t2) . Here we use similar  func-
tion, which satisfies to necessary asymptotic con-
ditions (c.f.[11,12]) :  
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Potential energy in equation (4) has the bar-
rier. Two turning points for the classical motion 
along the η axis, t1 and t2 , at a given energy E  
are the  solutions  of  the   quadratic equation   
(β = β1, E = E0 ). It is necessary to know two ze-
roth order EF of the H0: bound state function YEb 
(e, n, j) and scattering state function YEs (e, h, j) 
with the same EE in order to calculate the width 
G  of  the concrete quasi-stationary state in the 
lowest PT order. Firstly, one would have to define 
the EE of the expected bound state. It is the well 
known problem of states quantification in the 
case of the penetrable barrier.  We solve the (2, 3) 
system here with the total  Hamiltonian H  using 
the conditions [11]:   

These two conditions quantify the bounding  
energy E, with separation constant b1 . The fur-
ther procedure for this two-dimensional eigen-
value problem results in solving of the system 
of the ordinary  differential equations(2, 3) with 
probe pairs of E, b1. The bound state EE, eigen-
value b1 and EF for the zero order Hamiltonian H0 
coincide with those for the total Hamiltonian H at  
e ⇒ 0, where all the states can be classified due 
to quantum numbers: n, n1, l , m  (principal, para-
bolic, azimuthal) that are connected with E, b1, 
m by the well known expressions.. The scattering 
states’ functions must be orthogonal to the above 
defined bound state functions and to each other. 
According to the OPT ideology [11,12], the fol-
lowing form of gE's  :is possible:

/Ze2 m and a unit of  mZ2 e4 /h2 for energy) 
looks like: 
 
    [-(1 - N/Z) / r + F z - 0,5 - E ]  = 0    (1) 
 
where  E is the electronic energy, Z — charge 
of nucleus, N —  the number of electrons in 
atomic core. Our approach allow to use more 
adequate forms for the core potential (c.f.[25-
27]). According to standard quantum defect 
theory (c.f.[3]), relation between quantum 
defect value l, electron energy E and 
principal quantum number n is: l=n-z*(-2E)-

1/2. As it is known, in an electric field all the 
electron states can be classified due to 
quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  

f + 
| |m

t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . Here we 
use similar  function, which satisfies to 
necessary asymptotic conditions (c.f.[11,12]) :   
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Potential energy in equation (4) has the barrier. 
Two turning points for the classical motion 
along the  axis, t1 and t2 , at a given energy E  
are the  solutions  of  the   quadratic equation  
( = 1, E = E0 ). It is necessary to know two 
zeroth order EF of the H0: bound state function 
Eb (  ) and scattering state function Es 
(  ) with the same EE in order to calculate 
the width G  of  the concrete quasi-stationary 
state in the lowest PT order. Firstly, one would 
have to define the EE of the expected bound 
state. It is the well known problem of states 
quantification in the case of the penetrable 
barrier.  We solve the (2, 3) system here with 
the total  Hamiltonian H  using the conditions 
[11]:    

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
3.   In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation [20,21] for an atomic 
system in crossed fields and operator 
perturbation theory [10]. For definiteness, we 
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atomic core. Our approach allow to use more 
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27]). According to standard quantum defect 
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by the following relation [3]:  
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After separation of variables, equation (1) in 
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the system of two equations for the  functions f 
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separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
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have to define the EE of the expected bound 
state. It is the well known problem of states 
quantification in the case of the penetrable 
barrier.  We solve the (2, 3) system here with 
the total  Hamiltonian H  using the conditions 
[11]:    

f(t) 0 at t   
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energy E, with separation constant 1 . The 
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equations(2, 3) with probe pairs of E, 1. The 
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[11,12], the following form of gEs  :is possible: 
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with fE's , and g1(t)  satisfying the differential equa-
tions (2) and (3). The function g2(t) satisfies the 
non-homogeneous differential equation, which 
differs from (3) only by the right hand term, dis-
appearing at t ⇒ ∞. 

3. In Ref, [7] it has been presented  ap-
proach, based on solution of the 2-dimensional 
Schrödinger equation [20,21] for an atomic sys-
tem in crossed fields and operator perturbation 
theory [10]. For definiteness, we consider a dy-
namics of the complex non-coulomb atomic sys-
tems in a static magnetic and electric fields. The 
hamiltonian of the multi-electron atom in a static 
magnetic and electric fields is (in atomic units) as 
follows: 

)()2/1(

)8/1(2/)/(2/1

2

22222

rVFzp

BBllpH

z

zz

+++

++++= ρρρ

         (7)

where the electric field F and magnetic field 
B are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35×105T, 
1a.u.F=5,144×106 kV/cm. If one consider only 
the m=0 state, thus  lz=0; V(r )  is a one-electron 
model potential, which can be in principle choos-
ed in the standard form for multielectron atom; 
naturally, it results in the usual Coulomb potential 
for hydrogen one. For solution of the Schrödinger 
equation with hamiltonian equations (7) we con-
structed the finite differences scheme which is in 
some aspects similar to method [7]. An infinite 
region is exchanged by a rectangular  region:  

0<ρ< ρL , 0<z< zL . It has sufficiently large size; 

inside it a rectangular uniform grid with steps ρh , 

zh was constructed. The external boundary condi-
tion, as usually, is: .0)( =/∂Ψ∂ rn  The knowledge 
of the asymptotic behaviour of wave function in 
the infinity allows to get numeral estimates for ρL
, zL . A wave function has an asymptotic of the 
kind as: exp[-(-2E)1/2r], where (-E) is the ioniza-
tion energy from stationary state to lowest Lan-
dau level. Then L can be estimated as L~9(-2E)-1/2. 
The more exact estimate is found empirically. The 

difference scheme is constructed as follows. The 
three-point symmetric differences scheme is used 
for second derivative on z. The derivatives on ρ 
are approximated by (2m+1)-point symmetric 
differences scheme with the use of the Lagrange 
interpolation formula differentiation. The eigen-
values of hamiltonian are calculated by means of 
the inverse iterations method. The corresponding 
system of inhomogeneous equations is solved by 
the Thomas method. To calculate the values of 
the width G for resonances in spectra of atomic 
system in crossed electric and magnetic field one 
can use the modified operator perturbation theory 
method (see details in ref.[10,20]). Note that the 
imaginary part of the state energy in the lowest 
PT order is defined as follows:  

                                                                  (10)

with the total Hamiltonian of system in an electric 
and magnetic field. The state functions YEb and 
YEs are assumed to be normalized to unity and by 
the d(k -k')-condition, accordingly. Other calcula-
tion details can be found in ref. [7]. 

The above presented method can be naturally 
generalized for description of the Stark effect for 
the Wannier-Mott excitons in the bulk semicon-
ductors [4]. Really, the Schrödinger equation for 
the Wannier-Mott exciton looks as follows: 

                                                                   (11) 

where m*
e( m*

h ) are the effective-mass for the 
electron (hole), ε  is the background dielectric 
constant. Introducing the relative coordinates: 

hrerr −=  and the momentum p with reduced 
mass p= m*

e m*
h/M (the momenta P with the total-

mass M= m*
e + m*

h ,) and center-of-mass coor-

dinate  )'/()( ****
hehhee mmrmrm ++=ρ , one could 

rewrite (15) as:
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This equation then could be solved by the method, 
described above. The other details can be found in 
Refs. [1,4]. A problem of the combined Stark and 

/Ze2 m and a unit of  mZ2 e4 /h2 for energy) 
looks like: 
 
    [-(1 - N/Z) / r + F z - 0,5 - E ]  = 0    (1) 
 
where  E is the electronic energy, Z — charge 
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quantum numbers: n, n1, n2,m (principal, 
parabolic, azimuthal: n=n1+ n2+m+1). Then 
the quantum defect in the parabolic co-
ordinates (n1n2m) is connected with the 
quantum defect value of the free (F=0) atom 
by the following relation [3]:  
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J=(n-1)/2,  M=(n1-n2+m)/2; 
 
After separation of variables, equation (1) in 
parabolic co-ordinates could be transformed to 
the system of two equations for the  functions f 
and g:  
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t
1

 f +[0,5E + (1 - N/Z) / t-  

                          -0,25 F(t)  t ] f = 0            (2) 

                 g + 
| |m

t
1

 g + [0,5E+2  / t +   

                       +0,25 F(t)  t ] g = 0              (3) 
 
coupled through the constraint on the 
separation constants: 1+2=1. 
        For the uniform electric field  F(t) =F. In 
ref. [11], the uniform electric field    in  (3) 
and (4)  was  substituted  by  model function  
F(t) with parameter  (  = 1.5 t2) . Here we 
use similar  function, which satisfies to 
necessary asymptotic conditions (c.f.[11,12]) :   
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Potential energy in equation (4) has the barrier. 
Two turning points for the classical motion 
along the  axis, t1 and t2 , at a given energy E  
are the  solutions  of  the   quadratic equation  
( = 1, E = E0 ). It is necessary to know two 
zeroth order EF of the H0: bound state function 
Eb (  ) and scattering state function Es 
(  ) with the same EE in order to calculate 
the width G  of  the concrete quasi-stationary 
state in the lowest PT order. Firstly, one would 
have to define the EE of the expected bound 
state. It is the well known problem of states 
quantification in the case of the penetrable 
barrier.  We solve the (2, 3) system here with 
the total  Hamiltonian H  using the conditions 
[11]:    

f(t) 0 at t   
(5) 

x(, E) / E = 0 
with 
x(, E) = lim

t 
 [ g2 (t) + {g(t) / k}2 ] t| m| + 1.                                                                    

These two conditions quantify the bounding  
energy E, with separation constant 1 . The 
further procedure for this two-dimensional 
eigenvalue problem results in solving of the 
system of the ordinary  differential 
equations(2, 3) with probe pairs of E, 1. The 
bound state EE, eigenvalue 1 and EF for the 
zero order Hamiltonian H0 coincide with those 
for the total Hamiltonian H at   , where all 
the states can be classified due to quantum 
numbers: n, n1, l , m  (principal, parabolic, 
azimuthal) that are connected with E, 1, m by 
the well known expressions.. The scattering 
states' functions must be orthogonal to the 
above defined bound state functions and to 
each other. According to the OPT ideology 
[11,12], the following form of gEs  :is possible: 
 
              gEs(t) = g1 (t) - z2 g2(t)                    (6)   
with fEs , and g1(t)  satisfying the differential 
equations (2) and (3). The function g2(t) 
satisfies the non-homogeneous differential 
equation, which differs from (3) only by the 
right hand term, disappearing at t .  
3.   In Ref, [7] it has been presented  approach, 
based on solution of the 2-dimensional 
Schrödinger equation [20,21] for an atomic 
system in crossed fields and operator 
perturbation theory [10]. For definiteness, we 

consider a dynamics of the complex non-
coulomb atomic systems in a static magnetic 
and electric fields. The hamiltonian of the 
multi-electron atom in a static magnetic and 
electric fields is (in atomic units) as follows:  
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where the electric field F and magnetic field B 
are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35105T, 
1a.u.F=5,144106 kV/cm. If one consider only 
the m=0 state, thus  lz=0; V(r )  is a one-
electron model potential, which can be in 
principle choosed in the standard form for 
multielectron atom; naturally, it results in the 
usual Coulomb potential for hydrogen one. For 
solution of the Schrödinger equation with 
hamiltonian equations (7) we constructed the 
finite differences scheme which is in some 
aspects similar to method [7]. An infinite 
region is exchanged by a rectangular  region: 
0<< L , 0<z< zL . It has sufficiently large 
size; inside it a rectangular uniform grid with 
steps h , zh was constructed. The external 
boundary condition, as usually, is: 

.0)(  rn  The knowledge of the 
asymptotic behaviour of wave function in the 
infinity allows to get numeral estimates 
for L , zL . A wave function has an asymptotic 
of the kind as: exp[-(-2E)1/2r], where (-E) is 
the ionization energy from stationary state to 
lowest Landau level. Then L can be estimated 
as L~9(-2E)-1/2. The more exact estimate is 
found empirically. The difference scheme is 
constructed as follows. The three-point 
symmetric differences scheme is used for 
second derivative on z. The derivatives on  
are approximated by (2m+1)-point symmetric 
differences scheme with the use of the 
Lagrange interpolation formula differentiation. 
The eigen-values of hamiltonian are calculated 
by means of the inverse iterations method. The 
corresponding system of inhomogeneous 
equations is solved by the Thomas method. To 
calculate the values of the width G for 
resonances in spectra of atomic system in 
crossed electric and magnetic field one can use 

the modified operator perturbation theory 
method (see details in ref.[10,20]). Note that 
the imaginary part of the state energy in the 
lowest PT order is defined as follows:   

                                                        
   2||2/Im  EsEb HGE        (10)                                                  

with the total Hamiltonian of system in an 
electric and magnetic field. The state functions 
Eb and Es are assumed to be normalized to 
unity and by the (k -k')-condition, 
accordingly. Other calculation details can be 
found in ref. [7].  
The above presented method can be naturally 
generalized for description of the Stark effect 
for the Wannier-Mott excitons in the bulk 
semiconductors [4]. Really, the Schrödinger 
equation for the Wannier-Mott exciton looks 
as follows:  
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where m*

e( m*
h ) are the effective-mass for the 

electron (hole),   is the background dielectric 
constant. Introducing the relative coordinates: 

hrerr   and the momentum p with reduced 
mass p= m*

e m*
h/M (the momenta P with the 

total-mass M= m*
e + m*

h ,) and center-of-mass 
coordinate  )'/()( ****

hehhee mmrmrm  , one 
could rewrite (15) as: 
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This equation then could be solved by the 

method, described above. The other details can 
be found in Refs. [1,4]. A problem of the 
combined Stark and Zeemane effects for 
quantum dots requires more detailed 
consideration.  
4. As an illustration,, we make computing  the 
energy of the ground state of the hydrogen 
atom in crossed fields and compare results 
with data obtained within analytical 
perturbation theory by TurbinerV (see. [8]) for 
the case of sufficiently weak fields. According 
TurbinerV, the expansion for the energy of the 
hydrogen atom in crossed fields is as follows: 

                   _)|_(||,EEE SZ              (13) 
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where the electric field F and magnetic field B 
are taken along the z-axis in a cylindrical 
system; In atomic units: 1 a.u.B=2.35105T, 
1a.u.F=5,144106 kV/cm. If one consider only 
the m=0 state, thus  lz=0; V(r )  is a one-
electron model potential, which can be in 
principle choosed in the standard form for 
multielectron atom; naturally, it results in the 
usual Coulomb potential for hydrogen one. For 
solution of the Schrödinger equation with 
hamiltonian equations (7) we constructed the 
finite differences scheme which is in some 
aspects similar to method [7]. An infinite 
region is exchanged by a rectangular  region: 
0<< L , 0<z< zL . It has sufficiently large 
size; inside it a rectangular uniform grid with 
steps h , zh was constructed. The external 
boundary condition, as usually, is: 

.0)(  rn  The knowledge of the 
asymptotic behaviour of wave function in the 
infinity allows to get numeral estimates 
for L , zL . A wave function has an asymptotic 
of the kind as: exp[-(-2E)1/2r], where (-E) is 
the ionization energy from stationary state to 
lowest Landau level. Then L can be estimated 
as L~9(-2E)-1/2. The more exact estimate is 
found empirically. The difference scheme is 
constructed as follows. The three-point 
symmetric differences scheme is used for 
second derivative on z. The derivatives on  
are approximated by (2m+1)-point symmetric 
differences scheme with the use of the 
Lagrange interpolation formula differentiation. 
The eigen-values of hamiltonian are calculated 
by means of the inverse iterations method. The 
corresponding system of inhomogeneous 
equations is solved by the Thomas method. To 
calculate the values of the width G for 
resonances in spectra of atomic system in 
crossed electric and magnetic field one can use 

the modified operator perturbation theory 
method (see details in ref.[10,20]). Note that 
the imaginary part of the state energy in the 
lowest PT order is defined as follows:   
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with the total Hamiltonian of system in an 
electric and magnetic field. The state functions 
Eb and Es are assumed to be normalized to 
unity and by the (k -k')-condition, 
accordingly. Other calculation details can be 
found in ref. [7].  
The above presented method can be naturally 
generalized for description of the Stark effect 
for the Wannier-Mott excitons in the bulk 
semiconductors [4]. Really, the Schrödinger 
equation for the Wannier-Mott exciton looks 
as follows:  
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where m*
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h ) are the effective-mass for the 

electron (hole),   is the background dielectric 
constant. Introducing the relative coordinates: 

hrerr   and the momentum p with reduced 
mass p= m*
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h/M (the momenta P with the 

total-mass M= m*
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This equation then could be solved by the 

method, described above. The other details can 
be found in Refs. [1,4]. A problem of the 
combined Stark and Zeemane effects for 
quantum dots requires more detailed 
consideration.  
4. As an illustration,, we make computing  the 
energy of the ground state of the hydrogen 
atom in crossed fields and compare results 
with data obtained within analytical 
perturbation theory by TurbinerV (see. [8]) for 
the case of sufficiently weak fields. According 
TurbinerV, the expansion for the energy of the 
hydrogen atom in crossed fields is as follows: 
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Zeemane effects for quantum dots requires more 
detailed consideration. 

4. As an illustration,, we make computing  the 
energy of the ground state of the hydrogen atom 
in crossed fields and compare results with data 
obtained within analytical perturbation theory by 
TurbinerV (see. [8]) for the case of sufficiently 
weak fields. According TurbinerV, the expansion 
for the energy of the hydrogen atom in crossed 
fields is as follows:

                   _)|_(||,EEE SZ +=               (13)
where ESZ - the total energy of the fields F and 

B separately:

(14)

а Е║,┴ contains a previously unknown cross 
members for mutually parallel (Е║) and perpen-
dicular (Е┴) directions of fields F и В:

                 
                                                                   

Table 1 shows the values   of the energy of the 
ground state of the hydrogen atom (the following 
designations: E+E|| - energy for the case of the 
electric and magnetic fields are parallel;E+E cor-
responds to the case of the electric and magnetic 
fields are perpendicular). Since the examined 
fields are sufficiently weak, between the results of 
both calculations there is a very good agreement. 
At the same time it is clear that the perturbation 
theory in the version by Turbiner V is correct only 
for weak fields, while for strong fields it can lead 
to substantially inaccurate data. Numerical finite-
difference method can be used to calculate the 
characteristics of the atom in crossed electric and 
magnetic fields of arbitrary strength. 
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Energy values  (Ry) of the H ground state in 

electric  F (1au=5.14∙109 V/cm) and magnetic 
B (1 au.В=2.35∙105 T) fields 
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Table 1 shows the values of the energy of the 
ground state of the hydrogen atom (the 
following designations: E+E|| - energy for the 
case of the electric and magnetic fields are 
parallel;E+E corresponds to the case of the 
electric and magnetic fields are perpendicular). 
Since the examined fields are sufficiently 
weak, between the results of both calculations 
there is a very good agreement. At the same 
time it is clear that the perturbation theory in 
the version by Turbiner V is correct only for 
weak fields, while for strong fields it can lead 
to substantially inaccurate data. Numerical 
finite-difference method can be used to 
calculate the characteristics of the atom in 
crossed electric and magnetic fields of 
arbitrary strength.  
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following designations: E+E|| - energy for the 
case of the electric and magnetic fields are 
parallel;E+E corresponds to the case of the 
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weak, between the results of both calculations 
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Table 1 shows the values of the energy of the 
ground state of the hydrogen atom (the 
following designations: E+E|| - energy for the 
case of the electric and magnetic fields are 
parallel;E+E corresponds to the case of the 
electric and magnetic fields are perpendicular). 
Since the examined fields are sufficiently 
weak, between the results of both calculations 
there is a very good agreement. At the same 
time it is clear that the perturbation theory in 
the version by Turbiner V is correct only for 
weak fields, while for strong fields it can lead 
to substantially inaccurate data. Numerical 
finite-difference method can be used to 
calculate the characteristics of the atom in 
crossed electric and magnetic fields of 
arbitrary strength.  
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ATOM OF HYDROGEN AND WANNIER-MOTT EXCITON IN CROSSED ELECTRIC  
AND MAGNETIC FIELDS

Abstract
Spectroscopy of atoms in the crossed external electric and magnetic fields is investigated on the 

basis of the operator perturbation theory. The data for ground state energies of the hydrogen atom in 
sufficiently weak crossed external electric and magnetic fields are calculated. Generalization of the 
method on a case of the Wannier-Mott excitons in the bulk semiconductors in a case of the crossed 
fields is given.    .    
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О. П. Федчук, О. В. Глушков, Я. І. Лепіх,  Г. В. Ігнатенко, Г. С. Квасікова

АТОМ ВОДНЮ І ЕКСІТОН ВАНЬЄ-МОТТА В СХРЕЩЕНИХ ЕЛЕКТРИЧНОМУ І 
МАГНІТНОМУ ПОЛЯХ

Резюме
Вивчається спектроскопія атомів в схрещених зовнішніх електричних і магнітних полях на 

основі операторної теорії збурень. Наведено результати розрахунку енергії основного стану 
атому водню  в достатньо слабких схрещених електричному та магнітному полях. Надано уза-
гальнення методу на випадок екситонів Ваньє-Мотта в напівпровідниках у випадку наявності 
схрещених зовнішніх полів.   

Ключові слова: атом, екситон, схрещені електричне і магнітне поля
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А. П. Федчук, А. В. Глушков, Я. И. Лепих, А. В. Ігнатенко, А. С. Квасикова

АТОМ ВОДОРОДА И ЭКСИТОН ВАНЬЕ-МОТТА В СКРЕЩЕННЫХ 
ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ

Резюме
Изучается спектроскопия атомов в скрещенных внешних электрических и магнитных полях  

на основе операторной теории возмущений. Приведены результаты расчета энергии основного 
состояния атому водорода в достаточно слабых скрещенных электрическом и магнитном по-
лях. Дано обобщение метода на случай экситонов Ванье-Мотта в полупроводниках в случае 
наличия скрещенных внешних полей.

Ключевые слова: атом, экситон, скрещенные электрическое и магнитное поля  


