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RELATIVISTIC THEORY OF SPECTRA OF HEAVY PIONIC ATOMS 
WITH ACCOUNT OF  STRONG PION-NUCLEAT INTERACTION 
EFFECTS: NEW DATA FOR 175Lu, 205Tl, 202Pb,

New relativistic method of the Klein-Gordon-Fock equation with an generalized pion-
nuclear potential is used to determine the transition energies with accounting for the strong 
pion-nuclear interactions effects in spectroscopy of some heavy pionic atoms. As example, 
there is carried out studying the Coulomb, nuclear and strong interaction contributions into 
the 4f-3d, 5g-4f transitions energies for the 175Lu, 205Tl, 202Pb pionic atoms.

1.  Introduction

In papers [1-3] we have developed a new rela-
tivistic method of the Klein-Gordon-Fock equa-
tion with an generalized pion-nuclear potential 
to determine transition energies in spectroscopy 
of light, middle and heavy pionic atoms with ac-
counting for the strong interaction effects. In this 
paper, which goes on our studying on spectros-
copy of pionic atoms, we firstly applied method 
[1-3] to calculating transition energies in a set of 
the heavy pionic atoms, in particular, atoms of 
175Lu, 205Tl, 202Pb, with accounting for the strong 
pion-nuclear interaction effects.

Following [1-3], let us remind that  spectros-
copy of hadron atoms has been used as a tool for 
the study of particles and fundamental properties 
for a long time. Exotic atoms are also interesting 
objects as they enable to probe aspects of atomic 
and nuclear structure that are quantitatively dif-
ferent from what can be studied in electronic or 
“normal” atoms. At present time one of the most 
sensitive tests for the chiral symmetry breaking 
scenario in the modern hadron’s physics is pro-
vided by studying the exotic hadron-atomic sys-
tems. Nowadays the transition energies in pionic 
(kaonic, muonic etc.) atoms are measured with an 
unprecedented precision and from studying spec-

tra of the hadronic atoms it is possible to investi-
gate the strong interaction at low energies meas-
uring the energy and natural width of the ground 
level with a precision of few meV [1-10].  

The strong interaction is the reason for a shift 
in the energies of the low-lying levels from the 
purely electromagnetic values and the finite life-
time of the state corresponds to an increase in the 
observed level width. The possible energy shifts 
caused by the pion-induced fluorescence X-rays 
were checked in the measurement of the pion 
beams at PSI in Switzerland. For a long time the 
similar experimental investigations have been 
carried out in the laboratories of Berkley, Virginia 
(USA), CERN (Switzerland).

The most known theoretical models to treat-
ing the hadronic (pionic, kaonic, muonic, antipro-
tonic etc.) atomic systems are presented in refs. 
[1-5,7,8]. The most difficult aspects of the theo-
retical modeling are reduced to the correct de-
scription of pion-nuclear strong interaction [1-3] 
as the electromagnetic part of the problem is rea-
sonably accounted for. Besides, quite new aspect 
is linked with the possible, obviously, very tiny 
electroweak and hyperfine interactions. 
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2.  Relativistic approach to pionic atoms 
spectra

As the basis’s of a new method has been pub-
lished, here we present only the key topics of an 
approach [1-3]. All available theoretical models 
to treating the hadronic (kaonic, pionic) atoms are 
naturally based on the using the Klein-Gordon-
Fock equation [2,5], which can be written as fol-
lows : 

                     (1)

where c is a speed of the light, h is the Planck con-
stant, and Ψ0(x) is the scalar wave function of the 
space-temporal coordinates. Usually one consid-
ers the central potential [V0(r), 0] approximation 
with the stationary solution:

                                                       
             )( )/=Ψ xt ϕexp(-iE  (x) ,              (2)

where )(xϕ is the solution of the stationary equa-
tion:

                             (3)

Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy e0). 
In principle, the central potential V0 naturally in-
cludes the central Coulomb potential, the vacu-
um-polarization potential, the strong interaction 
potential. 

The most direct approach to treating the strong  
interaction is provided by the well known optical 
potential model (c.g. [2]). Practically in all papers 
the central potential V0  is the sum of the following 
potentials. The nuclear potential for the spherical-

ly symmetric density ( )Rrρ  is [6,13]:

                                                                 (4)

The most popular Fermi-model approxima-

tion the charge distribution in the nucleus ( )rρ  
(c.f.[11]) is as follows:  

              (5)

where the parameter a=0.523 fm, the param-
eter с is chosen by such a way that it is true the 
following condition for average-squared radius: 

The effective algorithm for its definition is 
used in refs. [12] and reduced to solution of the 
following system of the differential equations: 

                             

with the corresponding boundary conditions.  An-
other, probably, more consistent approach is in 
using the relativistic mean-field (RMF) model, 
which been designed as a renormalizable meson-
field theory for nuclear matter and finite nuclei 
[13].To take into account the radiation correc-
tions, namely, the effect of the vacuum polariza-
tion we have used the generalized  Ueling-Serber 
potential with modification to take into account 
the high-order radiative corrections [5,12]. 

The most difficult aspect is an adequate ac-
count for the strong interaction. In the pion-nu-
cleon state interaction one should use the follow-
ing pulse approximation expression for scattering 
amplitude of a pion on the “i” nucleon [2,3]: 

( ) ( ) ( ){ } ( )0 1 0 1 ;i if r b b t c c t kk r rτ τ δ′ ′ ′ ′ ′ = + + + −   (9)

where t  and τ are the isospines of pion and nu-
cleon. The nucleon spin proportional terms of the 

kind [ ]kkσ ′  are omitted. The constants in (9) can 

be expressed through usual s-wave  ( )2Tα  and p-

wave ( )2 ,2T Jα  scattering length (T and J -isospin 
and spin of he system Nπ . The corresponding 

parameters in the Compton wave length π terms 
are as follows: 
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where c is a speed of the light, h is the Planck 
constant, and Ψ0(x) is the scalar wave 
function of the space-temporal coordinates. 
Usually one considers the central potential 
[V0(r), 0] approximation with the stationary 
solution: 
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Here E is the total energy of the system (sum 
of the mass energy mc2 and binding energy 
0). In principle, the central potential V0 
naturally includes the central Coulomb 
potential, the vacuum-polarization potential, 
the strong interaction potential.  

The most direct approach to treating 
the strong  interaction is provided by the well 
known optical potential model (c.g. [2]). 
Practically in all papers the central potential 
V0  is the sum of the following potentials. The 
nuclear potential for the spherically 
symmetric density  Rr  is [6,13]: 
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where the parameter a=0.523 fm, the 
parameter с is chosen by such a way that it is 
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with the corresponding boundary conditions.  
Another, probably, more consistent approach 
is in using the relativistic mean-field (RMF) 
model, which been designed as a 
renormalizable meson-field theory for 
nuclear matter and finite nuclei [13].To take 
into account the radiation corrections, 
namely, the effect of the vacuum polarization 
we have used the generalized  Ueling-Serber 
potential with modification to take into 
account the high-order radiative corrections 
[5,12].  

The most difficult aspect is an 
adequate account for the strong interaction. 
In the pion-nucleon state interaction one 
should use the following pulse approximation 
expression for scattering amplitude of a pion 
on the “i” nucleon [2,3]:  
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where t  and  are the isospines of pion and 
nucleon. The nucleon spin proportional terms 
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( )0 1 32 3 0.0017 .b πα α λ′ = + = −

( )0 3 1 3 0.086 .b πα α λ′ = − = −

( ) ( )3
0 33 13 31 114 2 2 3 0.208 .c πα α α α λ′ = + + + = −

( ) ( )3
1 33 13 31 112 2 3 0.184 .c πα α α α λ′ = − + − = −                              

(10)
The scattering amplitude for pion on a nucleus 

can be  further received as a coherent sum of the  
Nπ -scattering lengths. рассеяния. In approxi-

mation of the only s-wave interaction the cor-
responding potential can be written in the Dezer 
form: 

( ) ( ) ( )2 1 1 12 .N p nV r ZA a A Z A a rππ µ ρ− − − = − + − 

(11)

The s-wave lengths of the 1 pπ − -scattering  

( )1 32 3pa α α= +  и 1nπ − - scattering 3na α= ; 
scattering are introduced to Eq. (11).  Because of 

the equality between 0 1na b b′ ′= +  and  0 1pa b b′ ′= −  
(with an opposite sign) the theoretical shift of 

the s-level with 0T = ( )2A Z=  from Eq. (12) is 
much less than the observed shift. So, the more 
correct approximation must take into account the 
effects of the higher orders. 

In whole the energy of the hadronic atom is 
represented as the sum:  

            ;KG FS VP NE E E E E≈ + + +             (12)

Here KGE -is the energy of a pion in a nucle-
us ( ),Z A  with the point-like charge (dominative 
contribution in (12)), FSE  is the contribution due 
to the nucleus finite size effect,  VPE is the radia-
tion correction due to the vacuum-polarization 
effect, NE  is the energy shift due to the strong 
interaction NV .

The strong pion-nucleus interaction contribu-
tion can be found from the solution of the Klein-
Gordon equation with the corresponding pion-
nucleon potential.

3.  Results and conclusions

In table 1 the data on the transition energies 
in some pionic atoms of 175Lu, 205Tl, 202Pb (from. 
Refs. [4-7]): the measured values form the Berk-
ley, CERN and Virginia laboratories, the theoreti-
cal values for the  4f-3d, 5g-4f pionic transitions  
( N

thE 1  - values from the Klein-Gordon-Fock equa-
tion with the pion-nucleus potential [2]; EKGF- val-
ues from the Klein-Gordon-Fock equation with 
account of radiative corrections (our data); EKS 
– the RMF finite nuclear size contribution (our 
data), N

thE 2 - values from the Klein-Gordon-Fock 
equation with the generalized pion-nuclear poten-
tial [5] (our data). 

The analysis of the presented data indicate on 
the necessity of the further more exact experi-
mental investigations and further improvement of 
the pion-nuclear potential modelling. 

 
 
 
 
 
 
of the kind  kk   are omitted. The constants 
in (9) can be expressed through usual s-wave  
 2T  and p-wave  2 ,2T J  scattering length 
(T and J -isospin and spin of he system N . 
The corresponding parameters in the 
Compton wave length  terms are as 
follows:  

 
 0 1 32 3 0.0017 .b         

 0 3 1 3 0.086 .b         

   3
0 33 13 31 114 2 2 3 0.208 .c             

                                      
   3

1 33 13 31 112 2 3 0.184 .c                                         
(10) 

 
The scattering amplitude for pion on 

a nucleus can be  further received as a 
coherent sum of the  N -scattering lengths. 
рассеяния. In approximation of the only s-
wave interaction the corresponding potential 
can be written in the Dezer form:  
 

        
     2 1 1 12 .N p nV r ZA a A Z A a r         

    (11) 
The s-wave lengths of the 1 p  -

scattering   1 32 3pa     и 1n  - 
scattering 3na  ; scattering are introduced 
to Eq. (11).  Because of the equality between 

0 1na b b    and  0 1pa b b    (with an 
opposite sign) the theoretical shift of the s-
level with 0T   2A Z  from Eq. (12) is 
much less than the observed shift. So, the 
more correct approximation must take into 
account the effects of the higher orders.  

 
 
In whole the energy of the hadronic 

atom is represented as the sum:   
  

;KG FS VP NE E E E E                                                               
                                                              (12) 

Here KGE -is the energy of a pion in a 
nucleus  ,Z A  with the point-like charge 

(dominative contribution in (12)), FSE  is the 
contribution due to the nucleus finite size 
effect,  VPE is the radiation correction due to 

the vacuum-polarization effect, NE  is the 

energy shift due to the strong interaction NV . 
The strong pion-nucleus interaction 
contribution can be found from the solution 
of the Klein-Gordon equation with the 
corresponding pion-nucleon potential. 

3.  Results and conclusions 
In table 1 the data on the transition 

energies in some pionic atoms of 175Lu, 205Tl, 
202Pb (from. Refs. [4-7]): the measured values 
form the Berkley, CERN and Virginia 
laboratories, the theoretical values for the  4f-
3d, 5g-4f pionic transitions ( N

thE 1  - values 
from the Klein-Gordon-Fock equation with 
the pion-nucleus potential [2]; EKGF- values 
from the Klein-Gordon-Fock equation with 
account of radiative corrections (our data); 
EKS – the RMF finite nuclear size 
contribution (our data), N

thE 2 - values from the 
Klein-Gordon-Fock equation with the 
generalized pion-nuclear potential [5] (our 
data).  

Table 1. Transition energies (keV) in the spectra of some heavy pionic atoms (see text) 

Atom EEXP Berkley EEXP CERN EKGF EFS N
thE 1  N

thE 2  
Transition 4f-3d 

133Cs 560,5 1,1 562,0 1,5 556,80 -0,33 561,47 560.88 
205Tl - - - 963.920 - 968.25 

Transition 5g-4f 
175Lu - - - 427.313 - 428.80 
205Tl - 561.67 0.25 559.65 559.681 560.93  561.63 

Table 1 
Transition energies (keV) in the spectra of some heavy pionic atoms (see text)
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One can see that the contributions provided 
by the finite size effect should be accounted in 
a precise theory. Really, under availability of the 
”exact” values of the transitions energies one can 
perform the comparison of the theoretically and 
experimentally defined transition energies in the 
X-ray spectra in order to make a redefinition of 
the pion-nucleon model potential parameters us-
ing Eqs. (9)-(11). Taking into account the increas-
ing accuracy of the X-ray pionic atom spectros-
copy experiments, one can conclude that the such 
a way will make more clear the true values for 
parameters of the pion-nuclear potentials and cor-
rect the disadvantage of widely used parameter-
ization of the potentials (9)-(11). 
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