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SPECTROSCOPY AND DYNAMICS OF MULTIELECTRON ATOM 
IN A MAGNETIC FIELD: NEW APPROACH 

Spectroscopy and dynamics of multielectron atomic system in a magnetic field is numerically investigated. It is 
presented a new quantum-mechanical approach to calculating the energies and widths of some states for the multi-
electron atomic system in in a homogeneous magnetic field.  The approach is based on the numerical difference 
solution of the Schrödinger equation, the model potential method and the operator perturbation theory formalism. As 
illustration, the data for energies of the electronic excited and ground state of the lithium atom in dependence upon the 
magnetic field strength are listed and compared with available theoretical results, obtained on the basis of alternative 
Hartree-Fock method.

1. Introduction
The hydrogen atom in a constant magnetic 

field has been considered in a fairly large num-
ber of studies, however, many of the results turn 
out to be either unsuitable for specific applica-
tions or even incomplete until recently (see, for 
example, [1-5]). In the case of many-electron 
(non-hydrogen-like) atomic systems in a mag-
netic field, the situation looks dramatic enough. 
The fact is that generalizing the model to the 
case of many-electron atoms is quite problem-
atic. Traditional methods such as perturbation 
theory, models based on asymptotic expansions 
in the magnitude of the field B, quasiclassi-
cal approaches (see, [1–14]) encounter signifi-
cant problems when generalizing to the case 
of many-electron systems. Particularly acute is 
the problem of describing the dynamics of an 
atomic system in the intermediate region of 
magnetic field strengths, where it is necessary 
to consider the Coulomb and magnetic interac-
tions on an equal footing. The problem is also 
relevant for the field of strong and superstrong 
fields, where today there are no sufficiently reli-
able data on the energy characteristics of atomic 
systems in the field. On the whole, at present, 
sufficiently convenient universal data for arbi-
trary states of many-electron atomic systems are 
absent for any values   of the magnetic field B. 
Among modern methods for describing atomic 
spectroscopy in a magnetic field, a series of pa-
pers [4-18] should be distinguished, where per-
turbation theory methods, various schemes, and 
algorithms have been developed based on the 

numerical solution of the  Schrödinger equation 
in the Hartree–Fock and other approximations. 
Based on them, it was possible to obtain a lot of 
useful numerical data regarding the energies of 
various states of a number of many-electron at-
oms at various magnetic field intensities. At the 
same time, in a number of cases, as the authors 
admit [3,8], their data require clarification due to 
the neglect of correlation effects, relativistic cor-
rections, and other factors. Also relevant is the 
problem of describing the stochastic behavior of 
an atomic system in a magnetic field. It should 
be noted that various aspects of stochasticity in 
systems and the main features of quantum chaos 
that take place in the dynamics of many-electron 
atomic systems of atomic systems in a magnetic 
field are currently either partially or completely 
not studied, at least at a detailed quantitative 
level [14]. Naturally, therefore, the solution of 
the problem of a quantitative description of the 
elements of quantum chaos in the behavior of 
many-electron atomic systems in a static mag-
netic field seems extremely urgent and quite 
complicated (see [2]). 

In this paper we shortly present a new quan-
tum-mechanical approach to calculating the en-
ergies and widths of some states for the multi-
electron atomic system in in a homogeneous 
magnetic field.  The approach is based on the 
numerical difference solution of the Schröding-
er equation, the model potential method and the 
operator perturbation theory formalism.
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2. Theoretical approach
The Hamiltonian of a multielectron atom in a 

magnetic field B differs from the operator of the 
hydrogen atom by the presence of the Coulomb 
interaction operator, which naturally aggravates 
the problem of separation of variables in the 
Schrödinger equation. Introducing a cylindrical 
coordinate system ( ρ, φ, z), with the axis Oz || 
B and taking into account that the dependence 
of the wave function on the rotation angle ϕ  
around the z axis is trivial: 

                                                                           (1)

one should write the Schrödinger equation for 
the one-electron function of an atomic system 
(atomic units are used here e=h=m=1) as:

                                                                    (2)

where Vc (r) is the potential that describes the 
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. As 
the potential Vc, we use the Green-like  poten-
tial (c.g.[2]), which approximates the Hartree 
potential quite accurately:
                                                                        (3)

where function ( ) ( ) ]11exp[1 +−=Ω drHr  is the  
shielding function and H, d are the parameters 
of the potential.  The required parameters, as a 
rule, are selected from the condition of the best 
fitting of the experimental values   of the energy 
levels of free atoms (c.g. [2]). Note that a po-
tential of type (2) was used intensively in calcu-
lating the energy levels and oscillator strengths 
of various atomic systems, including Li,Be, B, 
C, N, O, F, Ne, and others (see [17-20]). To 
take into account the exchange corrections, the 
exchange potential was taken in the simplest 
Slater approximation and added to potential 
(3) [19].  The two-dimensional equation (2) is 
naturally not solved analytically in a general 
form.  The terms appearing in it: the potential 
of the Coulomb interaction, which contains  

,2/1)22( zr += ρ potential V [ 2/122 )( z+ρ ] pre-
vents the separation of variables. One could re-
write the Schrödinger equation as follows:

                                                                       (4)
                      

   

                                                                      (5)

The potential 22ρg8/1  limits the move-
ment in the direction perpendicular to the field 
direction. Similarly, in the regiong >> 1, the 
motion of an electron across a magnetic field 
is determined by the size of its cyclotron orbit, 

2/1)/( eMc=l and along the field by a modified 
Coulomb interaction, which takes into account 
the non-Coulomb character of the potential field 
in which an electron moves in a many-electron 
atom [18]. Note that calculations of multielec-
tron atomic systems with introduced potentials 
are quite well known in the literature (see [2,18-
20]); moreover, computational schemes based 
on them have been tested several times and test-
ed for a number of atoms in the free state. The 
potential (3) was successfully used in calculating 
the energies and forces of atomic oscillators of 
the 1st period of the periodic table (see review in 
[21]). For solution of the Schrödinger equation 
with hamiltonian equations (7) we constructed 
the finite differences scheme which is in some 
aspects similar to method [2]. An infinite region 
is exchanged by a rectangular  region: 0<ρ< ρL , 
0<z< zL . It has sufficiently large size; inside it a 
rectangular uniform grid with steps ρh , zh was 
constructed. The external boundary condition, 
as usually, is: .0)( =/∂Y∂ rn  The knowledge 
of the asymptotic behaviour of wave function 
in the infinity allows to get numeral estimates 
for ρL , zL . A wave function has an asymptotic 
of the kind as: exp[-(-2E)1/2r], where (-E) is the 
ionization energy from stationary state to low-
est Landau level. Then L is estimated as L~9(-
2E)-1/2. The more exact estimate is found em-
pirically. The three-point symmetric differences 
scheme is used for second derivative on z. The 
derivatives on r are approximated by (2m+1)-
point symmetric differences scheme with the 
use of the Lagrange interpolation formula dif-
ferentiation. To calculate the values of the width 
G for resonances in atomic spectra in a magnetic 
field one can use the modified operator perturba-

method and the operator perturbation theory 
formalism. 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
potential (c.g.[2]), which approximates the 
Hartree potential quite accurately: 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
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one should write the Schrödinger equation for 
the one-electron function of an atomic system 
(atomic units are used here e=h=m=1) as: 
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where Vc (r) is the potential that describes the  
effect of all other electrons on the given one. 
Naturally, it is absent for the hydrogen atom. 
As the potential Vc, we use the Green-like  
potential (c.g.[2]), which approximates the 
Hartree potential quite accurately: 
                                                                   
                         

r

rN
V c 


1                  (3) 

where function     ]11exp[1  drHr  is the  
shielding function and H, d are the parameters 
of the potential.  The required parameters, as a 
rule, are selected from the condition of the best 
fitting of the experimental values of the energy 
levels of free atoms (c.g. [2]). Note that a 
potential of type (2) was used intensively in 
calculating the energy levels and oscillator 
strengths of various atomic systems, including 
Li,Be, B, C, N, O, F, Ne, and others (see [17-
20]). To take into account the exchange 
corrections, the exchange potential was taken 
in the simplest Slater approximation and added 
to potential (3) [19].  The two-dimensional 

equation (2) is naturally not solved analytically 
in a general form.  The terms appearing in it: 
the potential of the Coulomb interaction, 
which contains  ,2/1)22( zr   potential V 
[ 2/122 )( z ] prevents the separation of 
variables. One could rewrite the Schrödinger 
equation as follows: 
 
                    H (,z)=E(,z)                 (4) 
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                                                                  (5) 
 The potential 8/1  limits the movement 
in the direction perpendicular to the field 
direction. Similarly, in the region >> 1, the 
motion of an electron across a magnetic field 
is determined by the size of its cyclotron orbit, 

2/1)/( eMc and along the field by a 
modified Coulomb interaction, which takes 
into account the non-Coulomb character of the 
potential field in which an electron moves in a 
many-electron atom [18]. Note that 
calculations of multielectron atomic systems 
with introduced potentials are quite well 
known in the literature (see [2,18-20]); 
moreover, computational schemes based on 
them have been tested several times and tested 
for a number of atoms in the free state. The 
potential (3) was successfully used in 
calculating the energies and forces of atomic 
oscillators of the 1st period of the periodic 
table (see review in [21]). For solution of the 
Schrödinger equation with hamiltonian 
equations (7) we constructed the finite 
differences scheme which is in some aspects 
similar to method [2]. An infinite region is 
exchanged by a rectangular  region: 0<< L , 
0<z< zL . It has sufficiently large size; inside it 
a rectangular uniform grid with steps h , 

zh was constructed. The external boundary 
condition, as usually, is: .0)(  rn  The 
knowledge of the asymptotic behaviour of 
wave function in the infinity allows to get 

еМ
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tion theory method (see details in Ref.[12,13]). 
Note that the imaginary part of the state energy 
in the lowest PT order is:  

                                                       
        2||2/Im >YY<== EsEb HGE p       (8)                                                 

with the total Hamiltonian of system in a  mag-
netic field. The state functions YEb and YEs are 
assumed to be normalized to unity and by the 
d(k -k’)-condition, accordingly. Other calcula-
tion details can be found in Refs. [2, 19-21]. 

3. Illustration results and conclusion
As illustration, below we present the data 

(tables 1 and 2) for energies of the electronic 
excited and ground state of the lithium atom in 
dependence upon the magnetic field strength 
(parameter g) and compared with available the-
oretical results, obtained on the basis of alterna-
tive methods. Parameter g varies within: g=B/
Bo=0.00-10, where 3332

0 / ZhcemB = . In Table 
1 there are listed the energies of the ground state 
of the lithium atom in dependence upon the pa-
rameter g. For the lithium atom there are avail-
able the results of calculations for the ground 
state and a few low-lying states of the Li atom 
at the regime of weak and intermediate fields. 
In particular, the Hartree-Fock (HF) calcula-
tion results are in the Refs. [6,7]. As the ground 
state analysis shows, in whole our data are cor-
responding to the alternative HF results, how-
ever, indeed, they lie a little lower for a weak 
field regime and more substantially lower in the 
intermediate regime of the magnetic  parameter. 
In table 2 similar data are listed for the Li ex-
cited state.

Table 1. 
Total energies (in a.u.) of the ground state of 
Li atom in a magnetic field with strength g: 
HF-mesh- the  Hartree-Fock data from [6], 

HF – data from [7], MP- this work;

g 1s22s
HF-mesh

1s22s
HF

1s22s
MP

0.000 27.4328 27.4327 27.4329
0.002 27.4338 27.4340
0.009 27.4371 27.4371 27.4373
0.020 27.4421 27.4424

0.126 27.4741 27.4739 27.4745
0.200 27.4840 27.4843
0.900 27.4250 27.4240 27.4253
1.800 27.2460 27.2446 27.2464
2.000 27.1962 27.1967
2.500 27.0562 27.0568
3.600 26.6787 26.6640 26.6793
5.000 26.0881 26.0887
5.400 25.9011 25.8772 25.9018
7.000 25.0891 25.0902

Table 2. 
Total energies (in a.u.) of the  excited state 

of the Li atom in the magnetic field with the 
strength g: HF-mesh- the  Hartree-Fock data 
from [6], HF – data from [7], MP- this work

g 1s22p-1
HF-mesh

1s22p-1
HF

1s22p-1
MP

0.000 27.3651 27.3651 27.3652 
0.002 27.3671 27.3673
0.009 27.3739 27.3738 27.3741 
0.020 27.3840 27.3843
0.126 27.4565 27.4565 27.4568 
0.200 27.4922 27.4925
0.900 27.6563 27.6563 27.6567 
1.800 27.6766 27.6747 27.6770 
2.000 27.6625 27.6631
2.500 27.6035 27.6041
3.600 27.3764 27.3627 27.3771 
5.000 26.9423 26.9430
5.400 26.7952 26.7747 26.7959 
7.000 26.1267 26.1279

The difference between the listed data can be 
explained by the partial account of electron cor-
relation corrections, which is absent in the HF 
calculation. 
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A. O. Makarova, A. A. Buyadzhi, O. V. Dubrovsky

SPECTROSCOPY AND DYNAMICS OF MULTIELECTRON ATOM 
IN A MAGNETIC FIELD: NEW APPROACH 

Summary. Spectroscopy of multielectron atomic system in a magnetic field is numerically 
investigated. It is presented a new quantum approach to calculating energies and widths of states 
for multi-electron atomic system in a homogeneous magnetic field.  The approach is based on 
numerical difference solution of the Schrödinger equation, model potential method and operator 
perturbation theory. The data for energies of electronic excited and ground state of the lithium atom 
in dependence upon the magnetic field strength are listed and compared with available theoretical 
results, obtained on the basis of alternative Hartree-Fock method.       
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А. О Макарова, А. А. Буяджи, О. В. Дубровский

СПЕКТРОСКОПИЯ И ДИНАМИКА МНОГОЭЛЕКТРОННОГО АТОМА
В МАГНИТНОМ ПОЛЕ: НОВЫЙ ПОДХОД

Резюме. Изучается спектроскопия многоэлектронных атомных систем в магнитном 
поле. Представлен новый квантовый подход к расчету энергий и ширин состояний для 
многоэлектронного атома в однородном магнитном поле. Метод основан на численном 
разностном решении уравнения Шредингера, методе модельного потенциала и операторной 
теории возмущений. Приведены расчетные данные для энергий основного и возбужденного 
состояний атома лития в зависимости от напряженности магнитного поля и проведено 
сравнение с имеющимися теоретическими результатами, полученными на основе 
альтернативного метода Хартри-Фока.

Ключевые слова: атомная система, магнитное поле, спектроскопия и динамика
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О. О. Макарова, Г. А. Буяджи, О. В. Дубровський

СПЕКТРОСКОПІЯ І ДИНАМІКА БАГАТОЕЛЕКТРОННОГО АТОМА
У МАГНІТНОМУ ПОЛІ: НОВИЙ ПІДХІД

Резюме. Вивчається спектроскопія багато електронних атомних систем в магнітному 
полі. Представлений новий квантовий підхід до розрахунку енергій і ширин станів для 
багатоелектронного атома в однорідному магнітному полі. Метод  заснований на чисельному 
різницевому рішенні рівняння Шредінгера, методі модельного потенціалу та операторній 
теорії збурень. Наведені розрахункові дані для енергій основного та збудженого станів атома 
літію в залежності від напруженості магнітного поля і проведено порівняння з наявними 
теоретичними результатами, отриманими на основі альтернативного методу Хартрі-Фока.

Ключові слова: атомна система, магнітне поле, спектроскопія та динаміка




