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SPECTROSCOPY AND DYNAMICS OF MULTIELECTRON ATOM
IN A MAGNETIC FIELD: NEW APPROACH

Spectroscopy and dynamics of multielectron atomic system in a magnetic field is numerically investigated. It is
presented a new quantum-mechanical approach to calculating the energies and widths of some states for the multi-
electron atomic system in in a homogeneous magnetic field. The approach is based on the numerical difference
solution of the Schrodinger equation, the model potential method and the operator perturbation theory formalism. As
illustration, the data for energies of the electronic excited and ground state of the lithium atom in dependence upon the
magnetic field strength are listed and compared with available theoretical results, obtained on the basis of alternative

Hartree-Fock method.

1. Introduction

The hydrogen atom in a constant magnetic
field has been considered in a fairly large num-
ber of studies, however, many of the results turn
out to be either unsuitable for specific applica-
tions or even incomplete until recently (see, for
example, [1-5]). In the case of many-electron
(non-hydrogen-like) atomic systems in a mag-
netic field, the situation looks dramatic enough.
The fact is that generalizing the model to the
case of many-electron atoms is quite problem-
atic. Traditional methods such as perturbation
theory, models based on asymptotic expansions
in the magnitude of the field B, quasiclassi-
cal approaches (see, [1-14]) encounter signifi-
cant problems when generalizing to the case
of many-electron systems. Particularly acute is
the problem of describing the dynamics of an
atomic system in the intermediate region of
magnetic field strengths, where it is necessary
to consider the Coulomb and magnetic interac-
tions on an equal footing. The problem is also
relevant for the field of strong and superstrong
fields, where today there are no sufficiently reli-
able data on the energy characteristics of atomic
systems in the field. On the whole, at present,
sufficiently convenient universal data for arbi-
trary states of many-electron atomic systems are
absent for any values of the magnetic field B.
Among modern methods for describing atomic
spectroscopy in a magnetic field, a series of pa-
pers [4-18] should be distinguished, where per-
turbation theory methods, various schemes, and
algorithms have been developed based on the

numerical solution of the Schrédinger equation
in the Hartree—Fock and other approximations.
Based on them, it was possible to obtain a lot of
useful numerical data regarding the energies of
various states of a number of many-electron at-
oms at various magnetic field intensities. At the
same time, in a number of cases, as the authors
admit [3,8], their data require clarification due to
the neglect of correlation effects, relativistic cor-
rections, and other factors. Also relevant is the
problem of describing the stochastic behavior of
an atomic system in a magnetic field. It should
be noted that various aspects of stochasticity in
systems and the main features of quantum chaos
that take place in the dynamics of many-electron
atomic systems of atomic systems in a magnetic
field are currently either partially or completely
not studied, at least at a detailed quantitative
level [14]. Naturally, therefore, the solution of
the problem of a quantitative description of the
elements of quantum chaos in the behavior of
many-electron atomic systems in a static mag-
netic field seems extremely urgent and quite
complicated (see [2]).

In this paper we shortly present a new quan-
tum-mechanical approach to calculating the en-
ergies and widths of some states for the multi-
electron atomic system in in a homogeneous
magnetic field. The approach is based on the
numerical difference solution of the Schroding-
er equation, the model potential method and the
operator perturbation theory formalism.

19



2. Theoretical approach

The Hamiltonian of a multielectron atom in a
magnetic field B differs from the operator of the
hydrogen atom by the presence of the Coulomb
interaction operator, which naturally aggravates
the problem of separation of variables in the
Schrédinger equation. Introducing a cylindrical
coordinate system ( p, ¢, z), with the axis Oz ||
B and taking into account that the dependence
of the wave function on the rotation angle ¢
around the z axis is trivial:

(1)

one should write the Schrodinger equation for
the one-electron function of an atomic system
(atomic units are used here e=h=m=1) as:
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where V_(r) is the potential that describes the
effect of all other electrons on the given one.
Naturally, it is absent for the hydrogen atom. As
the potential Vc, we use the Green-like poten-
tial (c.g.[2]), which approximates the Hartree
potential quite accurately:
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where function Q(r)=1/[Hexp(r/d—1)+1] is the
shielding function and H, d are the parameters
of the potential. The required parameters, as a
rule, are selected from the condition of the best
fitting of the experimental values of the energy
levels of free atoms (c.g. [2]). Note that a po-
tential of type (2) was used intensively in calcu-
lating the energy levels and oscillator strengths
of various atomic systems, including Li,Be, B,
C, N, O, F, Ne, and others (see [17-20]). To
take into account the exchange corrections, the
exchange potential was taken in the simplest
Slater approximation and added to potential
(3) [19]. The two-dimensional equation (2) is
naturally not solved analytically in a general
form. The terms appearing in it: the potential
of the Coulomb interaction, which contains
r=(p% + 7)1/ 2 potential V [(p? + A#)!/2] pre-
vents the separation of variables. One could re-
write the Schrodinger equation as follows:
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The potential 1/8y2p2 limits the move-
ment in the direction perpendicular to the field
direction. Similarly, in the regiony >> 1, the
motion of an electron across a magnetic field
is determined by the size of its cyclotron orbit,
A = (hc/eM )" and along the field by a modified
Coulomb interaction, which takes into account
the non-Coulomb character of the potential field
in which an electron moves in a many-electron
atom [18]. Note that calculations of multielec-
tron atomic systems with introduced potentials
are quite well known in the literature (see [2,18-
20]); moreover, computational schemes based
on them have been tested several times and test-
ed for a number of atoms in the free state. The
potential (3) was successfully used in calculating
the energies and forces of atomic oscillators of
the 1st period of the periodic table (see review in
[21]). For solution of the Schrédinger equation
with hamiltonian equations (7) we constructed
the finite differences scheme which is in some
aspects similar to method [2]. An infinite region
is exchanged by a rectangular region: 0<p<L,,
0<z< L,. It has sufficiently large size; inside it a
rectangular uniform grid with steps 4,, /4,was
constructed. The external boundary condition,
as usually, is: (0¥6 n), =0. The knowledge
of the asymptotic behaviour of wave function
in the infinity allows to get numeral estimates
forz ,L,. A wave function has an asymptotic
of the kind as: exp/-(-2E)"*r], where (-E) is the
ionization energy from stationary state to low-
est Landau level. Then L is estimated as L~9(-
2E)"2. The more exact estimate is found em-
pirically. The three-point symmetric differences
scheme is used for second derivative on z. The
derivatives on [ are approximated by (2m+1)-
point symmetric differences scheme with the
use of the Lagrange interpolation formula dif-
ferentiation. To calculate the values of the width
G for resonances in atomic spectra in a magnetic
field one can use the modified operator perturba-



tion theory method (see details in Ref.[12,13]).
Note that the imaginary part of the state energy
in the lowest PT order is:

mE=G2=n<¥, |HIY, > (8

with the total Hamiltonian of system in a mag-
netic field. The state functions ¥, and ¥ are
assumed to be normalized to unity and by the
d(k -k’)-condition, accordingly. Other calcula-
tion details can be found in Refs. [2, 19-21].

3. Ilustration results and conclusion
As illustration, below we present the data
(tables 1 and 2) for energies of the electronic
excited and ground state of the lithium atom in
dependence upon the magnetic field strength
(parameter y) and compared with available the-
oretical results, obtained on the basis of alterna-
tive methods. Parameter y varies within: y=B/
Bo=0.00-10, where By =nfe’c/ k2. In Table
1 there are listed the energies of the ground state
of the lithium atom in dependence upon the pa-
rameter y. For the lithium atom there are avail-
able the results of calculations for the ground
state and a few low-lying states of the Li atom
at the regime of weak and intermediate fields.
In particular, the Hartree-Fock (HF) calcula-
tion results are in the Refs. [6,7]. As the ground
state analysis shows, in whole our data are cor-
responding to the alternative HF results, how-
ever, indeed, they lie a little lower for a weak
field regime and more substantially lower in the
intermediate regime of the magnetic parameter.
In table 2 similar data are listed for the Li ex-
cited state.
Table 1.
Total energies (in a.u.) of the ground state of
Li atom in a magnetic field with strength vy:
HF-mesh- the Hartree-Fock data from [6],

0.126 27.4741 | 27.4739 | 27.4745
0.200 27.4840 27.4843
0.900 27.4250 | 27.4240 | 27.4253
1.800 27.2460 | 27.2446 | 27.2464
2.000 27.1962 27.1967
2.500 27.0562 27.0568
3.600 26.6787 | 26.6640 | 26.6793
5.000 26.0881 26.0887
5.400 259011 |25.8772 | 25.9018
7.000 25.0891 25.0902
Table 2.

Total energies (in a.u.) of the excited state
of the Li atom in the magnetic field with the
strength y: HF-mesh- the Hartree-Fock data
from [6], HF — data from [7], MP- this work

HF — data from [7], MP- this work;

Y 1s2p 1s2p 1s2p
HF-mesh HF MP
0.000 27.3651 27.3651 | 27.3652
0.002 27.3671 27.3673
0.009 27.3739 27.3738 | 27.3741
0.020 27.3840 27.3843
0.126 27.4565 27.4565 | 27.4568
0.200 27.4922 27.4925
0.900 27.6563 27.6563 | 27.6567
1.800 27.6766 27.6747 | 27.6770
2.000 27.6625 27.6631
2.500 27.6035 27.6041
3.600 27.3764 27.3627 | 27.3771
5.000 26.9423 26.9430
5.400 26.7952 26.7747 | 26.7959
7.000 26.1267 26.1279

Y 1s?2s 1s?2s 1s?2s
HF-mesh HF MP
0.000 27.4328 | 27.4327 | 27.4329
0.002 27.4338 27.4340
0.009 27.4371 | 27.4371 | 27.4373
0.020 27.4421 27.4424

The difference between the listed data can be
explained by the partial account of electron cor-
relation corrections, which is absent in the HF
calculation.
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SPECTROSCOPY AND DYNAMICS OF MULTIELECTRON ATOM
IN A MAGNETIC FIELD: NEW APPROACH

Summary. Spectroscopy of multielectron atomic system in a magnetic field is numerically
investigated. It is presented a new quantum approach to calculating energies and widths of states
for multi-electron atomic system in a homogeneous magnetic field. The approach is based on
numerical difference solution of the Schrodinger equation, model potential method and operator
perturbation theory. The data for energies of electronic excited and ground state of the lithium atom
in dependence upon the magnetic field strength are listed and compared with available theoretical
results, obtained on the basis of alternative Hartree-Fock method.
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CNEKTPOCKOITUS U JMHAMUKA MHOTODJIEKTPOHHOI'O ATOMA
B MATHUTHOM MNOJIE: HOBBII MTOAXO/I

Pe3rome. M3ydaercss CHEKTPOCKONHS MHOTOJIEKTPOHHBIX aTOMHBIX CHCTEM B MarHMTHOM
noste. IIpencraBieH HOBBIM KBAHTOBBIM IIOAXOZ K pacdeTy SHEPIMM M IIMPHUH COCTOSHUM IS
MHOTOVIEKTPOHHOI'O aTOMa B OJHOPOJHOM MAarHMTHOM Iojie. MeTon OCHOBaH Ha YHCIECHHOM
pa3HOCTHOM penleHuH ypaBHeHus lIpenunrepa, MeTone MOAENBHOIO NOTEHIIMAJIA U OTIEPAaTOPHON
TeopuH Bo3MyIeHui. [IpuBeieHbl pacyeTHbIE JaHHBIE ISl SHEPTHii OCHOBHOTO U BO30YX/I€HHOTO
COCTOSIHMM aToMa JIUTUS B 3aBUCHMOCTH OT HANPsKEHHOCTH MAarHUTHOIO TMOJS M IIPOBEIEHO
CPaBHEHHE C WMCEIOIIMMUCA TEOPETUUYECKUMH pe3ylabTaTaMi, IIOJyYEHHBIMH Ha OCHOBE
albTepHAaTUBHOIO MeTona Xaprpu-Poxka.

KuiroueBble ¢Jj10Ba: aTOMHas CHCTEMA, MATHUTHOE T10J1€, CIEKTPOCKOIHMS Y IMHAMMKA
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CHEKTPOCKOIIIA I AJMUHAMIKA BAT'ATOEJIEKTPOHHOI'O ATOMA
Y MATHITHOMY I1OJII: HOBAM ITIIXI]]

Pe3tome. BuBuaerbcs criekTpockoriis Oarato €JeKTPOHHHUX aTOMHHMX CHCTEM B MarHiTHOMY
noiti. [IpeacraBieHuit HOBUH KBAaHTOBWH MiJXiJ 10 PO3paxyHKY €HEPridl 1 IMIMPHH CTaHIB I
0araTtoeIeKTPOHHOTO aTOMa B OHOPITHOMY MarHiTHOMY ToJi. MeTos 3aCHOBaHUH Ha YNCEIbHOMY
pi3HHLIeBOMY pinieHH1 piBHsSHHS Llpeninrepa, MeToal MOJEIBHOTO MOTEHIiaTy Ta ONEepaTopHIN
Teopii 30ypenb. HaBeneHi po3paxyHKOBI 1aHi ISl eHEPT1i OCHOBHOTO Ta 30y IPKEHOTO CTaHIiB aToMa
JITiIO B 3aJI€KHOCTI BiJl HANpPY>KEHOCTI MarHiTHOTO MOJsI 1 MPOBEJICHO MOPIBHIHHA 3 HAsSBHUMHU
TEOPETUYHUMH PEe3yJbTaTaMH, OTPUMAaHHUMH Ha OCHOBI aJbTEPHATUBHOTO MeTOy XapTpi-Doka.
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