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THEORETICAL AUGER SPECTROSCOPY OF
THE NEON: TRANSITION ENERGIES AND WIDTHS

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order 
density functional approximation is applied to determination of the energy and spectral parameters of the resonant 
Auger decay for neon atomic system. The results are compared with reported experimental results as well as with 
those obtained by semiempirical and ab initio Hartree-Fock methods. The important point is linked with an accurate 
accounting for the complex exchange-correlation (polarization) effect contributions and using the optimized one-
quasiparticle representation in the relativistic many-body perturbation theory zeroth order that significantly provides a 
physically reasonable agreement between theory and experiment.

1. Introduction
The research in many fields of modern atom-

ic physics (spectroscopy, spectral lines theory, 
theory of atomic collisions etc), astrophysics, 
plasma physics, laser physics and quantum and 
photo-electronics requires an availability of sets 
of correct data on the energetic, spectroscopic 
and structural properties of atoms.  The Au-
ger electron spectroscopy remains an effective 
method to study the chemical composition of 
solid surfaces and near-surface layers [1-8]. 

As it is well known [11], the Auger process 
is a radiationless transition of an atom from an 
initial state possessing an inner-shell vacancy to 
a final state in which the inner vacancy is filled 
by an outer-shell electron with the simultaneous 
ejection of another outer-shell electron, result-
ing in two new vacancies. The kinetic energy 
of the ejected Auger electron is measured by 
Auger-electron spectroscopy (AES). Sensing 
the Auger spectra in atomic systems and solids 
gives the important data for the whole number 
of scientific and technological applications. 
So called two-step model is used most widely 
when calculating the Auger decay characteris-
tics [1-5]. Since the vacancy lifetime in an inner 
atomic shell is rather long (about 10-17 to 10-14s), 
the atom ionization and the Auger emission are 
considered to be two independent processes. In 
the more correct dynamic theory of the Auger 
effect [2,3] the processes are not believed to be 

independent from one another. The fact is taken 
into account that the relaxation processes due 
to Coulomb interaction between electrons and 
resulting in the electron distribution in the va-
cancy field have no time to be over prior to the 
transition. 

In fact, a consistent Auger decay theory has 
to take into account correctly a number of corre-
lation effects, including the energy dependence 
of the vacancy mass operator, the continuum 
pressure, spreading of the initial state over a 
set of configurations etc [1-19]. The most wide-
spread theoretical studying the Auger spectra 
parameters is based on using the multi-config-
uration Dirac-Fock (MCDF) calculation [2,3].  
The theoretical predictions based on MCDF 
calculations have been carried out within differ-
ent approximations and remained hitherto non-
satisfactory in many relations. Earlier [8-13] it 
has been proposed relativistic perturbation the-
ory (PT) method of the Auger decay character-
istics for complex atoms, which is based on the 
Gell-Mann and Low S-matrix formalism energy 
approach) and QED PT formalism [4-7]. The 
novel element consists in using the optimal ba-
sis of the electron state functions derived from 
the minimization condition for the calibration-
non-invariant contribution (the second order PT 
polarization diagrams contribution) to the im-
aginary part of the multi-electron system energy 
already at the first non-disappearing approxima-



25

tion of the PT.  Earlier it has been applied in 
studying the Auger decay characteristics for a 
set of neutral atoms, quasi-molecules and sol-
ids. Besides, the ionization cross-sections of in-
ner shells in various atoms and the Auger elec-
tron energies in solids were estimated.   Here 
we apply the combined relativistic energy ap-
proach and relativistic many-body perturbation 
theory with the zeroth order density functional 
approximation is applied to determination of the 
energy and spectral parameters of the resonant 
Auger decay for neon atomic system.

2. The theoretical method
In Refs. [8-17] the fundamentals of the rela-

tivistic many-body PT formalism have been in 
detail presented, so further we are limited only 
by the novel elements.   Let us remind that the 
majority of complex atomic systems possess a 
dense energy spectrum of interacting states. In 
Refs. [3-13, 19-33] there is realized  field pro-
cedure for calculating the energy shifts DE of 
degenerate states, which is connected with the 
secular matrix M diagonalization. The whole 
calculation of the energies and decay probabili-
ties of a non-degenerate excited state is reduced 
to the calculation and diagonalization of the M. 
The complex secular matrix M is represented in 
the form [9,10]:  

    ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +        (1)

where ( )0M  is the contribution of the vacuum di-
agrams of all order of PT, and ( )1M , ( )2M , ( )3M  
those of the one-, two- and three-QP diagrams 
respectively. The diagonal matrix ( )1M  can be 
presented as a sum of the independent 1QP con-
tributions. The optimized 1-QP representation is 
the best one to determine the zeroth approxima-
tion. In the relativistic energy approach [4-9], 
which has received a great applications during 
solving numerous problems of atomic, molecu-
lar and nuclear physics (e.g., see Refs. [10-13]), 
the imaginary part of electron energy shift of 
an atom is directly connected with the radiation 
decay possibility (transition probability). An ap-

proach, using the Gell-Mann and Low formula 
with the QED scattering matrix, is used in treat-
ing the relativistic atom. The total energy shift 
of the state is usually presented in the form:

                DE = ReDE + i G/2 ,                  (2)

where G is interpreted as the level width, and the 
decay possibility P = G. The imaginary part of 
electron energy of the system, which is defined 
in the lowest order of perturbation theory as [4]:
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where (a>n>f)  for electron and (a<n<f)  for va-
cancy. Under calculating the matrix elements (3) 
one should use the angle symmetry of the task 
and write the expansion for potential sin|w|r12/r12 
on spherical functions as follows [4]: 
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where J  is the Bessel function of first kind and 
(l)= 2l + 1. This expansion is corresponding to 
usual multipole one for probability of radiative 
decay. 
Within the frame of QED PT approach the Au-
ger transition probability and the Auger line in-
tensity are defined by the square of an electron 
interaction matrix element having the form [4]: 

( )( )( )( )[ [ ( ) ( )∑ ×







m−
l−=

lm
l

mw 1234Re1
31

312
1

43211234 Qmm
jjjjjjV

;

BrQul
lll += QQQ .                     (5)

The terms Qul
lQ  and Br

lQ  correspond to sub-
division of the potential into Coulomb part 
cos|ω|r12/r12 and Breat one, cos|ω|r12α1α2/r12. 
The real part of the electron interaction matrix 
element is determined using expansion in terms 
of Bessel functions: 
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where J is the 1st order Bessel function, (l)=2l+1. 

The Coulomb part Qul
lQ  is expressed in terms of 

radial integrals Rl , angular coefficients Sl  [4]:

                           
( ) ( ) ( ) ( ){ ++= llll 3~241~3~241~12431243Re1Re SRSR

Z
Q l

Qul
 

( ) ( ) ( ) ( )}.3~4~2~1~3~4~2~1~34~2~134~2~1 llll ++ SRSR
(7)

As a result, the Auger decay probability is ex-
pressed in terms of ReQl(1243) matrix elements: 
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where f is the large component of radial part of 
single electron state Dirac function; function Z 
and angular coefficient are defined in Refs. [4-
7]. The other items in (7) include small compo-
nents of the Dirac functions; the sign «~» means 
that in (7) the large radial component fi is to be 
changed by the small gi  one and the moment  li 
is to be changed by  1−= ii ll~  for Dirac number 
æ1> 0 and li+1 for æi<0. 

The Breat interaction is known to change 
considerably the Auger decay dynamics in some 
cases. The Breat part of Q is defined in [4,11]. 
The Auger width is obtained from the adiabatic 
Gell-Mann and Low formula for the energy shift 
[4]. The direct contribution to the Auger level 
width with a vacancy nalajama  is as follows: 
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while the exchange diagram contribution is:  
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The partial items of the ∑∑
bg k sum answer 

to contributions of a-1γ(bg)-1K channels result-
ing in formation of two new vacancies bg and 
one free electron k: wk=wa+wb–wa. The final ex-
pression for the width in the representation of 
jj-coupling scheme of single-electron moments 
has the form:
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The calculating of all matrix elements, wave 

functions, Bessel functions etc is reduced to 
solving the system of differential equations. 
The formulas for the autoionization (Auger) 
decay probability include the radial integrals 
Ra(akgb), where one of the functions describes 
electron in the continuum state. When calculat-
ing this integral, the correct normalization of the 
wave functions is very important, namely, they 
should have the following asymptotic at  r→0:

                                                                      (12)

The important aspect of the whole procedure 
is an accurate accounting for the exchange-
correlation effects. We have used the general-
ized relativistic Kohn-Sham density functional  
[8-17] in the zeroth approximation of relativistic 
PT; naturally, the perturbation operator contents 
the operator (7) minus the cited Kohn-Sham 
density functional. Further the wave functions 
are corrected by accounting of the first order PT 
contribution. Besides, we realize the procedure 
of optimization of relativistic orbitals base. The 
main idea is based on using ab initio optimiza-
tion procedure, which  is reduced to minimiza-
tion of the gauge dependent multielectron con-
tribution ImDEninv of the lowest QED PT correc-
tions to the radiation widths of atomic levels. 
The formulae for the Auger decay probability 
include the radial integrals Ra(akgb), where one 
of the functions describes electron in the contin-
uum state. The energy of an electron formed due 
to a transition jkl is defined by the difference be-
tween energies of atom with a hole at j level and 
double-ionized atom at kl levels in final state:
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To single out the above-mentioned correla-

tion effects, the equation (13) can be presented 
as [8,9]: 
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part cos||r12/r12 and Breat one, 
cos||r1212/r12. The real part of the 
electron interaction matrix element is 
determined using expansion in terms of 
Bessel functions:  
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where J is the 1st order Bessel function, 
()=2+1. The Coulomb part Qul

Q  is 
expressed in terms of radial integrals R , 
angular coefficients S  [4]: 
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As a result, the Auger decay probability is 
expressed in terms of ReQ(1243) matrix 
elements:  
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where f is the large component of radial part 
of single electron state Dirac function; 
function Z and angular coefficient are 
defined in Refs. [4-7]. The other items in (7) 
include small components of the Dirac 
functions; the sign «» means that in (7) the 
large radial component fi is to be changed by 
the small gi  one and the moment  li is to be 
changed by  1 ii ll~  for Dirac number æ1> 0 
and li+1 for æi<0.  

The Breat interaction is known to change 
considerably the Auger decay dynamics in 
some cases. The Breat part of Q is defined in 
[4,11]. The Auger width is obtained from the 
adiabatic Gell-Mann and Low formula for 
the energy shift [4]. The direct contribution 
to the Auger level width with a vacancy 
nljm  is as follows:  
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 k

sum 

answer to contributions of -1()-1K 
channels resulting in formation of two new 
vacancies  and one free electron k: 
k=+–. The final expression for the 
width in the representation of jj-coupling 
scheme of single-electron moments has the 
form: 
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The calculating of all matrix elements, 

wave functions, Bessel functions etc is 
reduced to solving the system of differential 
equations. The formulas for the 
autoionization (Auger) decay probability 
include the radial integrals R(k), where 
one of the functions describes electron in the 
continuum state. When calculating this 
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they should have the following asymptotic at  
r0: 
 

      

    





















.δkrcosαZω

,δkrsinαZω
λω

g
f

2
12

2
12

2
1               

                                                                 (12) 
The important aspect of the whole 

procedure is an accurate accounting for the 
exchange-correlation effects. We have used 
the generalized relativistic Kohn-Sham 
density functional [8-17] in the zeroth 
approximation of relativistic PT; naturally, 
the perturbation operator contents the 
operator (7) minus the cited Kohn-Sham 
density functional. Further the wave 
functions are corrected by accounting of the 
first order PT contribution. Besides, we 
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where the item D takes into account the dynamic 
correlation effects (relaxation due to hole screen-
ing  with electrons etc.) To take these effects into 
account, the set of procedures elaborated in the 
atomic theory [8-13] is used. All calculations 
are performed on the basis of the modified nu-
meral code Superatom (version 93).

3. Results and conclusion
In tables 1 we present the data on the tran-

sition energies and angular anisotropy param-
eter β (for each parent state) for the resonant 
Auger decay to the 2s12p5(1.3P) np and 2s0p6 2S 
np (n=3,4) states of Ne+. There are listed experi-
mental data by De Fanis et al [18] and Pahler et 
al [15], theoretical ab initio Hartree-Fock results 
[18] and our data, obtained within the relativis-
tic many-body PT with using the gauge-invari-
ant QED PT method for generating relativistic 
functions basis’s. In table 2 we the data on the 
widths (meV) for the 2s12p5(1.3P)np and 2s0p6 

(1S) np (n=3,4) slates of Ne+. There are listed 
experimental data by [18], theoretical ab initio 
multi configuration Hartree-Fock results by Si-
nanis et al [16], single-configuration Hartree-
Fock data by Armen-Larkins [17] and our data, 
obtained within the relativistic many-body PT.  

Table 1. 

Transition energies Ek (for each parent state 
for the resonant Auger decay to the 2s12p5(1.3P) 
np and 2s0p6 2S np (n=3,4) states of Ne+: the 
experimental data [18,15], theoretical ab ini-

tio Hartree-Fock results [18] and our data

Final state
A=2s12p5

B=2s02p6

Exp. 
Ek, 

[18]

Theory:
Ek, [18] 

Theory:
Ek, [7]

Theory:
Ek, this

A(1P)3p 2S 778.79 776.43 778.52 778.61

A(1P)3p 2P 778.54 776.40 778.27 778.39

A(1P)3p 2D 778.81 776.66 778.57 778.68

A(1P)3p 2S 788.16 786.51 787.88 787.97

A(1P)3p 2P 788.90 787.52 788.69 788.75

A(1P)3p 2D 789.01 787.64 788.82 788.93

A(1P)4p 2S 773.60 - - 773.52

A(1P)4p 2P 773.48 - - 773.33

A(1P)4p 2D 773.56 - - 773.41

A(3P)4p 2S 783.72 - - 783.62

A(3P)4p 2P 783.95 - - 783.81

A(3P)4p 2D 784.01 - - 783.90

B(1S)3p 2P - - - 754.99

B(1S)4p 2P - - - 749.92

The analysis of the presented results in tables 
1-3 allows to conclude that the précised descrip-
tion of the Auger processes requires the detailed 
accurate accounting for the exchange-correla-
tion effects, including the particle-hole interac-
tion, screening effects and iterations of the mass 
operator. The relativistic many-body PT ap-
proach provides more accurate results due to a 
considerable extent to more correct accounting 
for complex inter electron exchange-correlation 
effects.  It is important to note that using more 
correct gauge-invariant procedure of generating 
the relativistic orbital bases is directly linked 
with correctness of accounting for the correla-
tion effects.

Table 2. 
Widths (meV) for 2s12p5(1.3P)np and 2s0p6 

(1S) np (n=3,4) states of Ne+:  experiment 
[18]; theory: ab initio multi configuration 

Hartree-Fock [16], 1-configuration Hartree-
Fock [17] and this work

final state Exp.
[18]/[15]

Th.
[17]

Th.
[16]

Th.
this

A(1P)3p 2S 530±50
410±50 687 510 524

A(1P)3p 2P 42±3 20.7 - 38
A(1P)3p 2D 34±4 40.2 - 32

A(3P)3p 2S 120±10
110±40 18.8 122 118

A(3P)3p 2P 19±5 10.3 - 16
A(3P)3p 2D 80±10 62.3 - 72
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PACS 31.15.A-; 32.30.-r

E. A. Efimova, A. S. Chernyshev, V. V. Buyadzhi, L. V. Nikola

THEORETICAL AUGER SPECTROSCOPY OF
THE NEON: TRANSITION ENERGIES AND WIDTHS

Summary. The combined relativistic energy approach and relativistic many-body perturbation 
theory with the zeroth order density functional approximation is applied to determination of the 
energy and spectral parameters of the resonant Auger decay for neon atomic system. The results 
are compared with reported experimental results as well as with those obtained by semiempirical 
and ab initio Hartree-Fock methods. The important point is linked with an accurate accounting 
for the complex exchange-correlation (polarization) effect contributions and using the optimized 
one-quasiparticle representation in the relativistic many-body perturbation theory zeroth order that 
significantly provides a physically reasonable agreement between theory and experiment.

Key words: relativistic theory, Auger spectroscopy, neon
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Е. А. Ефимова, А. С. Чернышев, В. В. Буяджи, Л. В. Никола

ТЕОРЕТИЧЕСКАЯ ОЖЕ-СПЕКТРОСКОПИЯ НЕОНА:
ЭНЕРГИИ ПЕРЕХОДОВ И ШИРИНЫ

Резюме. Комбинированный релятивистский энергетический подход и релятивистская 
многочастичная теория возмущений с приближением функционала плотности нулевого 
порядка применяются для определения энергетических и спектральных параметров 
резонансного оже-распада для атомной системы неона. Результаты сравниваются с 
сообщенными экспериментальными результатами, а также с результатами, полученными 
полуэмпирическим и ab initio методами (типа Хартри-Фока). Важный момент связан с учетом 
вкладов сложных многочастичных обменных корреляционных ‘ффектов и использованием 
оптимизированного одноквазичастичного представления в нулевом приближении 
многочастичной теории возмущений, что  определяет физически разумное согласие между 
теорией и экспериментом.

Ключевые слова: релятивистская теория, Оже-спектроскопия, неон
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Е. O. Єфімова, O. С. Чернишев, В. В. Буяджи, Л. В. Нікола

ТЕОРЕТИЧНА ОЖЕ-СПЕКТРОСКОПІЯ НЕОНУ: 
ЕНЕРГІЇ ПЕРЕХОДІВ ТА ШИРИНИ

Резюме. Комбінований релятивістський енергетичний підхід і релятивістська 
багаточастинкова теорія збурень з наближенням функціонала щільності нульового порядку 
застосовуються для визначення енергетичних і спектральних параметрів резонансного 
оже-розпаду для атомної системи неону. Результати порівнюються з повідомленими 



31

експериментальними результатами, а також з результатами, отриманими напівемпіричними 
та ab initio методаи (типу Хартрі-Фока). Важливий момент пов’язаний з урахуванням вкладів 
складних багаточасткових обмінних кореляційних eфектів та з використанням оптимізованого 
одноквазічастічного уявлення в нульовому наближенні релятивістської багаточастинкової 
теорії збурень, що визначає фізично певну згоду між теорією і експериментом. 

Ключові слова: релятивістська теорія, Оже-спектроскопія, неон




