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SPECTROSCOPIC FACTORS OF DIATOMIC MOLECULES: OPTIMIZED  GREEN’S 
FUNCTIONS AND DENSITY FUNCTIONAL METHOD 

It is presented an advanced approach to computing the spectroscopic factors of the diatomic molecules, which is 
based on the hybrid combined density functional theory (DFT) and the Green’s-functions (GF) approach. The Fermi-
liquid quasiparticle version of the density functional theory is modified and used. The density of states, which describe 
the vibrational structure in photoelectron spectra, is defined with the use of combined DFT-GF approach and is well 
approximated by using only the first order coupling constants in the optimized one-quasiparticle approximation. Using 
the combined DFT-GF approach to computing the spectroscopic factors of diatomic molecules leads to significant 
simplification of the calculation procedure and increasing an accuracy of theoretical prediction.

1. Introduction
In this paper we study the problem of 

calculating the important spectroscopic 
characteristics of multielectron systems (atoms 
and molecules), namely, the  spectroscopic 
factor. The spectroscopic factor is one of the 
most important characteristics of atomic and 
molecular systems and the precise information 
about it is very important for many applications 
[1-38]. The theoretical determination of 
spectroscopic factor for multielectron atomic 
and molecular systems is a rather complicated 
task, since in the framework of traditional a 
priori methods it is reduced to a calculation of 
corrections of perturbation theory of the type: 

           
          

with summation over a large number of 
intermediate states. The spectroscopic factor 
is usually experimentally determined using 
inelastic scattering of fast electrons, as well as 
photoelectron spectroscopy (see [1]). In this 
case, as a rule, there is a discrepancy between the 
results of measurements of spectroscopic factors 
in these experiments caused by the influence of 
many electronic correlations in the initial state of 
the multielectron system

In this paper we present an advanced approach 

to computing the spectroscopic factors of the 
diatomic molecules within  the hybrid combined 
density functional theory (DFT) in the Fermi-
liquid formulation and the Green’s-functions 
(GF) approach to quantitative determination of 
the spectroscopic factors for some molecular 
systems. The approach is based on the Green’s 
function method (Cederbaum-Domske version) 
[1,2] and Fermi-liquid DFT formalism [3-7] and 
using the novel effective density functionals  (see 
also [11-22]). It is important that the calculational 
procedure is significantly simplified with using 
the quasiparticle DFT formalism.  

As usually (see details in refs. [1,4,7]), the 
quantity which contains the information about 
the ionization potentials (I.P.) and molecular 
vibrational structure due to quick ionization is 
the density of occupied states:

                                                                            (1)

where 〉Y0  is the exact ground state wave 

function of the reference molecule and  )(tak
is an electron destruction operator, both in the 
Heisenberg picture. 
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(1) 
where 0  is the exact ground state wave 
function of the reference molecule and  

)(tak is an electron destruction operator, both 
in the Heisenberg picture.  
2. Theory: Density of states in one-body 
and many-body solution 
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2. Theory: Density of states in one-body 
and many-body solution

As usually, introducing a field operator 

),(),,(),,( θθφθ RaRxxR ii
i
∑=Y   with the 

Hartree-Fock (HF) one–particle functions фi  (

)(Ri∈ are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 
coordinates Qs one can write the standard 
Hamiltonian as follows [2,7]:
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with ni=1 (0), iϵf  (iϵf), δσf=1 (0) , (ijkl)ϵσf , 

where the index set v1 means that at least  kφ  and 

lφ or iφ  and jφ are unoccupied, v2 that at most 
one of the orbitals is unoccupied, and  v3  that  

kφ  and jφ or lφ and  jφ  are unoccupied.  The 

sw are the HF frequencies; sb , t
sb  are destruction 

and creation operators for vibrational quanta as 

                                                    

                    ),)(2/1( t
sss bbQ +=    

                   ))(2/1(/ t
sss bbQ −=∂∂ .      (4)

The interpretation of the above Hamiltonian 
and an exact solution of the one-body HF 
problem is given in refs. [1,-7]. The usual way 
is to define the HF-single-particle component 

0H  of the Hamiltonian (4) is as in Refs. [1,4]. 
Correspondingly in the one-particle picture the 
density of occupied states is given by
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To get function )(ºNk  one calculates the GF

)(' ºGkk (see details in Refs. [1-7,31-35]:
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Choosing the unperturbed 0H  to be 

Ni
t
ii HaaºH +=∑0 one could define GF as   
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The direct method for calculation of Nk(
∈) as the imaginary part of the GF includes 
a definition of the vertical I.P. (V.I.P.s) of the 
reference molecule and then of Nk ( )∈ .  

The zeros of the functions:

             ( ) ( )[ ]kop
kD ∈S+∈−=∈∈ ,              (10)  

where ( )kop S+∈ denotes the k-th eigenvalue 
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( )(Ri are the one-particle HF energies and f 
denotes the set of orbitals occupied in the HF 
ground state; R0 is  the equilibrium geometry 
on the HF level) and dimensionless normal 
coordinates Qs one can write the standard 
Hamiltonian as follows [2,7]: 
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with ni=1 (0), if  (if), f=1 (0) , (ijkl)f 
, where the index set v1 means that at least  

k  and l or i  and j are unoccupied, v2 that 
at most one of the orbitals is unoccupied, and  
v3  that  k  and j or l and  j  are 
unoccupied.  The s are the HF frequencies; 

sb , t
sb  are destruction and creation operators 

for vibrational quanta as  
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To get function )(єNk  one calculates the 
GF )(' єGkk (see details in Refs. [1-7,31-35]: 
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The direct method for calculation of Nk() as 
the imaginary part of the GF includes a 
definition of the vertical I.P. (V.I.P.s) of the 
reference molecule and then of Nk   .   
 The zeros of the functions: 
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of the dia gonal matrix of the one-particle 
energies added to matrix of the self-energy part, 
are the negative V. I. P. ‘s for a given geometry.  
One can write [2,4]:

( ) ( )kkk FPIV +∈−=... ,
                                                   

( )( ) ( ) ( )kkk
kkk

kkkk PIVF ∈S
∂∈S∂−

≈−S=
∈/1

1...
.                                                             (11)

Expanding the ionic energy 1−N
kE about the 

equilibrium geometry of the reference molecule 
in a power series of the normal coordinates leads 
to a set of linear equations for the unknown 
normal coordinate shifts δQS, and new coupling 
constants:
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by the well-known perturbation expansion of 
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and the coupling constant gl, are as [17]:
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The pole strength of the corresponding GF:
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3. Fermi-liquid quasiparticle density 
functional theory

The  quasiparticle Fermi-liquid version of 
the DFT [3-8,31,36] is used to determine the 
coupling constants etc. The  master equations 
can be obtained on the basis of variational 
principle, if we start from a Lagrangian of a 
molecule Lq. It should be defined as a functional 

of  quasiparticle densities: 
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The densities υ0 and υ1  are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density υ2  has no an analog 
in the HF or DFT theory and appears as result of 
account for the energy dependence of the mass 
operator S. A Lagrangian Lq  can be written as 
a sum of a free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where the interaction 

Lagrangian is defined in the form, which is 
characteristic for a standard  DFT  (as a sum of 
the Coulomb and exchange-correlation terms), 
but, it takes into account for a mass operator 
energy dependence of S :

  

(17)
where F is an effective exchange-correlation 

interaction potential. The constants βik are 
defined in Refs. [3-5]. The constant β02  can 
be calculated by analytical way, but it is very 
useful to keep in mind its connection with a 
spectroscopic factor Fsp [4,5]:
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(18)

The new element is  linked with using the 
DFT correlation Gunnarsson-Lundqvist, Lee-
Yang-Parrr functionals (c.g.[12-16]).

4. Results and conclusions

Below we present the results of calculation 
of the spectroscopic factors for a number of 
diatomic molecules, in particular, 2222 ,,, FONC  
in the ground state, as well as dimers of noble 
gases *

2
*
2

*
2 ,, XeKrAr  in the lowest excited state. 

As the input data, the data obtained in the 
HF approximation [2,40] are used. For the 

2222 ,,, FONC  the following spectroscopic factors 
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for the unknown normal coordinate shifts 
δQS, and new coupling constants: 
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The coupling constants lg , lly   are calculated 
by the well-known perturbation expansion of 
the self-energy part. One could write:  
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and the coupling constant gl, are as [17]: 
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The pole strength of the corresponding GF: 
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3. Fermi-liquid quasiparticle density 

functional theory 
The  quasiparticle Fermi-liquid version of 

the DFT [3-8,31,36] is used to determine the 
coupling constants etc. The  master equations 
can be obtained on the basis of variational 
principle, if we start from a Lagrangian of a 
molecule Lq. It should be defined as a 
functional of  quasiparticle densities:  
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The densities 0 and 1  are similar to the HF 
electron density and kinetical energy density 
correspondingly; the density 2  has no an 
analog in the HF or DFT theory and appears 
as result of account for the energy 
dependence of the mass operator . A 
Lagrangian Lq  can be written as a sum of a 
free Lagrangian and Lagrangian of 
interaction: Lq = Lq

0 + Lq
int, where the 

interaction Lagrangian is defined in the form, 
which is characteristic for a standard  DFT  
(as a sum of the Coulomb and exchange-
correlation terms), but, it takes into account 
for a mass operator energy dependence of  : 
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(17) 
where F is an effective exchange-correlation 
interaction potential. The constants ik are 
defined in Refs. [3-5]. The constant 02  can 
be calculated by analytical way, but it is very 
useful to keep in mind its connection with a 
spectroscopic factor Fsp [4,5]: 
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were obtained for core )( c
spF  and valence )( V

spF  
shells:

The obtained values   of spectroscopic factors 
make it possible to assess to a certain extent 
the role of various types of correlations, in 
particular, intra-core and intra-valent, in these 
molecules. Since the spectroscopic factor, by 
its definition, is related to the dependence of the 
MSS on energy not taken into account in the HF 
approximation (always in this approximation: 

1=spF ), the difference spF  from 1 indicates 
the corresponding role of various correlation 
effects. In particular, for these molecules, 
the contribution of intra-core correlations is 
somewhat more significant than that of intra-
valent ones, which is also confirmed in ab initio 
calculations (c.f., [40]). For noble gas dimers (

2
gno  outer shells) n

spF  are calculated:

An analysis of the data indicates presence 
of strong correlation effects for the molecules, 
a number of features in the photoionization 
cross section of the 2dn  shells, namely, the 
possible collectivization of the gn 2d shells, the 
presence of “shadow” states in the molecules 
with which strong mixing takes place and to 
which the strength of the initial level )1( spF−  is 
transmitted. Note that such effects are known in 
the theory of atomic photoelectric effect, namely,  
for noble gas atoms (Ar and others) [6,41]).
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 An analysis of the data indicates presence of 
strong correlation effects for the molecules, a 
number of features in the photoionization 
cross section of the 2n  shells, namely, the 
possible collectivization of the gn 2 shells, 

the presence of “shadow” states in the 
molecules with which strong mixing takes 
place and to which the strength of the initial 
level )1( spF  is transmitted. Note that such 
effects are known in the theory of atomic 
photoelectric effect, namely,  for noble gas 
atoms (Ar and others) [6,41]). 
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SPECTROSCOPIC FACTORS OF DIATOMIC MOLECULES:  OPTIMIZED 
GREEN’S FUNCTIONS AND DENSITY FUNCTIONAL METHOD

Summary. It is presented an advanced approach to computing the spectroscopic factors of the 
diatomic molecules, which is based on the hybrid combined density functional theory (DFT) and 
the Green’s-functions (GF) approach. The Fermi-liquid quasiparticle DFT version is modified and 
used.  The density of states, which describe the vibrational structure in photoelectron spectra, is de-
fined with the use of combined DFT-GF approach and is well approximated by using only the first 
order coupling constants in the optimized one-quasiparticle approximation. Using the combined 
DFT-GF approach leads to significant simplification of calculation procedure and increasing an 
accuracy of theoretical prediction.
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СПЕКТРОСКОПИЧЕСКИЕ ФАКТОРЫ ДЛЯ ДВУХАТОМНЫХ МОЛЕКУЛ: 
ОПТИМИЗИРОВАННЫЙ МЕТОД ФУНКЦИЙ ГРИНА И ФУНКЦИОНАЛА 

ПЛОТНОСТИ

Резюме. Представлен усовершенствованный подход к вычислению спектроскопических 
факторов двухатомных молекул, базирующийся на гибридной комбинированной теории 
функционала плотности (ТФП) и методе функций Грина (ФГ). Используется модель ферми-
жидкостная квазичастичная версия ТФП. Плотность состояний, которая описывает колеба-
тельную структуру в фотоэлектронных спектрах, определяется с использованием комбини-
рованного подхода ТФП - ФГ. Использование комбинированного ТФП-ФГ подхода приводит 
к значительному упрощению процедуры расчета и повышению точности теоретического 
прогнозирования.

Ключевые слова: двухатомные молекулы, функция Грина, функционал плотности
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СПЕКТРОСКОПІЧНІ ФАКТОРИ ДВОАТОМНИХ МОЛЕКУЛ: 
ОПТИМІЗОВАНИЙ МЕТОД ФУНКЦІЙ ГРІНА І ФУНКЦІОНАЛУ ГУСТИНИ  

Резюме. Представлений вдосконалений метод обчислення спектроскопічних факторів 
2-атомних молекул, що базується на гібридній теорії функціонала щільності (ТФП) і мето-
ді функцій Гріна (ФГ). Використано фермі-рідинну квазічастинкову версію ТФП. Густина 
станів, які описує коливальну структуру фотоелектронного спектру, визначається в межах 
ТФП-ФГ методу. Використання комбінованого ТФП-ФГ методу призводить до спрощення 
процедури обчислень, підвищення точності прогнозу.

Ключові слова: двоатомні молекули, функція Гріна, функціонал густини




