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RELATIVISTIC THEORY OF CALCULATION OF E1 TRANSITION AMPLITUDES, 
AND GAUGE INVARIANCE PRINCIPLE

The combined relativistic energy approach and relativistic many-body perturbation theory with the zeroth order 
Dirac-Kohn-Sham one-particle approximation are used for estimating the energies and the E1 radiative transitions 
amplitudes (oscillator strengths) for the low-excited states of the francium. The comparison with available theoretical 
and experimental (compilated) data is performed. The important point is linked with an accurate accounting for 
the complex exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle 
representation in the relativistic many-body perturbation theory zeroth order that significantly provides a physically 
reasonable agreement between theory and precise experiment.

1. Introduction

The development of new directions in 
the field of laser, atomic physics, quantum 
electronics, etc., such as pulsed heating methods 
in research on controlled thermonuclear fusion, 
new laser schemes in VUV, X-ray spectral 
regions, astrophysical studies, etc., necessitates 
the solution of new classes of problems of 
atomic and laser physics at a fundamentally new 
level of theoretical consistency and accuracy. 
Significant progress in the development of 
experimental research methods, in particular, a 
significant increase in the intensity and quality 
of laser radiation, the use of accelerators, heavy 
ion colliders, sources of synchrotron radiation 
and, as a result, the possibility of studying 
more and more energy processes, stimulates 
the development of new theoretical methods 
in the theory of heavy atoms calculation of 
their characteristics, in particular, radiation and 
autoionization ones [1-10]. 

However, a study of the spectral characteristics 
of heavy atoms and ions in the Rydberg states has 
to be more complicated as it requires a necessary 
accounting for the relativistic, exchange-
correlations effects and possibly the QED 
corrections for superheavy atomic systems. The 
simultaneous correct accounting of relativistic, 
quantum electrodynamic (QED), and many-

particle correlation effects is essential [1–10]. 
The results of calculating the characteristics of 
atomic processes based on modern theoretical 
methods often differ several times. 

The difference in the values   of the transition 
amplitudes, the oscillator strengths, and the 
radiation widths for heavy atoms using various 
expressions for the photon propagator reaches 
5–30% (we are essentially talking about the non-
fulfillment of the principle of gauge invariance 
when calculating physical quantities) [11-18]. 
From the point of view of applications for the 
majority of the most important atomic systems, 
there is very often partially or completely 
missing information on their energy, radiation or/
and autoionization characteristics (heavy atoms, 
atoms of alkaline-earth elements, lanthanides 
and actinides). 

In this paper the combined relativistic 
energy approach and relativistic many-body 
perturbation theory with the zeroth order Dirac-
Kohn-Sham 1-particle approximation [2,19] are 
used for are used for estimating the energies 
and the E1 radiative transitions amplitudes 
(oscillator strengths) for some low-excited 
states of the francium atom and studying an 
effect of the gauge invariance on the transition 
amplitude values for heavy atoms on example of 
the francium. 



91

2. The theoretical method

In Refs. [2,18-22] the fundamentals of the 
relativistic many-body PT formalism have been 
in detail presented, so further we are limited 
only by the novel elements.   Let us remind 
that the majority of complex atomic systems 
possess a dense energy spectrum of interacting 
states. In Refs. [10-12] there is realized a field 
procedure for calculating the energy shifts DE 
of degenerate states, which is connected with 
the secular matrix M diagonalization. The 
whole calculation of the energies and decay 
probabilities of a non-degenerate excited state 
is reduced to the calculation and diagonalization 
of the M. The complex secular matrix M is 
represented in the form:  

    ( ) ( ) ( ) ( )0 1 2 3 .M M M M M= + + +             (1)

where ( )0M  is the contribution of the 
vacuum diagrams of all order of PT, and 

( )1M , ( )2M , ( )3M  those of the one-, two- and 
three-QP diagrams respectively. The diagonal 
matrix ( )1M  can be presented as a sum of the 
independent 1QP contributions. The optimized 
1-QP representation is the best one to determine 
the zeroth approximation. In the relativistic 
energy approach, which has received a great 
application during solving numerous problems 
of atomic, molecular and nuclear physics (e.g., 
see Refs. [21-27]), the imaginary part of electron 
energy shift of an atom is directly connected 
with the radiation decay possibility (transition 
probability). An approach, using the Gell-Mann 
and Low formula with the QED scattering 
matrix, is used in treating the relativistic atom. 
The total energy shift of the state is usually 
presented in the form:

                DE = ReDE + i G/2                   (2)

where G is interpreted as the level width, 
and the decay possibility P = G. The imaginary 
part of electron energy of the system, which 
is defined in the lowest order of perturbation 
theory as [10,11]: 
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where (a>n>f)  for electron and (a<n<f)  for 
vacancy. The matrix element is determined as 
follows:

               (4)  
where ωij is the transition frequency; αi ,αj are 
the Dirac matrices. The separated terms of 
the sum in (1) represent the contributions of 
different channels and a probability of the dipole 
transition 
Naturally, the physical values should not depend 
on the calibration of the photonic propagator. In 
general form, it can be written as     
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where the term DT is corresponding to exchange 
by transverse photons, DL — longitudinal ones, 
C is the gauge constant. contribution of the main 
exchange-correlation (the second and higher 
orders of the atomic perturbation theory or fourth 
etc of the QED perturbation theory) diagrams to 
imaginary part of an electron energy shift looks 
like [11]:
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Expression (6) can be represented as an a sum:  
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with (4) different operator combinations W1, 
W2.  The sum over n can be calculated by the 
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method of differential equations. The index m 
numbers a finite number of states occupied in 
the core and the state of the real continuum. The 
continuum-related part describes the vacuum po-
larization of the electron field and leads to diver-
gent integrals in the non-renormalizable theory. 
Its contribution to the main contribution has an 
additional order of smallness (aZ2). The minimi-
zation of the density functional ImdE leads to the 
integral differential equation for the rc, that can 
be numerically solved. This step allows to deter-
mine the   optimization parameter b. In Ref. [11] 
the authors elaborated a simplified computational 
procedure.

The contribution of the main exchange-corre-
lation (the second and higher orders of the atomic 
perturbation theory or fourth etc ones of the QED 
perturbation theory) to imaginary part of an elec-
tron energy shift is determined by the polariz-
ability of an atomic core, which is related to the 
electronic core  density rс. The expression (6) can 
be represented an a functional of the density rс.

Under calculating the matrix elements (2) one 
should use the expansion for potential sin|w|r12/r12 
on spherical functions as follows [10,11]:

(8)

where J  is the Bessel function of first kind 
and (l)= 2l + 1. Substitution of the expansion (5) 
to matrix element of interaction gives as follows 
[14]: 

( )( )( )( )[ [ ( )∑ ×







−

−=
lm

mw

m
l

31

312
1

43211234 1
mm

jj
jjjjV

                  ( ) )]1234(1234Im{ BrQul QQ ll +× ,          (9)

where ji is the total single electron momen-
tums, mi – the projections; QQul is the Coulomb 
part of interaction, QBr - the Breit part. Their 
detailed definitions are presented in Refs. [10-
11,18,19]. The relativistic wave functions are 
calculated by solution of the Dirac equation 
with the potential, which includes the “outer 
electron- ionic core” potential and exchange-po-
larization potential [20]. In fact, we realize the 
procedure of optimization of relativistic orbitals 
base. The main idea is based on using ab ini-

tio optimization procedure, which  is reduced to 
minimization of the gauge dependent multielec-
tron contribution ImDEninv of the lowest QED 
PT corrections to the radiation widths of atomic 
levels. According to [11, 18], “in the fourth or-
der of QED PT (the second order of the atomic 
PT) there appear the diagrams, whose contribu-
tion to the ImDEninv accounts for correlation ef-
fects and this contribution is determined by the 
electromagnetic potential gauge (the gauge de-
pendent contribution)”. The accurate  procedure 
for minimization of the functional ImdEninv leads 
to the Dirac-Kohn-Sham-like equations for the 
electron density that are numerically solved by 
the Runge-Cutta standard method It is very im-
portant to know that the regular  realization of 
the total scheme allows to get an optimal set of 
the 1QP functions and more correct results in 
comparison with so called simplified one, which 
has been used in Refs. [11-13] and reduced to 
the functional minimization using the variation 
of the correlation potential parameter b. Other 
details can be found in Refs. [11,18,19,29]. 

The adequate, precise computation of radia-
tive parameters of the heavy Rydberg alkali-met-
al atoms within relativistic perturbation theory 
requires an accurate accounting for the multi-
electron exchange-correlation effects (including 
polarization and screening effects, a continuum 
pressure etc). These effects within our approach 
are treated as the effects of the perturbation theo-
ry second and higher orders. Using the standard 
Feynman diagrammatic technique one should 
consider two kinds of diagrams (the polarization 
and ladder ones), which describe the polariza-
tion and screening exchange-correlation effects. 
The detailed description of the polarization dia-
grams and the corresponding analytical expres-
sions for matrix elements of the polarization in-
terelectron interaction (through the polarizable 
core of an alkali atom) potential is presented in 
Refs. [2,18,19,29].

An effective approach to accounting for the 
polarization diagrams contributions is in add-
ing the effective two-quasiparticle polarizable 
operator into the perturbation theory first order 
matrix elements. In Ref. [10] the corresponding 
non-relativistic polarization functional has been 
derived. More correct relativistic expression has 
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minimization of the gauge dependent 
multielectron contribution ImEninv of the 
lowest QED PT corrections to the radiation 
widths of atomic levels. According to [11, 
18], “in the fourth order of QED PT (the 
second order of the atomic PT) there appear 
the diagrams, whose contribution to the 
ImEninv accounts for correlation effects and 
this contribution is determined by the 
electromagnetic potential gauge (the gauge 
dependent contribution)”. The accurate  
procedure for minimization of the functional 
ImEninv leads to the Dirac-Kohn-Sham-like 
equations for the electron density that are 
numerically solved by the Runge-Cutta 
standard method It is very important to know 
that the regular  realization of the total 
scheme allows to get an optimal set of the 
1QP functions and more correct results in 
comparison with so called simplified one, 
which has been used in Refs. [11-13] and 
reduced to the functional minimization using 
the variation of the correlation potential 
parameter b. Other details can be found in 
Refs. [11,18,19,29].  
     The adequate, precise computation of 
radiative parameters of the heavy Rydberg 
alkali-metal atoms within relativistic 
perturbation theory requires an accurate 
accounting for the multi-electron exchange-
correlation effects (including polarization 
and screening effects, a continuum pressure 
etc). These effects within our approach are 
treated as the effects of the perturbation 
theory second and higher orders. Using the 
standard Feynman diagrammatic technique 
one should consider two kinds of diagrams 
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been presented in the Refs. [2,18] and used in 
our theory. 

The corresponding two-quasiparticle 
polarization potential looks as follows:                                                              
(10a)

                                    

where 0
cρ  is the core electron density (without 

account for the quasiparticle), X is numerical 
coefficient, c is the light velocity. The contribution 
of the ladder diagrams (these diagrams describe 
the immediate interparticle interaction) is 
summarized by a modification of the perturbation 
theory zeroth approximation mean-field central 
potential (look [2,18]), which includes the 
screening (anti-screening) of the core potential 
of each particle by the two others. All computing 
was performed with using the modified PC code 
“Superatom-ISAN” (version 93).

3. Results and conclusion

We applied the above described approach to 
compute the oscillator strengths (reduced dipole 
matrix elements) for a number of transitions 
in spectra of the heavy alkali atoms and 
corresponding ions.

As an illustration we present below the 
data for francium. In Table 1 there are listed 
the theoretical reduced dipole matrix elements 
for a number of transitions, computed within: 
i) relativistic Hartree-Fock (RHF) method 
[6], ii) the empirical relativistic model potential 

method (ERMP) [7], iii) the relativistic single-
double (SD) method in which single and double 
excitations of the Dirac-Hartree-Fock (DHF) 
wave function are included to all orders of 
perturbation theory [8] and iv) our data. 

Let us note that the precise experimental data 
for the francium 7p1/2,3/2-7s transition are as follows: 
7p1/2-7s=4.277 and 7p3/2-7s=5.898 [8]. The important 
features of the approach used are using the optimized 
one-particle representation and an effective taking 
into account the exchange-correlation (including the 
core polarization) effects (see Refs. [2,18-20,30]). 

Really, as it is indicated in Ref. [8], the semiem-
pirical values agree with the ab initio SD calcula-
tions to better than 1% with the exceptions of the 7s-
8p and 7s-9p transitions, where contributions from 
correlation corrections are very large. The most im-
portant conclusions relate to an effect of the gauge 
invariance on the transition amplitude values. 

An estimate of the gauge-non-invariant contribu-
tions (the difference between the oscillator strengths 
values calculated with using the transition opera-
tor in the form of “length” G1 and “velocity” G2) 
is about 0.1%. The theoretical data, obtained with 
using the different photon propagator gauges (Cou-
lomb and Babushkin ones) are practically equal. 

Table 1. 
Theoretical reduced dipole matrix elements 

for a set of Fr transitions

Transition i: RHF ii: ERMP
7p1/2-7s1/2 4.279   

4.304
-

8p1/2-7s1/2 0.291   
0.301

0.304

9p1/2-7s1/2 - 0.096
7p3/2-7s1/2 5.894  

5.927
-

8p3/2-7s1/2 0.924 0.908
9p3/2-7s1/2 - 0.420
Transition iii: SD-

DHF
iv: Our data

7p1/2-7s1/2 4.256 4.275 (G1)    
4.277 (G2)

(the polarization and ladder ones), which 
describe the polarization and screening 
exchange-correlation effects. The detailed 
description of the polarization diagrams and 
the corresponding analytical expressions for 
matrix elements of the polarization 
interelectron interaction (through the 
polarizable core of an alkali atom) potential 
is presented in Refs. [2,18,19,29]. 

An effective approach to accounting for 
the polarization diagrams contributions is in 
adding the effective two-quasiparticle 
polarizable operator into the perturbation 
theory first order matrix elements. In Ref. 
[10] the corresponding non-relativistic 
polarization functional has been derived. 
More correct relativistic expression has been 
presented in the Refs. [2,18] and used in our 
theory.  

The corresponding two-quasiparticle 
polarization potential looks as follows:                                                            
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where 0

c  is the core electron density 
(without account for the quasiparticle), X is 
numerical coefficient, c is the light velocity. 
The contribution of the ladder diagrams 
(these diagrams describe the immediate 
interparticle interaction) is summarized by a 
modification of the perturbation theory 
zeroth approximation mean-field central 
potential (look [2,18]), which includes the 
screening (anti-screening) of the core 

potential of each particle by the two others. 
All computing was performed with using the 
modified PC code “Superatom-ISAN” 
(version 93). 
 

3. Results and conclusion 
We applied the above described approach 

to compute the oscillator strengths (reduced 
dipole matrix elements) for a number of 
transitions in spectra of the heavy alkali 
atoms and corresponding ions. 

As an illustration we present below the 
data for francium. In Table 1 there are listed 
the theoretical reduced dipole matrix 
elements for a number of transitions, 
computed within: i) relativistic Hartree-Fock 
(RHF) method [6], ii) the empirical relativistic 
model potential method (ERMP) [7], iii) the 
relativistic single-double (SD) method in 
which single and double excitations of the 
Dirac-Hartree-Fock (DHF) wave function are 
included to all orders of perturbation theory 
[8] and iv) our data.  

Let us note that the precise experimental 
data for the francium 7p1/2,3/2-7s transition are 
as follows: 7p1/2-7s=4.277 and 7p3/2-
7s=5.898 [8]. The important features of the 
approach used are using the optimized one-
particle representation and an effective taking 
into account the exchange-correlation 
(including the core polarization) effects (see 
Refs. [2,18-20,30]).  

Really, as it is indicated in Ref. [8], the 
semiempirical values agree with the ab initio 
SD calculations to better than 1% with the 
exceptions of the 7s-8p and 7s-9p transitions, 
where contributions from correlation 
corrections are very large. The most 
important conclusions relate to an effect of 
the gauge invariance on the transition 
amplitude values.  

An estimate of the gauge-non-invariant 
contributions (the difference between the 
oscillator strengths values calculated with 
using the transition operator in the form of 
“length” G1 and “velocity” G2) is about 
0.1%. The theoretical data, obtained with 
using the different photon propagator gauges 
(Coulomb and Babushkin ones) are 
practically equal.  
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8p1/2-7s1/2 0.327     
0.306

0.339 

9p1/2-7s1/2 0.110 0.092
7p3/2-7s1/2 5.851 5.891
8p3/2-7s1/2 0.934    

0.909
0.918

9p3/2-7s1/2 0.436 0.426
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PACS 31.15.A-; 32.30.-r    

A. S. Chernyshev, O. L. Mykhailov, A. V. Tsudik, I. S. Cherkasova 

RELATIVISTIC THEORY OF CALCULATION OF E1 TRANSITION AMPLITUDES, 
AND GAUGE INVARIANCE PRINCIPLE

Summary. The combined relativistic energy approach and relativistic many-body perturbation 
theory with the zeroth order Dirac-Kohn-Sham one-particle approximation are used for estimating 
the energies and the E1 radiative transitions amplitudes (oscillator strengths) for the low-excited 
states of the francium. The comparison with available theoretical and experimental (compillated) 
data is performed. The important point is linked with an accurate accounting for the complex 
exchange-correlation (polarization) effect contributions and using the optimized one-quasiparticle 
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representation in the relativistic many-body perturbation theory zeroth order that significantly pro-
vides a physically reasonable agreement between theory and precise experiment.

Key words: relativistic theory, radiative transitions, francium 
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А. С. Чернышoв, А. Л. Михайлов, А. В. Цудик, И. С. Черкасова

РЕЛЯТИВИСТСКАЯ ТЕОРИЯ РАСЧЕТА ПЕРЕХОДНЫХ АМПЛИТУД Е1 
ПЕРЕХОДОВ И ПРИНЦИП КАЛИБРОВОЧНОЙ ИНВАРИАНТНОСТИ

Резюме. Комбинированный релятивистский энергетический подход и релятивистская 
многочастичная теория возмущений с дирак-кон-шэмовским одночастичным нулевым 
приближением используются для для вычисления энергий и амплитуд Е1 радиационных 
переходов (сил осцилляторов) для низко возбужденных состояний франция. Проведено 
сравнение с имеющимися теоретическими и экспериментальными данными. Важный момент 
связан с аккуратным учетом вкладов сложных многочастичных обменных корреляционных 
(поляризационных) эффектов и с использованием оптимизированного одноквазичастичного 
представления в нулевом приближении релятивистской многочастичной теории возмущений, 
что определяет  определенное согласие теории и эксперимента. 

Ключевые слова: релятивистская теория, радиационные переходы, франций

PACS 31.15.A-; 32.30.-r    

О. С. Чернишoв, О. Л. Михайлов, А. В. Цудік, І. С. Черкасова

РЕЛЯТИВІСТСЬКА ТЕОРІЯ РОЗРАХУНКУ АМПЛІТУД Е1 ПЕРЕХОДІВ І 
ПРИНЦИП КАЛІБРУВАЛЬНОЇ ІНВАРІАНТНОСТІ

Резюме. Комбінований релятивістський енергетичний підхід і релятивістська 
багаточастинкова теорія збурень з дірак-кон-шемівським одночастинковим наближенням 
нульового порядку використовуються для обчислення енергій та амплітуд Е1 радіаційних 
переходів (сил осцилляторов) для низько збуджених станів францію. Проведено порівняння 
з наявними теоретичними і експериментальними даними. Важливий момент пов’язаний 
з акуратним урахуванням вкладів складних багаточасткових обмінних кореляційних 
(поляризаційних) ефектів і з використанням оптимізованого одноквазічастічного уявлення в 
нульовому наближенні релятивістської багаточастинкової теорії збурень, що визначає певну 
згоду теорії та експерименту. 

Ключові слова: релятивістська теорія, радіаційні переходи, францій




