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HYPERFINE STRUCTURE PARAMETERS FOR Li-LIKE MULTICHARGED IONS 
WITHIN RELATIVISTIC MANY-BODY PERTURBATION THEORY

Abstract.  The relativistic many-body perturbation theory with the optimized Dirac-Kohn-Sham zeroth 
approximation is applied to calculation of the hyperfine structure parameters for some Li-like multicharged ions. The 
relativistic, exchange-correlation and other corrections are accurately taken into account. The optimized relativistic 
orbital basis set is generated in the optimal many-body perturbation theory approximation with fulfilment of the gauge 
invariance principle. The obtained data  on the hyperfine structure parameters of the Li-like multicharged ions are 
analyzed and compared with alternative theoretical and experimental results.

1. Introduction

In last years a studying the spectra of heavy 
and superheavy elements atoms and ions is of a 
great interest for further development as atomic 
and nuclear theories (c.f.[1-12]). Theoretical 
methods used to calculate the spectroscopic 
characteristics of heavy and superheavy ions 
may be divided into three main groups: a) the 
multi-configuration Hartree-Fock method, in 
which relativistic effects are taken into account 
in the Pauli approximation, gives a rather rough 
approximation, which  makes it possible to get 
only a qualitative idea on the spectra of heavy 
ions. b) The multi-configuration Dirac-Fock 
(MCDF) approximation (the Desclaux program, 
Dirac package) [1-4] is, within the last few 
years, the most reliable version of calculation 
for multielectron systems with a large nuclear 
charge; in these calculations one- and two-
particle relativistic effects are taken into account 
practically precisely. 

The calculation program of Desclaux is 
compiled with proper account of the finiteness of 
the nucleus size; however, a detailed description 
of the method of their investigation of the role of 
the nucleus size is lacking. 

In the region of small Z (Z is a charge 
of the nucleus)  the calculation error in the 
MCDF approximation is connected mainly 
with incomplete inclusion of the correlation 
and exchange effects which are only weakly 

dependent on Z; c) In the study of lower states 
for ions with Z≤40 an expansion into double 
series of the PT on the parameters 1/Z, aZ (a 
is the fine structure constant) turned out to be 
quite useful. It permits evaluation of relative 
contributions of the different expansion terms: 
non-relativistic, relativistic, QED contributions 
as the functions of Z.  

Nevertheless,  the serious problems in 
calculation of the heavy elements spectra are 
connected with developing new, high exact 
methods of account for the QED effects, in 
particular, the Lamb shift (LS), self-energy (SE) 
part of the Lamb shift, vacuum polarization (VP) 
contribution, correction on the nuclear finite 
size for superheavy elements and its account for 
different spectral properties of these systems, 
including calculating the energies and constants 
of the hyperfine structure, deriviatives of the 
one-electron characteristics on nuclear radius,  
nuclear electric quadrupole, magnetic dipole 
moments etc  (c.f.[1-10]). 

In this paper the relativistic many-body 
perturbation theory with the optimized Dirac-
Kohn-Sham zeroth approximation [11-19] is 
applied to calculation of the hyperfine structure 
parameters for Li-like multicharged ions. The 
relativistic, exchange-correlation and nuclear 
effects corrections are accurately taken into 
account with using the consistent and high 
precise procedures (c.g. [11-17]). 
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2. Relativistic many-body perturbation 
theory with optimized zeroth approximation 
and energy approach

The theoretical basis of the RMBPT with the 
Dirac-Kohn-Sham zeroth approximation was 
widely discussed [11-17], and here we will only 
present the essential features. As usually, we use 
the charge distribution in atomic (ionic) nucleus 
r(r) in the Gaussian approximation:  

         ( ) ( ) ( )223 exp4 rRr g−pg=ρ           (1)

where γ=4/pR2 and R is the effective nucleus 
radius. The Coulomb potential for the spherically 
symmetric density r( r ) is:
   

(2)
Further consider the Dirac-like type 

equations for the radial functions F and G 
(components of the Dirac spinor) for a three-
electron system 1s2nlj. Formally a potential 
V(r|R) in these equations  includes electric and 
polarization potentials of the nucleus, VX is the 
exchange inter-electron interaction (in the zeroth 
approximation). The standard Kohn-Sham (KS) 
exchange potential is [13]:    
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relativistic potential is [33]:
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where 2 1/3[3 ( )] /r cb p ρ= , c is the velocity 

of light. The corresponding one-quasiparticle 
correlation potential 

1/3[ ( ), ] 0.0333 ln[1 18.3768 ( ) ]CV r r b rρ ρ= − ⋅ ⋅ + ⋅ ,     (6)

(here  b is the optimization parameter; see 
below). 

The perturbation operator contains the rela-
tivistic potential of the interelectron interaction 
of the form: 

                (7) 

(here ai ,aj are the Dirac matrices, wij is the 
transition frequency) with the subsequent sub-
traction of the exchange and correlation poten-
tials. The rest of the exchange and correlation 
effects is taken into account in the first two or-
ders of the PT (c.g.[3-5].  

In Refs. [20-29] it was presented the effec-
tive relativistic formalism with ab initio optimi-
zation principle for construction of the optimal 
relativistic orbital basis set. The minimization 
condition of the gauge dependent multielectron 
contribution of the lowest QED PT corrections 
to the radiation widths of the atomic levels is 
used. The alternative versions are proposed in 
refs. [30-37]. 

The general scheme of treatment of the spec-
tra for Li-like ion is as follows. Consider the 
Dirac-type equations for a three-electron sys-

tem nljs21 . Formally they fall into one-electron 

Dirac equations for the orbitals s1 1s and nlj  
with the potential:

( ) ( ) ( ) ( ) ( )RrVrVnljrVsrVrV x +++= 12   (8)

( )RrV  includes the electrical and the 
polarization potentials of the nucleus; the 
components of the self-consistent Hartree-like  

potential, exV is the exchange inter-electron 
interaction (look below). The main exchange 
effect will be taken into account if in the equation 
for the s1 orbital we assume
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                 ( ) ( )srVrV 12=                      (10)

The rest of the exchange and correlation ef-
fects will be taken into account in the first two 
orders of the PT by the total inter-electron inter-
action [13-17]. 

The used expression for ( )sr 1ρ  coincides 
with the precise one for a one-electron relativ-
istic atom with a point nucleus. The finiteness 
of the nucleus and the presence of the second 1s 
electron are included effectively into the energy 

sE1 . 
Actually, for determination of the properties 

of the outer nlj electron one iteration is suffi-
cient. Refinement resulting from second itera-
tion (by evaluations) does not exceed correla-
tion corrections of the higher orders omitted in 
the present calculation. 

The relativistic potential of core (the “screen-

ing” potential) ( )( ) scrVsrV =12 1  has correct as-
ymptotic at zero and in the infinity. The proce-
dures for accounting of the nuclear, radiative 
QED corrections are in details presented in 
Refs. [3-5,14, 39-42]. 

 
3. Results and Conclusions

Energies of the quadruple (Wq) and magnetic 
dipole (Wm ) interactions, which define a hyper-
fine structure, are calculated as follows [4]:

Wq=[D+C(C+1)]B,

                           Wm=0,5 AC,

              D=-(4/3)(4c-1)(I+1)/[i(I-1)(2I-1)],

              C=F(F+1)-J(J+1)-I(I+1).         (16)

Here I is a spin of nucleus, F is a full 
momentum of system, J is a full electron 
momentum. Constants of the hyperfine splitting 
are expressed through the standard radial 
integrals: 

 A={[(4,32587)10-4Z2cgI]/(4c2-1)}(RA)-2,    (17)

    B={7.2878 10-7 Z3Q/[(4c2-1)I(I-1)} (RA)-3,

Here gI  is the Lande factor, Q is a quadruple 
momentum of nucleus (in Barn); radial integrals 
are defined as follows:

      (18)

and calculated in the Coulomb units (=3,57 
1020Z2m-2; = 6,174 1030Z3m-3 for valuables of the 
corresponding dimension). The radial parts F 
and G of two components of the Dirac function 
for electron, which moves in the potential 
V(r,R)+U(r,R), are determined by solution of the 
Dirac equations (look above). 

We have carried out the calculation of 
constants of the hyperfine interaction: the 
electric quadruple constant B, the magnetic 
dipole constant A with inclusion of nuclear 
finiteness and the Uehling potential for Li-like 
ions (c.g. [3-5]).

In table 4 the calculation results for the 
constants of the hyperfine splitting for the lowest 
excited states of  Li-like ions are presented.  

Analogous data for other states have 
been presented earlier (see ref. [5,20]). Our 
calculation showed also that a variation of the 
nuclear radius on several persents could lead to 
to changing the transition energies on dozens of 
thousands 103cm-1. 

Table 1. 
Constants of the hyperfine electron-nuclear 

interaction: A=Z3gI A cm-1,     B= B
II
QZ

)12(

3

−
 

cm-1 

nlj Z 69 79 92

2s
A

176 -02 215 -02 314 
-02

3s
A

51 –03 63 –03 90 –03

4s
A

19 –03 24 –03 36 –03
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2p1/2 A
56 –03 71 –03 105 

–02

3p1/2 A
16 –03 20 –03 31 –03

4p1/2 A
72 –04 91 –04 11 –03

2p3/2 A
67 –04 71 –04 72 –04

B
13 –04 15 –04 17 –04

3p3/2 A
19 –04 21 –04 22 –04

B
51 –05 55–05 62 –05

4p3/2 A
89 –05 92 –05 8 –04

B
20 –05 22 –05 26 –05

3d3/2 A
10 –04 11 –04 12 –04

B
 9 –05 10 –05 11 –05

4d3/2 A
51 –05 55 –05 58 –05

B
44 –06 50 –06 56 –06

3d5/2 A
48 –05 50 –05 52 –05

B
38 –06 39 –06 40 –06

4d5/2 A
19 –05 20 –05 21 –05

B
15 –06 16 –06 17 –06
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PACS 31.15.A-;32.30.-r  

O. L. Mykhailov, E. A. Efimova, E. V. Ternovsky, R. E. Serga

HYPERFINE STRUCTURE PARAMETERS FOR Li-LIKE MULTICHARGED IONS 
WITHIN RELATIVISTIC MANY-BODY PERTURBATION THEORY

Summary. The relativistic many-body perturbation theory with the optimized Dirac-Kohn-Sh-
am zeroth approximation is applied to calculation of the hyperfine structure parameters for some 
Li-like multicharged ions. The relativistic, exchange-correlation and other corrections are accu-
rately taken into account. The optimized relativistic orbital basis set is generated in the optimal 
many-body perturbation theory approximation with fulfilment of the gauge invariance principle. 
The obtained data  on the hyperfine structure parameters of the Li-like multicharged ions are ana-
lyzed and compared with alternative theoretical and experimental results.  

Keywords: Relativistic many-body perturbation theory – Optimal one-quasiparticle representa-
tion – Oscillator strengths –Energy approach – Correlation corrections

PACS 31.15.A-;32.30.-r  

А. Михайлов, Э. А. Ефимова, Е. В. Терновский, Р. Э. Серга

ПАРАМЕТРЫ СВЕРХТОНКОЙ СТРУКТУРЫ ДЛЯ Li-ПОДОБНЫХ 
МНОГОЗАРЯДНЫХ ИОНОВ В РАМКАХ РЕЛЯТИВИСТСКОЙ 

МНОГОЧАСТИЧНОЙ ТЕОРИИ ВОЗМУЩЕНИЙ

Резюме. Релятивистская многочастичная теория возмущений с оптимизированным ну-
левым приближением Дирака-Кона-Шэма применена  для расчета параметров сверхтонкой 
структуры Li-подобных многозарядных ионов. Релятивистские, обменно-корреляционные 
и другие поправки учитываются в рамках последовательных процедур. Оптимизированный 
базис релятивистских орбиталей  генерируется в последовательном нулевом приближении 
релятивистской многочастичной теории возмущений, исходя из условия выполнения прин-
ципа калибровочной инвариантности. Полученные данные для параметров сверхтонкой 
структуры для Li-подобных многозарядных ионов анализируются и сравниваются с альтер-
нативными теоретическими и экспериментальными результатами.

Ключевые слова:  Релятивистская многочастичная теория возмущений.,  сверхтонкая 
структура, литий-подобные ионы
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О. Л. Михайлов, Е. О.  Ефімова, Є. В. Терновський, Р. Е. Сєрга

ПАРАМЕТРИ НАДТОНКОЇ СТРУКТУРИ ДЛЯ Li-ПОДІБНИХ БАГАТОЗАРЯДНИХ 
ІОНІВ В РАМКАХ РЕЛЯТИВІСТСЬКОЇ БАГАТОЧАСТИНКОВОЇ ТЕОРІЇ ЗБУРЕНЬ

Резюме. Релятивістська багаточастинкова  теорія збурень з оптимізованим нульовим на-
ближенням Дірака-Кона-Шема застосована для розрахунку параметрів надтонкої структури 
для Li-подібних багатозарядних іонів. Релятивістські, обмінно-кореляційні та інші поправки 
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враховуються в рамках послідовних процедур. Оптимізований базис релятивістських орбі-
талей генерується в послідовному нульовому наближенні релятивістської багаточастинкової 
теорії збурень, виходячи з умови виконання принципу калібрувальної інваріантності. Отри-
мані дані параметрів надтонкої структури для Li-подібних багатозарядних іонів порівню-
ються з альтернативними теоретичними і експериментальними результатами.

Ключові слова: Релятивістська багаточастинкова теорія збурень, надтонка структура, лі-
тій-подібні іони




