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DYNAMICAL AND TOPOLOGICAL INVARIANTS OF PbO DYNAMICS
IN A RESONANT ELECTROMAGNETIC FIELD

Nonlinear chaotic dynamics of the PbO molecule interacting with a resonant linearly polarized electromagnetic
field is computed within the quantum model, based on the numerical solution of the Schrédinger equation and model
potential method. To calculate the system dynamics in a chaotic regime the known chaos theory and non-linear analysis
methods such as a correlation integral algorithm, the Lyapunov’s exponents and Kolmogorov entropy analysis are
used. There are listed the data of computing dynamical and topological invariants such as the correlation, embedding
and Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc..

1. Introduction

At present time theoretical and experimental
studying regular and chaotic dynamics of
nonlinear processes in the different classes
of quantum systems (in particular, atomic
and molecular systems in an external
electromagnetic field) attracts a great interest
that is of a significant importance for multiple
scientific and technical applications etc [1-9].

Some of the beauty of quantum chaos
is that it has developed a set of tools which
have found applications in a large variety
of different physical contexts, ranging from
atomic, molecular and nuclear physics optical)
or resonators and mesoscopic physics and
others (see [1-16]). According to Refs. [1-3],
under the definite conditions, such systems are
described by the corresponding model, when
Hamiltonians are possessing only a few degrees
of freedom. For the low-dimensional chaotic
case the corresponding conditions of transition
to deterministic chaos in the system dynamics
are quite well understood at the classical level
[1-4].

Under quantum treatment of the problem,
the similar systems (in particular, the diatomic
molecules in a resonant electromagnetic field)
are studied with using the known quasiclassical
approach [2]. At the theoretical level, the
majority of studies, devoted to chaos phenomena

in molecular dynamics, is carried out with the
using simple tools of dynamical systems theory
and qualitative theory of differential equations.
New field of investigations of the quantum and
other systems has been provided by the known
progress in a development of a nonlinear analysis
and chaos theory methods [1-12,17-30].

In Refs. [11,27-33] the authors applied
different approaches to quantitative studying
regular and chaotic dynamics of atomic and
molecular systems interacting with a strong
electromagnetic field and laser systems. The
most popular approach includes the combined
using the advanced non-linear analysis and a
chaos theory methods such as the autocorrelation
function method, multi-fractal formalism, mutual
information approach, correlation integral
analysis, false nearest neighbour algorithm,
Lyapunov exponent’s analysis, surrogate
data method, stochastic propagators method,
memory and Green’s functions approaches etc
(see details in Refs. [17-24]).

In Ref. [1-3,5-7] the authors performed a

study of deterministic chaos in a number of
diatomic molecules (GeO, ZrO etc) using as the
quasiclassical method as quantum ones.
In this paper we present the corresponding results
of computing the characteristic dynamical and
topological invariants of the chaotic dynamics
of the PbO molecule interacting with a linearly
polarized resonant electromagnetic field.
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2. Quantum-dynamical and chaos-
geometric approach

As the main ideas of the quantum-
dynamic approach to diatomic molecule in an
electromagnetic field are in details presented
in the Refs. [5-7], here we will restrict yourself
only by some key elements. The quantum-
dynamic approach to a diatomic molecule in an
electromagnetic field is based on the solution
of the time-dependent Schrodinger equation,
optimized operator perturbation theory and
realistic model potential (density functional)
method (see more details in Ref. [5]).

The problem of dynamics of diatomic molecules
in an infrared field is reduced to solving the
Schrédinger equation:

ioVY/ot=[H,+U(x)-d(x)E, e(t)cos(w,t] ¥

(D

where E, - the maximum field strength,

g(t)=E cos(ot) corresponds the pulse envelope

(chosen equal to one at the maximum value of
electric field).

A molecule in the field gets the induced
polarization and its high-frequency component
can be defined as [3,5]. It is important to remind
that in the regular case of molecular dynamics,
a spectrum will consist of a small number of
the well resolved lines. In the case of chaotic
dynamics of molecule in a field situation
changes essentially. The corresponding energy
of interaction with the field is much higher than
anharmonicity constant w > xhQ. It is obvious
that a spectrum in this case become more
complicated [5,6].

The main output data of the quantum-
dynamical approach application are the
corresponding theoretical temporal dependence
of polarization of a molecule in a resonant
electromagnetic field the field in a chaotic
regime.

In order to perform the detailed analysis
of the chaotic regime polarization time series,
further a total dynamics of the quantum system
in an electromagnetic field and to calculate
the fundamental topological and dynamical
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invariants of the system in a chaotic regime we
used the universal chaos-geometric approach,
presented earlier (see, c.g., [5-7,19-20]).

Generally speaking, the approach includes
a set of such non-linear analysis and a chaos
theory methods as the correlation integral
approach, multi-fractal and wavelet analysis,
average mutual information, surrogate data,
Lyapunov’s exponents and Kolmogorov entropy
approach, spectral methods, nonlinear prediction
(predicted trajectories, neural network etc)
algorithms.

One of the important tasks here is to determine
the corresponding embedding dimension and to
reconstruct a Euclidean space R? large enough so
that the set of points d, can be unfolded without
ambiguity. In accordance with the embedding
theorem, the embedding dimension, d,, must be
greater, or at least equal, than a dimension of
attractor, d , i.e.d, > d .

Usually one should use several standard
approaches to reconstruction of the attractor
dimension (see, e.g., [17-20]). The correlation
integral analysis is one of the widely used
techniques to investigate the signatures of chaos
in a time series. The analysis uses the correlation
integral, C(r), to distinguish between chaotic
and stochastic systems.

To compute the correlation integral, the
algorithm of Grassberger and Procaccia is the
most commonly used approach. According to
this algorithm, the correlation integral is

C(r) = lim gH(r 1y,-v,1) @

(I<i<j<N)

2
N(n-1)

where H is the Heaviside step function with
H(u)=1foru>0and H(u) =0 foru <0, ris the
radius of sphere centered ony, ory, and Nis the
number of data measurements.

In order to perform the verification of the
results obtained by means of the correlation
integral analysis, one could use so called known
surrogate data method. This approach makes use
of the substitute data generated in accordance
to the probabilistic structure underlying the
original data.

The important dynamical invariants of a
chaotic system are the Lyapunov’s exponents



(see, c.g., [17-20]). These characteristics can
be defined as asymptotic average rates, they
are independent of the initial conditions, and
therefore they do comprise an invariant measure
of attractor. Saying simply, the Lyapunov’s
exponents are the parameters to detect whether
the system is chaotic or not.

Another important characteristics, namely,
the Kolmogorov entropy K, measures the
average rate at which information about the state
is lost with time. According to the definition, the
Kolmogorov entropy can be determined as the
sum of the positive Lyapunov’s exponents.

The estimate of the dimension of the attractor
is provided by the Kaplan and York conjecture:

J
2.
d = jrol
STV
: 3)

; Jj+l
where j is such that ;’100 and ;’1‘1<0,
and the Lyapunov’s exponents A are taken in

descending order.

There are a few approaches to computing the
Lyapunov’s exponents. One of them computes
the whole spectrum and is based on the Jacobi
matrix of system. In this work we use an
advanced algorithm with fitted map with higher
order polynomials. To calculate the spectrum
of the Lyapunov’s exponents, one could
determine the time delay t and embed the data
in the four-dimensional space. In this point it is
very important to determine the Kaplan-York
dimension and compare it with the correlation
dimension, defined by the Grassberger-
Procaccia algorithm].

As a rule, the calculational results of the
state-space reconstruction are highly sensitive to
the length of data set (i.e. it must be sufficiently
large) as well as to the time lag and embedding
dimension correctly determined.

Indeed, there are Ilimitations on the
applicability of chaos theory for observed (finite)
dynamical variable series arising from the basic
assumptions that these series must be infinite.
A finite and small data set may probably result

in an underestimation of the actual dimension
of the process. The details of the procedures
and algorithms used are presented in Refs.
[5,7,19-26].

3. Some results and conclusions

Here we present the results of numerical
simulation of the time dynamics for diatomic
molecule PbO in the electromagnetic field. The
parameter W of interaction of an electromagnetic
radiation with a molecule is as follows:

Wiem™1=120.3(d,/ n,)(S/ Mw,)"” (4)

where, as wusually, an electromagnetic
field caan be characterized by the following
parameter: S = cE /8 (c is the velocity of light
and E is a field strength), an interatomic distance
r, in A, dipole moment d inD, o, in cm’, M
in a.um., and the field parameter S in GW/
cm?’. The set of the PbO molecular constants
and electromagnetic field parameters is listed
in Table 1 [27]. The corresponding Chirikov
parameter in this case is as:

Sn=2(Ed/B): » 1. (5)
The typical theoretical time dependence of
polarization for PbO molecule in the field in
a chaotic regime is presented in Ref. [5]. The
concrete step is an analysis of the corresponding
time series with the n=7.6x10° and Ar=5x10"s.
In Table 2 we present the calculational values
of the correlation dimension d,, the Kaplan-
York attractor dimension (d,), the Lyapunov’s
exponents (A ), Kolmogorov entropy (K_ ),

Table 1.
Set of the PbO molecular constants and
electromagnetic field parameters

Parameters PbO
o = (cm™) 721.0
o X =xhQ (cm™) 3.54
B, (cm™) 0.3073
D, (cm™) 2.23x107
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d, (D) 4.65

r, (A) 1.92
M (a.u.m) 14.86
W (cm™) 4.45-14.08

the Gottwald-Melbourne parameter. It is very
important to declare that the dynamics of the
PbO molecule in a resonant linearly polarized
electromagnetic field has the elements of a
deterministic chaos (the strange attractor).

Table 2.
Correlation dimension d,, Lyapunov’s
exponents (A, i=1,2), Kaplan-York attractor
dimension (d,), Kolmogorov entropy (K_ ),

Gottwald-Melbourne parameter K,

d2 7\’1 }\’2
2.87 0.151 0.0184

dL Kentr KGW
2.64 0.169 0.84

From one side, this conclusion is entirely
agreed with the results of modelling for other
diatomic molecules [3,7-11]. From the other
side, one should fix the increasing of the spectral
chaos inthe molecule studied in comparison with
other diatomics such as GeO and similar ones.
To conclude, the values of the dynamical and
topological invariants (the correlation, Kaplan-
York dimensions, the Lyapunov’s exponents
etc) for the PbO molecule interacting with the
resonant linearly polarized -electromagnetic
field are computed. In particular, the first two
Lyapunov’s exponents are positive. These data
indicate on emerging dynamical chaos elements
(indeed the low-dimensional attractor) in
behaviour of diatomic molecule interacting with
electromagnetic field.
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DYNAMICAL AND TOPOLOGICAL INVARIANTS OF PbO DYNAMICS
IN A RESONANT ELECTROMAGNETIC FIELD

Summary. Nonlinear chaotic dynamics of the PbO molecule interacting with a resonant linearly
polarized electromagnetic field is computed within the quantum model, based on the numerical so-
lution of the Schrodinger equation and model potential method. To calculate the system dynamics
in a chaotic regime the known chaos theory and non-linear analysis methods such as a correlation
integral algorithm, the Lyapunov’s exponents and Kolmogorov entropy analysis are used. There
are listed the data of computing dynamical and topological invariants such as correlation, embed-
ding, Kaplan-Yorke dimensions, Lyapunov’s exponents etc.
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JUHAMMUYECKHUE U TOITIOJIOI'MYECKUE UTHBAPUAHTBI IUHAMUKHN
MOJVIEKYJIBI PbO B PE3OHAHCHOM 3JIEKTPOMATI'HUTHOM II0JIE

Pe3tome. Henuneitnas xaoTnueckasi TMHaMHUKa MOJIEKYbl PbO B pe30HaHCHOM JIMHEWHO I10-
JSIPU30BAHHBIM JIEKTPOMATHUTHBIM TIOJIE PACCUUTHIBACTCS B paMKaxX KBAaHTOBOM Mojemu, 0a3upy-
IOIIEHiCS Ha YMCIIEHHOM pemeHnn ypaBHeHus llIpenunrepa m meToze MoeIpHOTO MOTEHIIHUANA.
Jns MoaenupoBaHus TUHAMUKH B XaOTHUYECKOM PEKUME UCIIOIB3YIOTCSI U3BECTHBIE METOJIbI HE-
JMHENHOT0 aHallM3a U TEOPHUH Xa0ca, B T.U., METOJl KOPPEJSLIMOHHOTO MHTErpalia, aHaJIu3 Ha OC-
HOBe noka3zareneit JIsmynosa, sutpornuu Konmoroposa u nip. [IpeacTtaBieHs! JaHHBIE BHIYUCICHHS
JIMHAMUYECKHX U TOMOJIOTUYE€CKUX HHBAPUAHTOB, B T.4., Pa3MEPHOCTEH BIOKEHUSI, KOPPEIISIITUOH-
HOMH, KaHnaHa-ﬁopKa, nokaszarenen JlsmyHosa, 1p.

KuioueBble ¢ji0Ba: xaoTuyeckasi IMHAMHKA, 2-aTOMHAsI MOJIEKYJIa, JIEKTPUIECKOE T0JIe

PACS 31.15.-p; 33.20.-t

€. B. llasnos, I B. Ienamenxo, C. B. Kip sanos, O. A. Mawxanyes,

JAUHAMIYHI I TOITOJIOI'TYHI IHBAPIAHTU ITMHAMUKHAU MOJIEKYJIN
PbO Y PESOHAHCHOMY EJIEKTPOMAT'HITHOMY I10JII

Pe3rome. Heniniiina xaotnyna guHamika monekynu PbO, B3aemopirouell 3 pe30HaHCHUM
JTHIAHO-TIONISIPU30BAHUM E€JIEKTPOMArHITHUM TIOJIEM, PO3PaxOBYEThCS B paMKaxX KBaHTOBOI
MozieNli Ha OCHOBI pimeHHs piBHsAHHSA lpeminrepa i Meromy MoaenbHOro mnorteHmiamy. Jlims
aHaJli3y TMHAMIKU CUCTEMHU B XaOTMUYHOMY PEXHMMI BUKOPUCTaHI METOJM HENIHIMHOro aHami3y Ta
Teopii Xaocy, y T.4., METOJl KOPEJAIIHHOTO IHTerpaia, aHaji3 Ha OCHOBI MOKa3HUKIB JIsmyHOBa,
entpomnii Koamoroposa T.i. Hanani mani o04MCIIeHHST JUHAMIYHUX 1 TOTIOJOTIYHUX 1HBapiaHTIB:
po3MipHOCTell Kopersiiiitoi, Bkaagenns, Karnana-Mopka, mokasuukis JIsmyHoBa, Ta iHIIHX.

Kuro4oBi ci1ioBa: xaoTnuHa ArMHaMiKa, 2-aTOMHA MOJIEKYJIa, €JIeKTPOMAarHiTHE ToJje
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