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LOCAL DENSITY OF STATES OF ELECTRONS IN GRAPHEN

The local density of states of electrons in a graphen cal-
culation provided based on a Green’s function method 
for Bethe lattice approximation.

A rapid development of nanotechnologies re-
quires at least qualitative theoretical research of 
physical properties of newly synthesized materi-
als.  Precise mathematical description of energy 
and oscillatory specters of such materials is well 
enough problematic due to multiplicity of their 
structure and composition. That is why, in a re-
cent time theoretical interpretation of experimen-
tal data can only be made on a base of highly sim-
plified model calculation, which, though, must 
correctly represent main features of these data. 

Among the shared concepts in the theory of 
electron structure in a disordered materials, the 
preferences should be given to approximations 
based on a Green’s functions calculation, as these 
functions are directly related with the density of 
states and doesn’t require introduction of long-
range order concepts.  

For determination of local density of states of 
electron (LDSE) in hexagonal monolayer (gra-
phen) we’ll use Green’s function method with 
semi-empirical single-electron tight-binding Ham-
iltonian included all important two center interac-
tions between nearest atoms. Structure of graphen 
is being modeled with a Bethe lattice, holding hex-
agonal arrangement of neighboring atoms. As the 
basis for tight-binding Hamiltonian we’ll chose 
one s- and two px, py – atomic orbitals.

According to Sletter-Coster notation [1], pa- to Sletter-Coster notation [1], pa-to Sletter-Coster notation [1], pa- Sletter-Coster notation [1], pa-Sletter-Coster notation [1], pa--Coster notation [1], pa-Coster notation [1], pa- notation [1], pa-notation [1], pa- [1], pa-pa-
rameters of interaction in a two center approxima-
tion have a look: 
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here subscript 0 related with the central atom, i 
– with its nearest neighbors. In a nodal representa-
tion the Hamiltonian’s matrix has block structure. 
Each block of 3x3 dimensionality (according to 
number of basis functions), represents a matrix 
of interactions of nearby atoms. According to ac-
cepted notations (1) it can be written as 
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It is easily can be shown that other matrices of 
interaction can be gained from (2) with the help 
of symmetry transformations
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here q – a valence angle.

It is obviously that:

1−= ijij LL ;  kjljij LLL −=  ;     

3,...,1,,, =lkji
(5)

The Green’s function for ith node can be calcu-
lated from the Dyson’s equation:
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where Iij – identity matrix, and the summing 
provided for nearest neighbors. Let us interested 
in a density of states for central, 0th, atom. Then, 
(6) will represent an infinite sequence of equa-
tions:
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This sequence can be closed only if we’ll use 
two basic properties of the Bethe lattice: first, 
each node of the lattice can be transformed into 
another by a finite number of transformations; 
secondly, any two nearest nodes are bonded only 
with each other.  This fact allows us to introduce 
so-called transfer matrices:
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Substituting (8) in to system (7), for 0th atom 
we’ll have:
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where, a self-energy part is:
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and the transfer matrices can be determined 
from the equations:
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here ∑ Φ=Σ
l

llν )(
~~

L
TH . For homopolar Bethe 

lattice the transfer matrices  )(νΦ L   and  )(
~
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are related with each other by the transposition 
operation. Thus it will be sufficient to solve only 
one of these two matrix equations. We chose the 
second one. For different bonds the transfer ma-
trices can be transformed into each other by the 
same symmetry operations as for the interaction 
matrices, so:
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Equation (12) can be rearranged as

[ ] 01110100
~ HHHEI =ΦΦ+Σ−− (14)

or, multiplying (14) from the right on TH 01 , 
we’ll obtain a matrix equation for determination 
of transfer matrix: 
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1011 Φ= HZ (15)
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here  00HEI −=ε . 

In a common case it is a quite difficult to solve 
equations (15). Analytical solution can be found 
if we neglect ррp interaction between p-orbitals 
of neighboring atoms:

s

ssG
Σ

=
1

00        and        
p

ppG
Σ

=
1

00

(16)

(17)

(18)

where  

D

−−±−
=

222222
22

4)2( dgεεgεε
dϕ psps (19)
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It is easy to ensure that function j2(E) ap-

proaches zero if sps (Х=0) –interactions can be 
neglected. In this case we obtain known solution 
for Bethe lattice with single-parametric tight-
binding Hamiltonian, set in basis of single s-or-
bital function per each atom. 

Let us remind that partial density of states de-
termined as imaginary parts of Green’s function 
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ssG00 and ppG00 and the total local density of states of 
electron is the sum of these partials.  

On a figure 1 represented LDSE of hexagonal 
monolayer (solid curve) calculated by equations 
(16) – (20) and tetrahedrally coordinated struc-
ture (dashed curve)[2].  

It is well enough seen that energy spectrum of 
hexagonal structure, unlike the tetrahedral, doesn’t 
have forbidden gap, i.e. the graphite monolayer 
has a metallic type of conductivity. Consequently, 
as it was mentioned in [3], the most significant 
properties of electron sub-system of solids are 
determined by the short-range order.  Note that 
represented graphs have qualitative character. All 
calculations are provided to establish the influ-
ence of geometry of nearest atomic arrangement 
on an electron energy spectrum. 

Figure 1 � LDSE of tetrahedral [2](dashed) and hex-
agonal (solid line) structures
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