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LOCAL DENSITY OF STATES OF ELECTRONS IN GRAPHEN

The local density of states of electrons in a graphen cal-
culation provided based on a Green’s function method
for Bethe lattice approximation.

A rapid development of nanotechnologies re-
quires at least qualitative theoretical research of
physical properties of newly synthesized materi-
als. Precise mathematical description of energy
and oscillatory specters of such materials is well
enough problematic due to multiplicity of their
structure and composition. That is why, in a re-
cent time theoretical interpretation of experimen-
tal data can only be made on a base of highly sim-
plified model calculation, which, though, must
correctly represent main features of these data.

Among the shared concepts in the theory of
electron structure in a disordered materials, the
preferences should be given to approximations
based on a Green’s functions calculation, as these
functions are directly related with the density of
states and doesn’t require introduction of long-
range order concepts.

For determination of local density of states of
electron (LDSE) in hexagonal monolayer (gra-
phen) we’ll use Green’s function method with
semi-empirical single-electron tight-binding Ham-
iltonian included all important two center interac-
tions between nearest atoms. Structure of graphen
is being modeled with a Bethe lattice, holding hex-
agonal arrangement of neighboring atoms. As the
basis for tight-binding Hamiltonian we’ll chose
one s- and two p,, p, - atomic orbitals.

According to Sletter-Coster notation [1], pa-
rameters of interaction in a two center approxima-
tion have a look:
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here subscript 0 related with the central atom, i
—with its nearest neighbors. In a nodal representa-
tion the Hamiltonian’s matrix has block structure.
Each block of 3x3 dimensionality (according to
number of basis functions), represents a matrix
of interactions of nearby atoms. According to ac-
cepted notations (1) it can be written as

E 0 0
Hy, =10 E, 0}
0 0 E,
u X 0
H,y=-X TV 0 @
o o0 w

It is easily can be shown that other matrices of
interaction can be gained from (2) with the help
of symmetry transformations



Hy, =L'H, L, (3)

where 7
-1 0 0
L, =| 0 —cos@ sinf |’ 4)
0 -—sin@d -—cosl
-1 0 0
Ly =| 0 —cos@ —sind
0 sinf —cosé

here q — a valence angle.

It is obviously that:

-1, _ )
Li=L"; LiL ==L ;

(5)
i, j k=13

The Green’s function for i node can be calcu-
lated from the Dyson’s equation:

: (6)
(E,-H,)G, =1, +;HkGﬁ

where I, - identity matrix, and the summing
provided for nearest neighbors. Let us interested
in a density of states for central, 0", atom. Then,
(6) will represent an infinite sequence of equa-
tions:

(E _Ho )Ga :I+ZH0kaO
k

(7)
(E - Ho )GkO = HoTkGo + ZHOk'Gk’O
k'#k

This sequence can be closed only if we’ll use

two basic properties of the Bethe lattice: first,

each node of the lattice can be transformed into

another by a finite number of transformations;

secondly, any two nearest nodes are bonded only

with each other. This fact allows us to introduce
so-called transfer matrices:

CDL(V) =G, Ga;l. (DL(,U) =G, Go_l_
’ T ®)
L(v) L(u) =123
Substituting (8) in to system (7), for 0™ atom
we’ll have:

G, =|[E -H, -2]",

where, a self-energy part is:

)

(10)

L= ZH OVCDL(V)

and the transferv matrices can be determined
from the equations:

®,,=[E, -H, -S+H @, ['H (11)

_ a2
CDL(/l)z[Eﬂ -H, -2+H, (DLW)TH#

~ .
here2 = ;H v Dy - For homopolar Bethe
lattice the transfer matrices @, and ) L(w

are related with each other by the transposition
operation. Thus it will be sufficient to solve only
one of these two matrix equations. We chose the
second one. For different bonds the transfer ma-
trices can be transformed into each other by the
same symmetry operations as for the interaction
matrices, So:

u x 0
O, =-x v O (13)
0O 0 wi

0, = L;q)ll'z ,CD3

b

= Ll_slq)ll'lzu

Equation (12) can be rearranged as

[E -H, -2+ H,®,J®, =H, (14)

or, multiplying (14) from the right on H, ,
we’ll obtain a matrix equation for determination
of transfer matrix:
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7 =H,®,

(8—Z+ZA)Z§=HOH®T
here ¢ = E _Ho'

In a common case it is a quite difficult to solve

(15)

equations (15). Analytical solution can be found
if we neglect ppm interaction between p-orbitals
of neighboring atoms:

1 1 (16)
Gy, =—  and Gy =—
z z

s p

(17)

o _EEE 40U+ X)) (2-99")

’ 2(2-9¢%)
5 7% +Jel = O + xj) ~£2)(2-99%) (18)
2-9¢
where

2.2 2.2 2 2
5 8sgp—7/i\/(gsgp—27) —-45 (19)
A

and used the notations

y=600X*+V)—¢e)+
+e.(99(X* +U?) —¢l)—96,
S=3XU-V),
( ) 20)
A=y* —168le2(NX* +V?) -
40X’ +U?) ¢,
& =E-E,¢,=E-E,

It is easy to ensure that function j(E) ap-
proaches zero if sps (X=0) —interactions can be
neglected. In this case we obtain known solution
for Bethe lattice with single-parametric tight-
binding Hamiltonian, set in basis of single s-or-
bital function per each atom.

Let us remind that partial density of states de-
termined as imaginary parts of Green’s function
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G, and G and the total local density of states of
electron is the sum of these partials.

On a figure 1 represented LDSE of hexagonal
monolayer (solid curve) calculated by equations
(16) — (20) and tetrahedrally coordinated struc-
ture (dashed curve)[2].

It is well enough seen that energy spectrum of
hexagonal structure, unlike the tetrahedral, doesn’t
have forbidden gap, i.e. the graphite monolayer
has a metallic type of conductivity. Consequently,
as it was mentioned in [3], the most significant
properties of electron sub-system of solids are
determined by the short-range order. Note that
represented graphs have qualitative character. All
calculations are provided to establish the influ-
ence of geometry of nearest atomic arrangement
on an electron energy spectrum.
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Figure 1 — LDSE of tetrahedral [2](dashed) and hex-
agonal (solid line) structures
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JOKAJIBHAS TIIJIOTHOCTD JIEKTPOHHBIX COCTOSSHUM T'PA®EHA
Pesrome
B nannoii pabote paccunTaHa JOKaJdbHAasI MJIOTHOCTH 3JIEKTPOHHBIX COCTOSIHUH rpadeHa MeTo oM
¢ynkuuii ['puna Ha ocHOBe mpubmmKenus pemietku bere. )X
KiroueBble ci10Ba: mIoTHOCTH cocTosiHUS, DyHKIMs [ puHa, rpadeH.
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JIOKAJIBHA 'YCTUHA EJIEKTPOHHUX CTAHIB 'PA®EHY
Pe3rome
VY nmanHHiii pobOTi po3paxoBaHa I'yCTHHA €JIEKTPOHHHX CTaHiB rpadeny Metogom ¢yHkmii ['pina Ha
OCHOBI HaONIMKEeHHS rpaTku bere.
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