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OPTIMIZED RELATIVISTIC MODEL POTENTIAL METHOD AND 
QUANTUM DEFECT APPROXIMATION IN THEORY OF RADIATIVE 
TRANSITIONS IN SPECTRA OF MULTICHARGED IONS

The combined relativistic model potential approach and rel-
ativistic many-body perturbation theory with the zeroth order 
optimized one-particle approximation are used for calculation 
of the Li-like ions energies and oscillator strengths of radiative 
transitions from ground state to low-excited and Rydberg states. 
New element in our scheme is an implementation of optimized 
relativistic model potential and quantum defect approximation) 
approach to energy approach frames. Comparison of calculated 
oscillator strengths with available theoretical and experimental 
(compillated) data is performed.

1. Introduction
The research on the spectroscopic and struc-

tural properties of highly ionized atoms has a 
fundamental importance in many fields of atomic 
physics (spectroscopy, spectral lines theory), as-
trophysics, plasma physics, laser physics and so 
on. It should be mentioned that the correct data 
on radiative decay widths, probabilities and os-
cillator strengths of atomic transitions are needed 
in astrophysics and laboratory, thermonuclear 
plasma diagnostics and in fusion research. In 
this light, an special interest attracts studying the 
spectral characteristics of the He-, Li etc like ions. 
There have been sufficiently many reports of cal-
culations and compilation of energies and oscilla-
tor strengths for the Li-like ions and other alkali-
like ions (see, for example, [1–19]). Particularly, 
Martin and Wiese have undertaken a critical eval-
uation and compilation of the spectral parameters 
for Li-like ions (Z=3-28) [1,2]. The results of the 
high-precision non-relativistic calculations of the 
energies and oscillator strengths of 1s22s¡1s22p 
for Li-like systems up to Z = 50 are presented 
in Refs. [9-17]. The  Hylleraas-type variational 
method and the 1/Z expansion method have been 
used. Chen Chao and Wang Zhi-Wen [14] listed 
the nonrelativistic dipole-length, -velocity, -ac-
celeration oscillator strengths for 1s22s–1s22p 

transitions of LiI isoelectronic sequence calcu-
lated  within a full core plus correlation method 
with using multiconfiguration interaction wave 
functions. Fully variational nonrelativistic Har-
tree-Fock wave functions were used by Bièmont 
in calculating 1s2n2L (n<8=s,p,d,f; 3<Z<22) Li-
like states [16]. In many papers the Dirac-Fock 
(DF) method, model potential, quantum defect 
approximation in the different realizations have 
been used for calculating  the energies and oscil-
lator strengths of the Li-like and similar ions (see 
Refs.[3-6,16-30]). The consistent QED calcula-
tions of the energies, ionization potentials, hy-
perfine structure constants for the Li-like ions are 
performed in Refs. [18,19]. However, for Li-like 
ions with higher Z, particularly, for their high-ex-
cited (Rydberg) states, there are not enough pre-
cise data available in literatures. In our paper the 
optimized relativistic model potential (ORMP) 
[26-29] combined with the relativistic energy ap-
proach [3-5] and many-body perturbation theory 
(PT) [19,29] with zeroth order optimized 1-parti-
cle representation [4,21-24] are used for calcula-
tion the Li-like ions (Z=11-42,69,70) energies and 
oscillator strengths of radiative transitions from 
ground state to low-excited and Rydberg states. 
The key feature of the presented basis theory is an 
implementation of the relativistic model potential 
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(quantum defect approach) to the frames of en-
ergy approach for studying spectral parameters 
of Rydberg multi-electron ions. The comparison 
of calculated oscillator strengths with available 
theoretical and experimental (compillated) data is 
performed.

2. The theoretical method
In the relativistic energy approach [3,4,22-

24] the imaginary part of electron energy shift of 
an atom is  directly connected with the radiation 
transition  probability. An approach, using the 
Gell-Mann and Low formula is used in treating 
the relativistic atom. The total energy shift of the 
state is usually presented as (see, for example, 
[3,4,24] and also [21]):

                    DE = ReDE + i Г/2                 (1)                                                                         
where Г is interpreted as the level width and 

decay possibility P =  Г. The imaginary part of 
electron energy of the system, which is defined in 
the lowest PT order as [3]: 
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The separated terms of the sum in (3) represent the contributions of different channels and 
a probability of the dipole transition is:  
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The corresponding oscillator strength: 152 1067.6/  nggf  , where g is the degeneracy 
degree,   is a wavelength in angstrems (Ǻ). Under calculating the matrix elements (3) one 
should use the angle symmetry of the task and write the expansion for potential sinr12/r12 on 
spherical functions as follows [3,4]:  
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where J  is the Bessel function of first kind and ()= 2 + 1. This expansion corresponds to 
usual multipole one for radiative probability. Substitution of expansion (5) to matrix element 
of interaction gives [3,4]:  
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where ji is the total single electron momentum, mi – the projections; QulQ  is the Coulomb part  
of interaction, BrQ - the Breit part. The Coulomb part QulQ  is expressed in terms of radial 
integrals R , angular coefficients S  : 
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The different  items in (7) include large and small components of the Dirac functions; the 

sign «» means that in (7) the large radial component fi is to be changed by the small gi  one 
and the moment  li is to be changed by  1~

 ii ll  for the Dirac number æ> 0 and li+1 for æ<0. 
The Breit interaction part is defined by similar way (see [3-5,21,24]. The relativistic wave 
functions are calculated by solution of the Dirac equation with the potential, which includes 
the “outer electron- ionic core” potential and polarization potential [21]. In order to describe 
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calculated by solution of the Dirac equation with 
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ionic core» potential and polarization potential 
[21]. In order to describe interaction of the outer 
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The corresponding oscillator strength: 152 1067.6/  nggf  , where g is the degeneracy 
degree,   is a wavelength in angstrems (Ǻ). Under calculating the matrix elements (3) one 
should use the angle symmetry of the task and write the expansion for potential sinr12/r12 on 
spherical functions as follows [3,4]:  
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,                 (5) 
where J  is the Bessel function of first kind and ()= 2 + 1. This expansion corresponds to 
usual multipole one for radiative probability. Substitution of expansion (5) to matrix element 
of interaction gives [3,4]:  
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where ji is the total single electron momentum, mi – the projections; QulQ  is the Coulomb part  
of interaction, BrQ - the Breit part. The Coulomb part QulQ  is expressed in terms of radial 
integrals R , angular coefficients S  : 

                                       

       
       .3~4~2~1~3~4~2~1~34~2~134~2~1

3~241~3~241~124312431Qul





SRSR

SRSR
Z

Q l





                 (7) 
The different  items in (7) include large and small components of the Dirac functions; the 

sign «» means that in (7) the large radial component fi is to be changed by the small gi  one 
and the moment  li is to be changed by  1~

 ii ll  for the Dirac number æ> 0 and li+1 for æ<0. 
The Breit interaction part is defined by similar way (see [3-5,21,24]. The relativistic wave 
functions are calculated by solution of the Dirac equation with the potential, which includes 
the “outer electron- ionic core” potential and polarization potential [21]. In order to describe 
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one-electron basis of the  relativistic many-body 
PT. The minimization of functional Im dEninv 
leads to integral-differential equation that can be 
solved using one of the standard codes. There-
fore, it provides the construction of the optimized 
1-particle representation and thus ORMP scheme 
[27-29]. The same procedure is used in general-
ization of the relativistic quantum defect approxi-
mation (QDA). Usually, the most exact version of 
the QDA is provided by using the empirical data 
in order to determine the quantum defect values 
for different state. The above described approach 
allows to generalize the QDA and get a new ab 
initio optimized QDA (OQDA) scheme, satisfy-
ing a principle of minimization for the gauge de-
pendent radiative contributions to Im dEninv for the 
certain class of the photon propagator calibration. 
A relativistic quantum defect is usually defined as 
(see, for example, [30]:

,)( χgνmχ −+−= nn nE                                (8)
where χ is he Dirac quantum number, and 
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In the non-relativistic limit (i.e. the fine structure 
constant α→0) expression (8) transfers to the well 
known non-relativistic expression for quantum 
defect: 
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where n is the principal quantum number, n* is 
an effective quantum number, Еn is an electron 
energy and z is a charge of a core (ion).  

3. Results
We applied the above described approach to 

calculating the energies and oscillator strengths 
of transitions in spectra of the Li-like ions (Z=11-
42,69,70). All calculations are performed on the 
basis of the numeral code Superatom. There are 
considered the radiative transitions from ground 
state to the low-excited and Rydberg states, par-
ticularly, 2s1/2 – np1/2,3/2, np1/2,3/2-nd3/2,5/2 (n=2-12). 
To test the obtained results, we compare our cal-
culation data on the oscillator strengths values 

for some Li-like ions with the known theoretical 
and compillated data [1,2,6-17,25]. As example, 
in table 1,2 we list our oscillator strengths val-
ues (ORMP and OQDA) for 2s1/2–2p1/2,3/2 transi-
tions in Li-like ions S13+,Ca17+,Fe23+,Zn27+,Zr37+, 
Mo39+, Sn47+, Tm66+, Yb67+ . The DF calculation 
data by Zilitis [6] and the “best” compillated (ex-
perimental) data [1,2] for the some low-Z Li-like 
ions are listed in tables 1,2 for comparison too. 
It should be reminded that the experimental data 
on the oscillator strengths for many (especially, 
high-Z) Li-like ions are absent. In a whole, there 
is a physically reasonable agreement between 
the listed data. The important features of the ap-
proach used are using the optimized one-particle 
representation and account for the polarization ef-
fect. Letus note that an estimate of the gauge-non-
invariant contributions (the difference between 
the oscillator strengths values calculated with us-
ing the transition operator in the form of «length» 
and «velocity») is about 0.3%. It means that the 
results are practically equal within schemes with 
using the different photon propagator gauges 
(such as Coulomb, Babushkin, Landau). In table 
3 we present the our oscillator strengths values 
(ORMP and OQDA) for the 2s1/2 – npj  (n=3-12, 
j=1/2,3/2) transitions in spectrum of the Li-like 
Ca17+.  

Table 1. Oscillator strengths of the 2s1/2 – 2p1/2 
transitions in Li-like ions.

DF Exp. Our data: 
ORMP

Our 
data: 

OQDA
Ion 2s1/2–2p1/2 2s1/2–2p1/2 2s1/2–2p1/2 2s1/2–

2p1/2

S13+ 0.0299 0.030 0.0301 0.0303

Ca17+ 0.0234 0.024 0.0236 0.0238

Fe23+ 0.0177 0.018 0.0179 0.0181

Zn27+ 0.0153 – 0.0156 0.0158

Zr37+ 0.0114 – 0.0118 0.0121

Mo39+ – 0.011 0.0110 0.0114

Sn47+ 0.0092 – 0.0095 0.0099

Tm66+ – – 0.0072 0.0076

Yb67+ 0.0067 – 0.0069 0.0073
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Table 2. Oscillator strengths of the 2s1/2 – 2p3/2 
transitions in Li-like ions.

DF Exp. Our data: 
ORMP

Our 
data: 

OQDA

Ion 2s1/2–2p3/2 2s1/2–2p3/2 2s1/2–2p3/2 2s1/2–
2p3/2

S13+ 0.0643 0.064 0.0641 0.0643
Ca17+ 0.0542 0.054 0.0541 0.0544
Fe23+ 0.0482 0.048 0.0481 0.0484
Zn27+ 0.0477 – 0.0475 0.0479
Zr37+ 0.0543 – 0.0540 0.0544
Mo39+ – 0.056 0.0558 0.0562
Sn47+ 0.0686 – 0.0684 0.0688
Tm66+ – – 01140 01145
Yb67+ 0.1170 – 0.1167 0.1172

                           Table 3. Oscillator strengths of the 
2s1/2 – np1/2 transitions in Ca17+.

Transition QDA DF Exp. Our data: 
ORMP

Our 
data: 

OQDA

2s1/2–3p1/2 – – 0.123 0.122 0.127

2s1/2–3p3/2 – – 0.241 0.243 0.248

2s1/2–4p1/2 – – – 0.029 0.032

2s1/2–8p1/2 2.54a 2.53a – 2.55a 2.55a

2s1/2–10p1/2 1.24a 1.24a – 1.25a 1.25a

2s1/2–12p1/2 0.70a 0.698a – 0.71a 0.71a

Note: a (10-3gf).

The standard QDA, DF oscillator strengths 
calculation results by Zilitis and some experimen-
tal data by Martin-Weiss [1,2,6,24] are listed in 
table 3 too. The QDA oscillator strengths data be-
come more exact with the growth of the principal 
quantum number. At the same time the accuracy 
of the DF data may be decreased. The agreement 
between the Martin-Weiss data and our results for 
the transitions between low-lying terms is suffi-
ciently good.
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OPTIMIZED RELATIVISTIC MODEL POTENTIAL METHOD AND QUANTUM DEFECT 
APPROXIMATION IN THEORY OF RADIATIVE TRANSITIONS IN SPECTRA OF 
MULTICHARGED IONS

Abstract. The combined relativistic model potential approach and relativistic many-body 
perturbation theory with the zeroth order optimized one-particle approximation are used for calculation 
of the Li-like ions energies and oscillator strengths of radiative transitions from ground state to low-
excited and Rydberg states. New element in our scheme is an implementation of optimized relativistic 
model potential and quantum defect approximation) approach to energy approach frames. Comparison 
of calculated oscillator strengths with available theoretical and experimental (compillated) data is 
performed.
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ОПТИМИЗИРОВАННЫЙ РЕЛЯТИВИСТСКИЙ МЕТОД МОДЕЛЬНОГО 
ПОТЕНЦИАЛА И МЕТОД  КВАНТОВОГО ДЕФЕКТА В ТЕОРИИ РАДИА-ЦИОННЫХ 
ПЕРЕХОДОВ В СПЕКТРАХ МНОГОЗАРЯДНЫХ ИОНОВ 

Резюме. Комбинированный релятивистский метод модельного потенциала и метод теории 
возмущений с оптимизированным 1-частичным нулевым приближением использованы для 
вычисления энергий и сил осцилляторов радиационных переходов из основного состояния 
в низколежащие и ридберговские состояния в спектрах  Li-подобных ионов. Основная 
особенность нового подхода заключается в имплементации оптимизированного релятивистского 
приближения модельного потенциала (квантового дефекта) в рамки энергетического подхода. 
Выполнен анализ и сравнение полученных данных  для сил осцилляторов с имеющимися 
теоретическими и экспериментальными данными.  

Ключевые слова: оптимизированный метод модельного потенциала, силы осцилляторов, 
радиационные переходы  


