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NONLINEAR STOCHASTIC DYNAMICS GOVERNING FOR QUANTUM SYSTEMS 
IN EXTERNAL FIELD: CHAOS THEORY AND RECURRENCE SPECTRA ANALYSIS

Nonlinear method of chaos theory and the recurrence spectra 
formalism are used to study quantum stochastic futures and chaotic 
elements in dynamics of atomic systems in the external electromagnetic 
(laser) field.  Some illustrations regarding the recurrence spectra and 
chaos dynamics of lithium and magnesium atoms in the crossed 
electric and magnetic and laser fields are presented. 

1. Introduction
In last years a great interest attracts studying 

a dynamics of quantum systems in external elec-
tric and magnetic field [1-18]. It has been discov-
ered that dynamics of these systems in external 
electromagnetic fields has features of the random, 
stochastic kind and its realization does not re-
quire the specific conditions. The importance of 
studying a phenomenon of stochasticity or quan-
tum chaos in dynamical systems is provided by a 
whole number of technical applications, including 
a necessity of understanding chaotic features in a 
work of different electronic devices and systems, 
including the nano-optical ones. New fi eld of in-New field of in-
vestigations of the quantum and other (geophysi-
cal, chemical, biological,  social etc) systems has 
been provided by a great progress in a develop-
ment of a chaos theory methods [1,2] (c.f. review 
part in Refs.[19-22]).

Rydberg atoms in strong external fields have 
been shown to be real physical examples of non-
integrable systems for studying the quantum man-
ifestations of classical chaos both experimentally 
and theoretically. To describe these phenomena, 
one has to make calculating and interpreting the 
recurrence spectra which is the Fourier transfor-
mation of a photo absorption spectrum [2,13,14]. 
Consequently, the recurrence spectrum provides a 
quantum picture of classical behaviour. Studies of 
recurrence spectra have led to observations of the 

creation of new orbits through bifurcation’s, the 
onset of irregular behaviour through core scatter-
ing and symmetry breaking in crossed fields [1-
7,17,18]. In the past, many researchers have cal-
culated the recurrence spectra of a Rydberg atom 
in an external field. But they only calculated the 
spectra in static electric or magnetic fields. In a 
recent experiment, the absorption spectrum of the 
lithium atom in a static electric field plus a weak 
oscillating field was measured and Haggerty and 
Delos gave some explanation for it theoretically 
(c.f.[2,13,14]). But as to the influence of an oscil-
lating electric field on the absorption spectrum of 
the Rydberg atom in static magnetic field, none 
has given the calculation both experimentally 
and theoretically, besides the first classical esti-
mate [14]. In previous our papers we have given 
a review of this approach in analysis of different 
systems of quantum physics, electronics and pho-
tonics. In this paper we have used the nonlinear 
method of chaos theory and the recurrence spec-the recurrence spec-
tra formalism to study quantum stochastic futures 
and chaotic elements in dynamics of atomic sys-
tems in the external electroomagnetic fields.  

2. Nonlinear analysis of quantum system dy-
namics in a field and a chaos theory methods

 Following refs. [21,22] we briefly consid-
er an analysis of nonlinear dynamics of some 
system in a field by means of a chaos theory 
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methods. Usually some dynamical parameter  
s(n) = s(t0 + nDt) = s(n), where t0 is the start argu-
ment (for example, time), Dt is the argument step, 
and is n the number of the measurements. In a 
general case, s(n) is any time series, particularly 
the amplitude level. Since processes resulting in 
the chaotic behaviour are fundamentally multi-
variate, the reconstruction results in a certain set 
of d-dimensional vectors y(n) replacing the sca-
lar measurements. The standard method of using 
time-delay coordinates is usually used to recon-
struct the phase space of an observed dynamical 
system. The direct use of the lagged variables 
s(n + t), where t is some integer, results in a co-
ordinate system in which a structure of orbits in 
phase space can be captured. Using a collection 
of time lags to create a vector in d dimensions,

y(n) = [s(n), s(n + t), s(n + 2t), …, s(n + (d-1)t)],  
                                                                           (1)

the required coordinates are provided. In a 
nonlinear system, the s(n + jt) are some unknown  
nonlinear combination of the actual physical 
variables that comprise the source of the  mea-
surements. The dimension d is also called the 
embedding dimension, dE. If any time lag t is 
chosen too small, then the coordinates s(n + jt) 
and s(n + (j + 1)t) are so close to each other in 
numerical value that they cannot be distinguished 
from each other. Similarly, if t is too large, then 
s(n + jt) and s(n + (j + 1)t) are completely inde-
pendent of each other in a statistical sense. Also, 
if t is too small or too large, then the correlation 
dimension of attractor can be under- or overes-
timated respectively. It is therefore necessary to 
choose some intermediate (and more appropriate) 
position between above cases. First approach is to 
compute the linear autocorrelation function
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where s is an averaged value and to look for 

that time lag where CL(d) first passes through 
0.  This gives a good hint of choice for t at that 
s(n + jt) and s(n + (j + 1)t) are linearly independ-
ent. However, a linear independence of two vari-
ables does not mean that these variables are non-

linearly independent.  It is therefore preferably to 
utilize approach with a nonlinear concept of in-
dependence, e.g. the average mutual information. 
Let there are two systems, A and B, with measure-
ments ai and bk. The mutual information I of two 
measurements ai and bk is symmetric and non-
negative, and equals to zero if only the systems 
are independent. The average mutual information 
between any value ai from system A and bk from 
B is the average over all possible measurements 
of IAB(ai, bk),

                                                                     (3a)

To place this definition to a context of observa-
tions from a certain physical system, let us think 
of the sets of measurements s(n) as the A and of 
the measurements a time lag t later, s(n + t), as 
B set. The average mutual information between 
observations at n and n + t is then

 ∑=τ
ki ba
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,

),(),()( .                       (3b)

Now we have to decide what property of I(t) we 
should select, in order to establish which among 
the various values of t we should use in making 
the data vectors y(n). It is necessary to choose that 
t where the first minimum of I(t) occurs. 

The goal of the embedding dimension deter-
mination is to reconstruct a Euclidean space Rd 
large enough so that the set of points dA can be 
unfolded without ambiguity. According to the 
embedding theorem, the embedding dimension, 
dE, must be greater, or at least equal, than a di-
mension of attractor, dA, i.e. dE > dA. There are 
standard approaches to reconstruct the attractor 
dimension, for example, the correlation integral 
method. It was shown in refs. [23,24] in study-. It was shown in refs. [23,24] in study-
ing chaos in the vibrations dynamics of the au-
togenerators and similar analysis for geophysical 
systems [19-21, 24, 25], the low, non-integer cor-
relation dimension value indicates on an exist-
ence of low-dimensional chaos. The embedding 
phase-space dimension is equal to the number of 
variables present in the evolution of the system. 
To verify data obtained by the correlation integral 
analysis, it is often used a surrogate data method. 

the phase space of an observed dynamical system. The direct use of the lagged variables s(n + ), 
where  is some integer, results in a coordinate system in which a structure of orbits in phase space 
can be captured. Using a collection of time lags to create a vector in d dimensions, 
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nonlinear combination of the actual physical variables that comprise the source of the  
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where s is an averaged value and to look for that time lag where CL() first passes through 0.  This 
gives a good hint of choice for  at that s(n + j) and s(n + (j + 1)) are linearly independent. 
However, a linear independence of two variables does not mean that these variables are nonlinearly 
independent.  It is therefore preferably to utilize approach with a nonlinear concept of 
independence, e.g. the average mutual information. Let there are two systems, A and B, with 
measurements ai and bk. The mutual information I of two measurements ai and bk is symmetric and 
non-negative, and equals to zero if only the systems are independent. The average mutual 
information between any value ai from system A and bk from B is the average over all possible 
measurements of IAB(ai, bk), 
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To place this definition to a context of observations from a certain physical system, let us think of 
the sets of measurements s(n) as the A and of the measurements a time lag  later, s(n + ), as B set. 
The average mutual information between observations at n and n +  is then 
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 Now we have to decide what property of I() we should select, in order to establish which 
among the various values of  we should use in making the data vectors y(n). It is necessary to 
choose that  where the first minimum of I() occurs.  
 The goal of the embedding dimension determination is to reconstruct a Euclidean space Rd large 
enough so that the set of points dA can be unfolded without ambiguity. According to the embedding 
theorem, the embedding dimension, dE, must be greater, or at least equal, than a dimension of 
attractor, dA, i.e. dE > dA. There are standard approaches to reconstruct the attractor dimension, for 
example, the correlation integral method. It was shown in refs. [23,24] in studying chaos in the 
vibrations dynamics of the autogenerators and similar analysis for geophysical systems [19-21, 24, 
25], the low, non-integer correlation dimension value indicates on an existence of low-dimensional 
chaos. The embedding phase-space dimension is equal to the number of variables present in the 
evolution of the system. To verify data obtained by the correlation integral analysis, it is often used 
a surrogate data method. This an approach makes use of the substitute data generated in accordance 
to the probabilistic structure underlying the original data  [19-21]. The next step is an estimating of 
the Lyapunov exponents (LE). These parameters are the dynamical invariants of the nonlinear 
system and defined as asymptotic average rates. So, they are independent of the initial conditions, 
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This an approach makes use of the substitute data 
generated in accordance to the probabilistic struc-
ture underlying the original data  [19-21]. The 
next step is an estimating of the Lyapunov expo-
nents (LE). These parameters are the dynamical 
invariants of the nonlinear system and defined as 
asymptotic average rates. So, they are indepen-
dent of the initial conditions, and therefore they 
do comprise an invariant measure of attractor. In 
fact, if one manages to derive the whole spectrum 
of LE, other invariants of the system, i.e. Kol-
mogorov entropy and attractor’s dimension can 
be found. The Kolmogorov entropy, K, measures 
the average rate at which information about the 
state is lost with time. An estimate of this mea-
sure is the sum of the positive LE. The inverse of 
the Kolmogorov entropy is equal to an average 
predictability. The estimate of the dimension of 
the attractor is provided by the Kaplan and Yorke 
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, and the LE la are tak-
en in descending order. The known approach to 
computing the LE is based on the Jacobin matrix 
of the system function [3]. The detailed descrip-
tion of the whole approach (our version) to analy-
sis a nonlinear dynamics of chaotic systems can 
be found in refs. [19-25].

3. The recurrence spectra for atomic systems 
in an electromagnetic fields: Sensing chaos 

For quantum systems in an external field there 
is very useful method, based on the analysis of the 
recurrence spectra. To calculate the energy spec-
tra of atomic systems in the electric and magnetic 
fields one should use an approach, which com-
bines solution of the 2D Schrödinger equation 
[16-18] for atomic system in crossed fields and 
operator perturbation theory [8,9]. The detailed 
description of such an approach is presented in 
these refs.[8,17,18], so here we briefly discuss 
the key moments. For definiteness, we consider 
a dynamics of the non-coulomb atomic systems 
in a static magnetic field and oscillating electric 
filed. The Hamiltonian of the system in a static 
magnetic field and an oscillating electric field is 

(in atomic units) is as follows: 
 

(4)
where the electric field and magnetic field B 

are taken along the z-axis in a cylindrical system; 
g=B/2.35×105; V(r )  is a one-electron model po-
tential, which is as follows: 

                                                                                                           
(5)

Here Z is a nuclear charge, and b is a free length 
parameters, which are chosen to give the energy 
spectrum of free atom. In fact, the second term in 
(5) is the corresponding potential of the K-shell 
(in a case of the Li atom). We consider only the 
m=0 state, thus  lz=0. The Hamiltonian obeys a 
classical scaling rule and can be written as: 
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g= ll~ , 3/2~ −ga=a ii  and  
In the oscillating field, the electron energy E(t) 

is not constant. We define e=Eoutg-2/3 as it leaves 
the atom. The useful method is a scaled recur-
rence spectroscopy, which allows to analyse the 
photo absorption amplitude as a function of the 
parameter g-1/3 while varying the external fields 
frequency  simultaneously in such a way that e 
and f remain constant. To account for an electric 
field (under supposition that an electric field is 
quite weak) one can use the perturbation theory. 
For solution of the Schrödinger equation the fi-
nite differences scheme is usually used. To find 
the resonances width and absorption spectrum 
one should use the golden Fermi rule (see details 
in refs. [2,3,8]). 

4. Some results and discussion
We have studied a dynamics of the lithium 

atom in a crossed electric and magnetic fields. 
The transition from the lithium 3s state to final 
states corresponding to the principle quantum 
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numbers around n =125 and m =0 is considered.  
Following to ref. [14,16-18], because the ionic 
core produces important dynamical effects, we 
can split the whole space into two characteristic 
spatial regions: (1) The core region, where the 
laser field and the ionic core potential dominate 
while the external magnetic field can be eliminat-
ed. It should be noted here that the standard semi 
classical closed orbit theory provides an efficient 
treating the motion of a Rydberg electron far from 
the nucleus, but it fails when the electron is close 
to the nucleus. Because this region extends for 
only a few Bohr radii around the atomic nucleus, 
one must deal with this region by using a quan-
tum method; (2) 

The external region typically lies beyond 30 
Bohr radii from the nucleus, so one can treat this 
region using standard semi classical methods or 
approximations to quantum approaches [14-18]. 
Using equation (4-6), we calculate the photo ab-
sorption spectrum of lithium in a magnetic field 
plus an oscillating electric field, with B =4.7T, F1 
=10V/cm and w=108 Hz. The corresponding data 
are presented in figure 1. In figure 2 we present 
the data on the photoabsorption spectrum of the 
LiI in a magnetic field without electric field. One 
should conclude that, when the oscillating field 
was added, the photo absorption spectrum was 
weakened greatly. This is fully corresponding the 
analysis within the standard closed orbit semi-
classical calculation [5,14]. In figures 3(b),(d) we 
list the results of calculating the recurrence spec-
tra of the Li atom in a magnetic field plus an oscil-
lating field, with e=-0.03,v=0.32 ,g-1/3 in the range 
35–50 and f= 0.0035 and 0.07, respectively.

This data are similar to parameters of the semi-
classical approximation analysis [17]. As analysis 
of received data shows, when the value of f in-
creases, the strength of all the peaks decreases. 
Some recurrences dropped rapidly and vanished 
as f increased; others remained even at much high-
er f. As the oscillating field gets stronger, some of 
the peaks re-appear, some more than once. Be-
cause when the oscillating field is strong, one can 
not consider it as a perturbation, the method de-
scribed in this paper [14] is no longer suitable. 
Note that besides the semi-classical closed-orbit 
theory in versions [2-6,13,14], the other standard 
methods, for example, based on the perturbation 
theory [2,3], are not also acceptable for large 
values of field strengths. At the same time, the 
approach applied can be used even in a case of 
strong field. Availability of multiple resonances 
with little widths in atomic spectra in external 
fields is described within quantum chaos theory 
and provided by interference and quantum fluctu-
ations, which characterize chaotic systems [1,9]. 
The chaos theory analysis fully confirms this 
conclusion. The mutual information approach, 
the correlation integral analysis, the false near-
est neighbour algorithm, the LE analysis were 
used in analysis. The main conclusion is that the 
system exhibits a nonlinear behaviour and low-D 
chaos. The LE analysis supported this conclusion. 
Really, the first two LE have the following posi-
tive  values: l1=0.0242; l2=0.0039.  In conclusion, 
let us note that there is of a great interest to per-
form the similar analysis of chaotic dynamics and 
recurrence spectra for more heavy alkali systems 
in a microwave field. In conclusion we present 
also another remarkable example of the chaos 
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Figure 1. Absorption spectra of the Li atom in 
magnetic field plus an oscillating electric field 

 
Figure 2. Absorption spectra of the Li atom in 

magnetic field, B =4 7 T. 
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for magnesium atom (from the ground state).

Figure 3. The recurrence spectra of Li in magnetic 
field plus an oscillating electric field: (b) scaled field f 
=0 0035;  (d) scaled field f =0 07.

In ref.[9] it has presented the detailed theoreti-
cal description of the cited process and listed the 
data about the theoretical spectrum of two-photon 
ATI to final states with J=2 (figure 4). The la-
ser radiation photons energies w in the range of 
0,28-0,30 а.u. are considered, so that the final 
autoionization state (AS) is lying in the interval 
between 123350 см-1 and 131477см-1. First pho-
ton provides the AS ionization, second photon 
can populate the Rydberg resonance’s, owning to 
series 4snl,3dnl,4pnp с J=0 and J=2 [9,25]. In a 
case of 1S0 resonance’s there is observed an excel-
lent identification of these resonance’s. Situation 
is drastically changed in a case of spectrum of 
two-photon ATI to final states with J=2. Only three 
resonance’s are identified. 

Other resonance’s and ATI in a whole demon-
strate non-regular behavior. Studied system is cor-
responding to a status of quantum chaotic system. 

Figure 4. Two-photon ATI from the ground state Mg 
to states J=2; The full cross-section s/I  (solid line) 
and partial cross-sections, corresponding to ioniza-
tion to 3sed (dashed line) or to 3pep opened channels 
(dotted line). Identification of the 1D2 resonance: a- 
4p4p; b-3d4d; c-4s5d;d-3s6d;e-4s6d;f-3d5d; g-4s7d; 

h-3d7s; i-4s8d; j-4s9d; k-4s10d; l-4s11d; m-4s14d; n-
4s15d;

It realizes through the electromagnetic field induc-
tion of the overlapping (due to random interfer-
ence and fluctuations) resonance’s in spectrum, 
their non-linear interaction, which lead to a global 
stochasticity and quantum chaos phenomenon. 
Spectrum of resonance’s is  divided on three inter-
vals: 1). the interval, where states and resonance’s 
are clearly identified and not strongly perturbed; 
2) quantum-chaotic one, where there is a complex 
of the overlapping and strongly interacting reso-
nance’s; 3). shifted one on energy, where behavior 
of energy levels and resonance’s is similar to the 
first interval. Analysis shows that the resonance’s 
distribution in the second quantum-chaotic interval 
is satisfied to the Wigner distribution W(x)=xexp(-
px2/4), however, in the first interval the Poisson 
distribution is valid. The chaos theory analysis 
fully confirms this conclusion.
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NONLINEAR STOCHASTIC DYNAMICS GOVERNING FOR QUANTUM SYSTEMS IN 
EXTERNAL FIELD: CHAOS THEORY AND RECURRENCE SPECTRA ANALYSIS

Abstract. 
Nonlinear method of chaos theory and the recurrence spectra formalism are used to study quantum 

stochastic futures and chaotic elements in dynamics of atomic systems in the electromagnetic (laser) 
field. Some illustrations regarding the recurrence spectra and chaos dynamics of lithium and magne-
sium atoms in the crossed electric and magnetic and laser fields are presented. 
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НЕЛИНЕЙНАЯ СТОХАСТИЧЕСКАЯ ДИНАМИКА КВАНТОВЫХ СИСТЕМ ВО 
ВНЕШНЕМ ПОЛЕ: АНАЛИЗ НА ОСНОВЕ ТЕОРИИ ХАОСА И РЕКУРРЕНТНЫХ 
СПЕКТРОВ

Резюме. 
На основе нелинейных методов теории хаоса  и формализма рекуррентных спектров из-

учены квантово-стохастические особенности и элементы хаоса в динамике атомных систем во 
внешнем электромагнитном (лазерном) поле. В качестве примера приведены данные по рекур-
рентным  спектрам и хаотической динамике атомов лития и магния в скрещенных электриче-
ском и магнитном.а также лазерном полях.
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НЕЛІНІЙНА СТОХАСТИЧНА ДИНАМІКА КВАНТОВИХ СИСТЕМ У ЗОВНІШ-

НЬОМУ ПОЛІ: АНАЛІЗ НА ОСНОВІ ТЕОРІЇ ХАОСУ ТА РЕКУРЕНТНИХ СПЕКТРІВ 

Резюме. 
На підставі нелінійних методів теорії хаосу та формалізму рекурентних спектрів досліджені 

квантово-стохастичні особливості та елементи хаосу в динаміці атомних систем у зовнішньому  
електромагнітному (лазерному) полі. В якості приклада наведені дані по рекурентним  спек-
трам та хаотичній динаміці атомів літію та магнію у схрещених електричному та магнітному, а 
також лазерному полях.

Ключові слова: атомна система, електромагнітне поле, хаос, рекурентний спектр


