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OPTIMIZED QUASIPARTICLE DENSITY FUNCTIONAL APPROACH
FOR MULTIELECTRON ATOMIC SYSTEMS

We present the optimized version of the quasiparticle density functional theory (DFT), constructed on the
principles of the Landau-Migdal Fermi-liquids theory and principles of the optimized one-quasiparticle represen-
tation in theory of multielectron systems. The master equations can be naturally obtained on the basis of varia-
tional principle, starting from a Lagrangian of an atomic system as a functional of three quasiparticle densities.
These densities are similar to the Hartree-Fock (HF) electron density and kinetical energy density correspond-
ingly, however the third density has no an analog in the Hartree-Fock or the standard DFT theory and appears as
result of account for the energy dependence of the mass operator X. The elaborated approach to construction of
the eigen-functions basis can be characterized as an improved one in comparison with similar basises of other
one-particle representations, namely, in the HF, the standard Kohn-Sham approximations etc.

1. At present time a density functional
theory (DFT) became by a powerful tool in
studying the electron structure of different
materials, including atomic and molecular
systems, solids, semiconductors etc. [1-42].
A construction of the correct energy func-
tionals of a density for multi-body systems
represents very actual and important problem
of the modern theory of semiconductors and
solids, thermodynamics, statistical physics
(including a theory of non-equilibrium ther-
modynamical processes), quantum mechan-
ics and others.

In last time a development of formal-
ism of the energy density functional has been
considered in many papers (see [1-7]). Its
application is indeed based on the two known
theorems by Hohenbreg-Kohn (t = 0, where
T is a temperature) and Mermin (t = 0) [1,2].
According to these theorems, an energy and
thermodynamical potential of the multi-body
system are universal density functionals.
Though these theorems predict an existence
of such a density functional, however its
practical realization is connected with a
number of the significant difficulties (see [1-
3,8-17]). The problem is complicated under
consideration of the non-stationary tasks (the
known theorem by Runge-Gross about 1-1
mapping between time-dependent
densities and the external potentials [2]).
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Let us remind some important results
of the density functional theory. It should be
mentioned a constructive approach to deliv-
ering optimal representations for an exact
density functional [1,2,8-16], which has been
used for generalization of the Hohenberg-
Kohn theorem in order to get an effective
density functional for large molecules. As
alternative version one could consider a qua-
siparticle conception of Kohn-Sham and the
Levi-Valone method [2,3]. In fact it has been
done an attempt practically to realize an idea
of the Hohenberg-Kohn theorem.

More advanced analogous approach
with account of the multi-particle correla-
tions is developed in ref. [8,17,18].

The quasiparticle Fermi-liquid version
of the DFT has been earlier developed in
Refs. [1-3,8,17] and based on the principles
of the Landau-Migdal Fermi liquids theory.
In refs. [4,5] it has been firstly developed a
consistent relativistic quasiparticle theory of
a density functional formalism and construct-
ed an optimized one-quasiparticle representa-
tion in a theory of multi-electron systems.
The lowest order multi-body effects, in par-
ticular, the gauge dependent radiative con-
tribution for the certain class of the photon
propagators calibration are treated in QED
formulation and new density functional inte-
gral-differential equations are derived. The



minimal value of the gauge dependent radia-
tive contribution is considered to be the
typical representative of the multi-electron
correlation effects, whose minimization is a
reasonable criteria in the searching for the
optimal QED perturbation theory one-
electron basis. In this paper we present the
optimized version of the quasiparticle DFT (a
Fermi-liquid version of the DFT), based on
the principles of the Landau-Migdal Fermi-
liquids theory and performance of the gauge
invariant principle.

The elaborated approach to construction of
the eigen-functions basis can be character-
ized as an improved one in comparison with
similar basises of other one-particle represen-
tations, namely, in the HF, the standard
Kohn-Sham approximations [12-17] etc.
Below we present only the key points of the
theory for multielectron atomic systems.

2. According to Refs. [1-5], the master
equations can be obtained on the basis of var-
iational principle, if we start from a Lagran-
gian of an atomic system L. It should be de-
fined as a functional of quasiparticle densi-
ties:

vo=n, 10,
vn=>nIve,mr, )
A
v,(N=>n[0,®, -D,D,].

The densities vy and v, are similar to the HF
electron density and kinetical energy density
correspondingly; the density v, has no an
analog in the Hartree-Fock (HF) or the stand-
ard DFT theory and appears as result of ac-
count for the energy dependence of the mass

operator X. The functions @, are the solu-

tions of the master equations for multielec-
tron atomic systems with a nuclear charge Z
(in atomic units) as follows:

[p*/2=-D"Z,/r, +> (x)+

p@> /op*)pl®, (x) =
(1-0) log)e,® ,(X)
)

The functions @ , in (5) are orthogonal with a
weight
p'=at =[1-0> [og]. (3)

Now one can introduce the wave functions of the
quasiparticles

0, = a—1/2q)i’ @)

which are, as usually, orthogonal with weight 1.
For complete definition of {(01} it should be
determined the values z o az /ap2 , az 1os .

A Lagrangian L can be written as a sum of a
free Lagrangian and Lagrangian of interac-
tion:

Lg=Lo +Lg"™, (5)
where a free Lagrangian Lg has a standard

form:
L =Idr;nﬂ®1 (i0/ot-g,)d, (6

The interaction Lagrangian is defined in the
form, which is characteristic for a standard
(Kohn-Sham) density functional theory (as a
sum of the Coulomb and exchange-
correlation terms), however, it takes into ac-
count for the energy dependence of a mass

operatorz :
in 1 :
L = L, - D [ BicF (1, 1,)v; (1)vi (1, )drdr,

i,k=0
(7)
where [ are some constants (look below),

F is an effective potential of the exchange-
correlation interaction

In the local density approximation in the
density functional the potential F can be ex-
pressed through the exchange-correlation

pseudo-potential V. as follows [1-5]:

F(rr) =y /0vy-6(n —1,).

(8)
According to ref. [1-4], one can get the fol-

lowing expressions for 3", = -oL0" /5, :
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Here v, is the Coulomb term (look above),

> & s the exchange term. Using the known

canonical relationship:
Hy=®,0, /80, +®,d, /50, - L, (10)

after some transformations one can receive
the expression for the quasiparticle Hamilto-

nian, which is corresponding to a Lagrangian
Ly,
0 int 0
H,=H,+H; =H,-L+
+%ﬂooé\/xc [6vy - v+
+ BNy 16V vy vy + (12)

1
Eﬂllé\/xc l6v, 'V12 -

1
_Eﬂzzévxc 6v, 'sz

It is obvious that omitting the energy de-
pendence of the mass operator (i.e. supposing
Bo, =0) the quasiparticle density functional

theory can be resulted in the standard Kohn-
Sham theory.

Further let us give the corresponding
comments regarding the constants fSi. With-
out a detailed explanation, we note here that
the corresponding constants in our theory
approximately possess the same universality
as ones in the Landau Fermi-liquid theory
and Migdal finite Fermi-systems theory.
Though it is well known that the entire uni-
versality is absent. First of all, it is obvious
that the terms with constants

Lor Py Pros Pop give omitted contribution
to the energy functional (at least in the zeroth

approximation in comparison with others), so
they can be equal to zero in the simple ap-

proximation. The value for a constant [, in
some degree is dependent upon the definition
of the potential V. . If as V¢ it is use one

of the correct exchange-correlation potentials
from the standard density functional theory,
then without losing a community of state-

ment, the constant ﬂoo can be equal to 1.

The constant /3, can be in principle calcu-
lated by analytical way, but it is very useful
to remember its connection with a spectro-
scopic factor Fsp of atomic or molecular sys-

tem (it is usually defined from the ionization
cross-sections) [5]:

F,, :{1—8—‘12 kk[—(I.P.)k]}

(12)
where |.P. is a ionization potential. It is easily
to understand the this definition is in fact cor-
responding to the pole strength of the corre-
sponding Green's function [62]. The simple
approximation for the I.P. is as follows [2-4]:

(1.P.), =—(e, +F.), (13)
1
Fo =2y (_ (-I-P-)k)z 1-o%, (ek)/aE L (Ek)
(14)

It is well known that can be determined by
the following standard expression (in the
second order of the perturbation theory):



2 (Vksij _Vksji ksij (Vksij _Vksji ksij

Zf«)(e):;e+es —€ —€; +§:e+eS - € —€;
(15)

Other details can be found in Refs. [1-10]).
3. As application of the quasiparticle theory
we present the estimates for the atomic spec-
troscopic factors. Using the above written
formula, one can simply define the values
(3)-(12) one could the quantity (12). In the

concrete calculation as potential V. we use

the exchange-correlation pseudo-potential
which contains the correlation (Gunnarsson-
Lundgvist) potential and relativistic ex-
changer Kohn-Sham one [4,5].

As example in table 1 we present our calcu-
lational data for spectroscopic factors of
some atoms.

Table 1.Spectroscopic factors of the external
ns? shells of some atoms and ions

Atom, | N | s, | Atom, | n Fsp
ion ion

Ar 3 1058 | As 6 0.30
Exp. |3 [0.56 | As 6 0.31
RPA |3 |0.70 | Rn 6 0.29
TI™ [310.60|Fr 6 0.28
Xe 6 | 0.36 | Fr 6 0.28
TI 6 | 0.36 | Ra 7 0.43
Pb 6 | 0.34 | Ac 7 0.42
Bi 6 | 033 | Th 7 0.42
Po+ 6 [0.31 | Pa 7 0.42
Po 6 {031 |U 7 0.42

There are also listed for the argon atom the
experimental value of the spectroscopic fac-
tor and the value, obtained in the random
phase approximation (RPA) with exchange.
It should be noted that the Hartree-Fock the-
ory gives the value of 1. In conclusion let us
remind that the presented approach to defini-
tion of the functions basis {® ,} of a Hamil-

tonian HG| can be treated as an improved in

comparison with similar basises of other one-
particle representations (for example, the HF,
the Hatree-Fock-Slater, the standard Kohn-
Sham approximations etc.). Naturally, this
advancement can be manifested during

studying those properties of the multi-
electron systems, when an accurate account
for the complex exchange-correlation effects,
including the continuum pressure, energy
dependence of a mass operator etc, is criti-
cally important [28-40].
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OPTIMIZED QUASIPARTICLE DENSITY FUNCTIONAL APPROACH
FOR MULTIELECTRON ATOMIC SYSTEMS

Summary. We present the optimized version of the quasiparticle density functional
theory (DFT), constructed on the principles of the Landau-Migdal Fermi-liquids theory and
principles of the optimized one-quasiparticle representation in theory of multielectron sys-
tems. The master equations can be naturally obtained on the basis of variational principle,
starting from a Lagrangian of an atomic system as a functional of three quasiparticle densi-
ties. These densities are similar to the Hartree-Fock (HF) electron density and kinetical en-
ergy density correspondingly, however the third density has no an analog in the Hartree-
Fock or the standard DFT theory and appears as result of account for the energy dependence
of the mass operator ~. The elaborated approach to construction of the eigen-functions basis
can be characterized as an improved one in comparison with similar basises of other one-
particle representations, namely, in the HF, the standard Kohn-Sham approximations etc.
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OIITUMUM3NPOBAHHASA KBASUYACTUYHASA TEOPUA ®YHKIIMOHAJIA
IVIOTHOCTHU AJIAA MHOTI'OQJIEKTPOHHBIX ATOMHBIX CUCTEM

Pe3iome. [IpencraBiena onTUMU3NPOBAaHHAS BEPCUSl KBa3UYACTHUHOW TEOpUH (DYHKITHO-
Hasa wiotHocTH (TPII), mocTtpoeHHas Ha HmpuHUUIAX Teopuu (Gepmu-kuakoctd Jlanaay-
Murpana 1 BBEACHUU ONTUMAJIBHOIO OJHOKBA3UYACTUYHOIO NPEACTABICHUSA B TEOPUU MHO-
TOIEKTPOHHBIX cucTeM. OCHOBHBIE YpaBHEHHsI MOTYT OBITh €CTECTBEHHO IOJY4YEHbI Ha OC-
HOBE BapMalMOHHOI'O IPUHLNIIA, UCXOJS U3 JarpaHKuaHa aTOMHOW CUCTEMBI, IIPEACTABIICH-
HOro B BHJE (YHKLMOHAJAa TpeX KBa3sMYaCTHUHBIX IUIOTHOCTeH. IlocnenHue aHamoruyHbl
CTaHJApPTHBIM 3JIEKTPOHHOM IUIOTHOCTU XapTpu-Poka (X®P) M MIOTHOCTH KUHETHYECKON
SHEPIUU;, OJHAKO TPEThS MIIOTHOCTh HE MMeeT aHanora B Teopun X unu crangaptaon TOIT
U TOSIBJISETCS KaK pe3yJbpTaT ydyeTa SHEPreTH4EeCKOM 3aBHUCHMOCTH MacCOBOTO OIlepaTopa
KBa3uuacTull. Pa3paboTaHHbIi MOAX0A K MOCTPOCHUIO Oa3uca coOOCTBEHHbBIX (QYHKUMN MIpes-
craBisieTcs 0osee APPEKTUBHBIM B CPABHEHUHU C aHAJIOTUYHBIMU 0a3McaMu IPYTHX OAHOYA-
CTUYHBIX IPEJCTABICHUH, B YACTHOCTHU, B NMpUOMKeHUsIX XD WM cTaHAapTHOM NpUOIMKe-
Hun Kona-Illama u ap.

KiroueBble cj0Ba: KBa3MyacTMyHas Teopus (yHKIMOHAJIA IJIOTHOCTH, OOMEHHO-
KOPPEJSLIMOHHBIE TIOPABKU
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ONNTUMI3OBAHA KBA3IYACTUHKOBA TEOPISA ®YHKINIOHAJIA I'YCTUHH
JJIAA BATATOEJIJEKTPOHHUX ATOMHUX CUCTEM

Pe3iome. IlpencraBiena ontumizoBaHa Bepcis KBa31YaCTMHKOBOI Teopil (yHKIiOHaNa
ryctunu (T®T'), nobynoBaHoi Ha mpuHuMIax Teopii pepmi-pinunu Jlangay-Mirgana 1 BBe-
JICHHI ONTHUMAaJIbHOIO OJHOKBa31YaCTHHKOBOTO YSBJICHHS B Teopii OaraToeleKTpOHHUX CHC-
TeM. OCHOBHI PIBHSHHS Teopii MOXYTb OyTH HNPHUPOJHO OTPHMAaHI Ha OCHOBI BapialiifHOro
MNPUHIINITY, BUXOJAYH 3 JJarpaH)KiaHy aTOMHOI CUCTEMH, MPEICTABICHOI0 y BUMIIAI QYHKIII-
OHAJy TPhOX KBa31YaCTMHKOBUX I'ycTHH. OCTaHHI aHAJIOTIYHI CTaHAAPTHUM EJIEKTPOHHIH ryc-
tuH1 XapTpi-Doka (XD) 1 rycTUHI KIHETHYHOI €Heprii; oJIHaK, TPETsl TYCTUHA HE Ma€e aHaJlora
B Teopii XP abo cranpaptHid TOI 1 3'IBisg€ThCA K pe3ynbTaT ypaxyBaHHS €HEPreTHYHOI
3aJIe)KHOCTI MacoBOTO olleparopa KBa3iyacTHHOK. Po3poOienuii miaxia A0 no0ynoBu 0azucy
BJIAacCHUX (QYHKLIA BUIAETbCS OBl e(EKTHBHUM y MOPIBHSAHHI 3 aHAJOT1YHUMHU Oa3zucamu
IHITUX OJHOYACTKOBHX YSBJICHB, 30KpeMa, B HaOmmkeHHsX X® abo cTaHmapTHOMY HaOIu-
xeHHi Kona-Illema 1 iH.

KuarouoBi cjoBa: KkBa3iuacTUHKOBAa Teopiss (yHKLIOHAIY TyCTHHH, OOMIHHO-
KOpEJISALIfHI TOPaBKH



