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THEORETICAL COMPLEX ENERGIES OF STARK RESONANCES IN LITHIUM 

BY OPERATOR PERTURBATION THEORY APPROACH 

The theoretical complex energies of the Stark resonances in the lithium atom (non-hydrogenic atomic sys-

tem) in a DC electric are calculated within the operator form of the modified perturbation theory for the non-H 

atomic systems. The method includes the physically reasonable distorted-waves approximation in the frame of 

the formally exact quantum-mechanical procedure. The calculated  Stark resonances energies and widths in the 

lithium atom are calculated and compared with  results of calculations on the basis of the  method of  complex 

eigenvalue Schrödinger equation by Themelis-Nicolaides, the complex absorbing potential method by Sahoo-Ho 

and the B-spline-based coordinate rotation method approach  by Hui-Yan Meng et al.    

1. Introduction

The Stark  effect is one of the best known 

problems in quantum mechanics, however at 

the same  time one of the most difficult in a 

case of the strong field one [1-8].  In the last 

years it attracts a great interest especially 

outside the weak-field region that is stimulat-

ed by a whole range of interesting phenome-

na to be studied such as the effects of poten-

tial barriers (shape resonances), new kinds of 

resonances  above threshold etc [11-42], the 

DC strong field effect in the heavy atomic 

systems etc. The great relevance of the Stark 

resonances characteristics of the multielec-

tron atoms is usually provided by standard 

requirements in spectroscopic information of 

a number of physical applications, which in-

clude atomic and molecular optics and spec-

troscopy, quantum electronics, laser physics, 

quantum computing, the construction of ki-

netic models of new laser schemes for short-

range, physics and chemistry laboratory, as-

trophysical plasmas, astrophysics and astron-

omy etc. An external electric field shifts and 

broadens the bound state levels of an atomic 

system.  The standard quantum-mechanical 

procedure relates the complex eigenenergies 

(EE) 2/ iEE r
 and complex eigenfunc-

tions (EF) to the shape resonances.  The field 

effects drastically increase upon going from 

one excited level to another. The highest lev-

els overlap forming a “new continuum” with 

lowered boundary. The computational diffi-

culties (for example, such as the well-known 

Dyson phenomenon) inherent to the standard  

quantum mechanical methods are well 

known. The well-known Wentzel-Kramers-

Brillouin (WKB) approximation overcomes 

these difficulties for the states lying far from 

the “ new continuum” boundary. Some modi-

fications  of the WKB  method (see review in 

Ref. [58]) are introduced in Stebbings and 

Dunning, Kondratovich and Ostrovsky, Po-

pov et al; Ivanov-Letokhov ( e.g. citations in 

refs. [1-42])  have fulfilled the first estima-

tions of the effectiviness of the selective ion-

ization of the  Rydberg atom using a DC 

electric and laser fields within the quasiclas-

sical model.  

Different computational procedures are 

used in the Pade and then Borel summation 

of the divergent Rayleigh-Schrödinger per-

turbation theory (PT) series (Franceschini et 

al 1985, Popov et al 1990) and in the suffi-

ciently exact numerical solution  of the  dif-

ference equations  following from expansion 

of the  wave function over finite basis  

(Benassi ans Grecchi 1980, Maquet et al 

1983, Kolosov 1987, Telnov 1989, Anokhin-

Ivanov 1994), complex-coordinate method, 

quantum defect approximation etc [20-39]. 

Hehenberger, McIntosh and E. Brändas  have 

applied the Weyl’s theory to the Stark effect 
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in the hydrogen atom. They have shown that 

one of the interesting features of Weyl’s the-

ory is that it requires a complex parameter 

and complex solutions to the differential 

equations making it a powerful tool for the 

treatment of resonance states. Brändas and 

Froelich have shown that a complex scale 

transformation of the time–dependent Schrö-

dinger equation leads to a symmetric EE val-

ue problem containing both bound states and 

resonance (complex) EE values as solutions.  

It is worth to note that application of the 

complex coordinate method to a resonance 

problem has been justified in [20-33].  

Themelis and Nicolaides [2-4] adopted an 

ab initio theory to compute the complex en-

ergy of multielectron atomic states and ap-

plied it to computing the energies and widths 

of the lithium Stark resonances for weak and 

strong fields. Their approach is based on the 

state-specific construction of a non-

Hermitian matrix according to the form of 

the decaying-state EF which emerges from 

the complex eigenvalue Schrodinger equa-

tion (CESE) theory. Jianguo Rao et al and 

Hui-Yan Meng et al [1] have elaborated the 

B-spline-based coordinate rotation method 

plus the model potential approach and  ap-

plied it to investigate the complex energies of 

low-lying resonances of the hydrogen and 

lithium atoms in an electric field. Sahoo and 

Ho [5] carried out  the calculation the Stark 

resonances energies and widths in the lithium 

atom on the base of the complex absorbing 

potential (CAP) method.  It should be noted 

that the authors use a model potential to rep-

resent the interaction between the inner core 

electrons with the outside valence electron. 

In fact, these methods are based on the sin-

gle-active-electron (SAE) approximation. In 

Refs.[56-58] it had been presented a con-

sistent uniform quantum approach to the so-

lution of the non-stationary state problems 

including the DC (Direct Current) strong-

field Stark effect and also scattering problem. 

It is based on the operator form of the pertur-

bation theory (OPT) for the Schrödinger 

equation. A model potential to represent the 

interaction between the inner core electrons 

with the outside valence electron is also used 

in application of the OPT method to alkali 

atoms Stark resonances.    

In this work we present an advanced cal-

culational approach to computing the Stark 

resonances energies and widths for the non-

hydrogenic (non-H) atomic systems in a DC 

electric field. Our  method is based on the 

modified OPT method and includes the phys-

ically reasonable distorted-waves approxima-

tion in the frame of the formally exact quan-

tum-mechanical procedure. The Stark reso-

nances  energies and widths are calculated 

for the 4f lithium state and compared with 

the data of calculations on the basis of the 

alternative sophisticated approaches such as 

the method of  complex eigenvalue Schrö-

dinger equation by Themelis-Nicolaides, the 

complex absorbing potential method by Sa-

hoo-Ho and the B-spline-based coordinate 

rotation method by Hui-Yan Meng et  

al [1-5].  

  

2. Operator perturbation theory for 

multielectron atoms in an electric field 
 

As the principal ideas of the approach 

have been presented in Ref. [17,18], here we 

are limited to some key elements. As usually, 

we start from the Dirac Hamiltonian (in rela-

tivistic units):                                                   

 

 zrZpH i   / ,    (1) 

 

 Here a field strength intensity ε is expressed 

in the relativistic units (εrel= 
5/2

εat.un.;  is 

the fine structure constant). One could see 

that a relativistic wave function in the Hilbert 

space is a bi-spinor. In order to further 

diagonalize the Hamiltonian (1), we need to 

choose the correct basis of relativistic 

functions, in particular, by choosing the 

following functions as in Ref, [17-20]. The 

corresponding matrix elements of the total  

Hamiltonian  will be no-zeroth only between 

the states with the same MJ. In fact this mo-

ment is a single limitation of the whole ap-

proach. Transformation of co-ordinates in the 

Pauli Hamiltonian (in comparison with the 

Schrodinger equation Hamiltonian it contents 

additional potential term of a magnetic dipole 
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in an external field) can be performed by the 

standard way. However, procedure in this 

case is significantly simplified. They can be 

expressed through the set of one-dimensional 

integrals, described in details in Refs. [17-

24]. To simplify the calculational procedure, 

the uniform electric field     should be sub-

stitute by the function (c.g. [17,22]: 

      

      (t)  = 1

t
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with sufficiently large  (=1.5t2). The moti-

vation of a choice of the  t  and some phys-

ical features of electron motion  are presented 

in Refs. [17-20]. Here we only underline that  

the function  t  practically coincides with 

the constant  in the inner barrier motion re-

gion, i.e. t < 2t and disappears at t > 2t . It is 

important that the final results do not depend 

on the parameter . It is carefully checked in 

the numerical calculation.  

     As usually (see [17-24]), the scattering 

states energy spectrum now spreads over the 

range   ,2 , compared with    ,  

in the uniform field. In contrast to the case of 

a free atom in scattering states in the pres-

ence of the uniform electric field remain 

quantified at any energy E, i.e. only definite 

values of 
1  are possible. The latter are de-

termined by the confinement condition for 

the motion along the -axis.  

     The same is true in our case, but only for 

the following interval: 
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Ultimately, such a procedure provides con-

struction of realistic functions of the bound 

and scattering states. In a certain sense, this 

completely corresponds to the advantages of 

the distorted-wave approximation known in 

scattering theory [18].  

     The total Hamiltonian  does not possess 

the bound stationary states. According to 

Ref. [17-22], one has to define the zero order 

Hamiltonian H0, so that its spectrum repro-

duces qualitatively that of the initial one. To 

calculate the width  of the concrete qua-

sistationary state in the lowest PT order one 

needs only two zeroth–order EF of H0: bound 

state function 
Eb  and scattering state func-

tion 
Es . There can be solved a more  general 

problem: a construction of the bound  state 

function along with its complete orthogonal 

complementary of  scattering functions 
E  

with   

                      E 







 ,

2

1
 .  

The imaginary part of state energy (the reso-

nance width) in the lowest PT order is deter-

mined by the standard way: 

 

         ImE = /2 = |<Eb |H|Es>|
2
      (3)   

 

with the total Hamiltonian H .  

     The state functions 
Eb  and 

Es  are as-

sumed to be normalized to 1 and by the 

 kk   condition, accordingly. The matrix 

elements 
sEEb H   entering the high- order 

PT corrections can be determined in the same 

way. It is important to underline that These 

corrections can be expressed through the set 

of one-dimensional integrals, described in 

details in Refs. [17-20].  

Further the ROPT scheme is combined 

with the RMBPT in spherical coordinates for 

a free atom. The details of this procedure can 

be found in the references [22-24]. The 

RMBPT formalism is constructed by the fol-

lowing way].  An atomic multielectron sys-

tem is usually described by the relativistic 

Dirac Hamiltonian (the atomic units are 

used) as follows:  
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      (4) 

  

where Z is a charge of nucleus, i ,j are the 

Dirac matrices, ij is the transition frequen-

cy, c – the velocity of light. The interelectron 

interaction potential (second term in (4)) 

takes into account the retarding effect and 

magnetic interaction in the lowest order on 
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parameter of the fine structure constant. In 

the  PT zeroth approximation it is used ab 

initio mean-field  potential: 

 

   )]|()()([)( arVrVrVrV CX

D

Coul

DKS  ,   (5) 

 

with the standard Coulomb (or some model 

potential analog), exchange Kohn-Sham VX 

and correlation Vc potentials (look details in 

Refs. [19,20]). An effective approach to ac-

counting the multi-electron polarization con-

tributions is described earlier and based on 

using the effective two-QP polarizable opera-

tor, which is included into the PT first order 

matrix elements.  

 In order to calculate the decay (transition) 

probabilities and widths an effective  relativ-

istic energy approach (version [5,6,40-43]) is 

used. In particular, a width of the state, con-

nected with an autoionization decay, is de-

termined by a coupling with the continuum 

states and calculated as square of the matrix 

element [19]: 
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Here 
aQ = Qul

aQ + Br

aQ , where Qul

aQ , and Br

aQ cor-

respond to the Coulomb and Breit parts of 

the interelectron potential and express 

through Slater-like radial integrals and stand-

ard angle coefficients. Other details can be 

found in Refs. [5,6,40-43].  

     The most complicated problem of the 

relativistic PT computing the complex mul-

tielectron elements spectra is in an accurate, 

precise accounting for the multi-electron ex-

change-correlation effects (including polari-

zation and screening effects, a continuum 

pressure etc), which can be treated as the ef-

fects of the PT second and higher orders. The 

detailed description of the polarization dia-

grams and the corresponding analytical ex-

pressions for matrix elements of the polariza-

tion QPs interaction (through the polarizable 

core) potential is presented in Refs. [5,6,40-

52].  

 

3. Results and Conclusions 

 

Here we present the results of computing the 

complex energy eigenvalues representing the 

shifted and broadened 4s state of lithium at-

om as a function of electric field strength. 

Meng et al [1] have presented the similar re-

sults using an advanced B-spline based coor-

dinate rotation (B-CR) approach plus the 

model potential method.  Themelis and Nico-

laides [4] adopted ab initio theory to compute 

the complex energy of multielectron states 

for atom in an electric field. Their approach 

is based on the state-specific construction of 

a non-Hermitian matrix according to the 

form of the decaying-state eigenfunction 

which emerges from the CESE theory. Sahoo 

and Ho [5] performed the calculation of the 

Stark resonances energies and widths on the 

basis of a complex absorbing potential (CAP) 

method.  

     In Table 1 we present our data on the EE 

representing the shifted and broadened 4s 

state of lithium atom as a function of electric 

field strength (in a.u.). For comparison the 

analogous results, obtained on the basis of 

the CAP, CESE, B-CR methods [1-5] as well 

as semiclassical (SC) estimates , are listed 

too.     Analysis of the results shows that our 

data on the Stark resonances parameters are 

in a physically reasonable agreement with 

theoretical data obtained by other, in particu-

lar, CESE and B-CR methods.   

     However, the results for the 4f lithium 

state width differ more significantly from 

each other. For example, the CAP calculation 

for the width of the 4f state gives systemati-

cally less values than obtained by the CESE, 

B-CR and our methods.  

   Our resonance width values are higher As 

it was indicated in Ref. [4], one of the ad-

vantages of the B-CR method is possibility to 

apply in the case of increasing field strengths 

without a significant computational effort 
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growth, however, the convergence of the 

width   to obtain reliable complex eigenval-

ues should be carefully carried out. 

 

Table 1. Complex eigenvalues (in atomic 

units: a.u.) representing the shifted and 

broadened 4f state of lithium atom as a 

function of the field strength *
  (in 10

-4 

a.u.), calculated by different methods (see 

text) 

 

Li  

4f 

B-CR 

[1] 

B-CR 

[1] 

CAP  

 [5] 

CAP  

[5] 

*  -Er  /2 -Er  /2  

2.0 2.8962[−2] 2.36[−8] 2.896[−2]   1.62[−7] 

2.5 2.9303[−2] 3.170[−4] 2.834[−2] 1.01[−4] 

3.0        3.1036[−2] 9.363[−4] 2.796[−2] 1.76[−4] 

4.0 3.4574[−2] 2.385[−3] 2.657[−2] 7.05[−4] 

4.5 3.6162[−2] 3.038[−3] - - 

5.0 3.8008[−2] 3.767[−3] 2.576[−2] 1.51[−3] 

6.0 4.1282[−2] 5.929[−3] - - 

7.0        4.4043[−2] 8.095[−3] - - 

8.0        4.6559[−2] 1.020[−2] - - 

10        5.1122[−2] 1.424[−2] - - 

12        5.5320[−2] 1.805[−2] - - 

Li  This This CESE [4] SC [4] 

*  -Er  /2 -Er  /2  

2.0 2.8962[−2] 3.401[−8] 3.445[−8] 1.67[−10] 

2.5 2.9295[−2] 3.172[−4] 3.172[−4] 1.17[−6 ] 

3.0        3.1028[−2] 9.423[−4] 9.482[−4] 3.38[−4 ] 

4.0 3.4565[−2] 2.386[−3] 2.386[−3] 0.2654 

4.5 3.6153[−2] 3.042[−3] 3.049[−3] - 

5.0 3.7998[−2] 3.806[−3] 3.839[−3] - 

6.0 4.1273[−2] 5.974[−3] 6.011[−3] - 

7.0        4.4035[−2] 8.133[−3] 8.169[−3] - 

8.0        4.6550[−2] 1.024[−2] 1.027[−2] - 

10        5.1113[−2] 1.426[−2] 1.427[−2] - 

12        5.5312[−2] 1.807[−2] 1.809[−2] - 

 

One of the advantages of the modified 

OPT method is that an increasing a field 

strength does not lead to an increase of com-

putational effort and there is no a conver-

gence problem. To ensure rapid PT conver-

gence, a physically reasonable spectrum (EE 

and EF) was  chosen as the zero order, simi-

lar to the 'distorted waves' method. Indeed, 

the convergence tests confirmed this fact. 

The OPT approach provides not only reso-

nance state function definition but also the 

construction of the complex EE state func-

tion along with its complete orthogonal com-

plementary of the scattering functions.  

     In Refs. [51-61] the operator PT method 

ideology has been used to consider a problem 

of resonances in the heavy ions collisions and 

AC Stark effect as well as the actual prob-

lems of a cooperative combined electron-

gamma-nuclear spectroscopy. In any case 

development of advanced computational 

methods to Stark resonances in atoms is of a 

great importance for multiple physical appli-

cations [51-61]. 
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THEORETICAL COMPLEX ENERGIES OF STARK RESONANCES IN LITHIUM 

BY OPERATOR PERTURBATION THEORY APPROACH 

 

Summary. The theoretical complex energies of the Stark resonances in the lithium at-

om (non-hydrogenic atomic system) in a DC electric are calculated within the operator form 

of the modified perturbation theory of the Schrödinger equation for the non-H atomic sys-

tems. The method includes the physically reasonable distorted-waves approximation in the 

frame of the formally exact quantum-mechanical procedure. The Stark resonances energies 

and widths in the lithium atom spectrum are calculated and compared with  results of calcula-

tions on the basis of the  complex absorbing potential method, the B-spline-based coordinate 

rotation method approach  and direct computing complex Schrödinger equation eigenvalues.     

Keywords: multielectron atom, electric field, relativistic operator perturbation theory,  

excited states. 
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ТЕОРЕТИЧЕСКИЕ ЗНАЧЕНИЯ КОМПЛЕКСНЫХ ЭНЕРГИЙ ШТАРКОВСКИХ  

РЕЗОНАНСОВ В АТОМЕ ЛИТИЯ В РАМКАХ ОПЕРАТОРНОЙ ТЕОРИИ  

ВОЗМУЩЕНИЙ 

 

Резюме. Вычислены значения комплексных энергий штарковских резонансов в 

атоме лития (многоэлектронная атомная система) в постоянном  электрическом поле на 

основе модифицированной операторной теории возмущений для многоэлектронных 

атомных систем. Теоретический подход включает физически обоснованное приближе-

ние искаженных волн в рамках формально точной квантово-механической процедуры.  

Энергии и ширины штарковских резонансов в спектре атома лития вычисляются и 

сравниваются с результатами расчетов в рамках метода комплексного оптического по-

тенциала, обобщенного метода  вращения координат с использованием В сплайнового 

алгоритма и данными прямого вычисления собственных значений  комплексного урав-

нения Шредингера.  

Ключевые слова:  Многоэлектронные атом, электрическое поле, релятивистская 

операторная теория возмущений оператора, возбужденные состояния 
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Кузнецова Г.О., Глушков О.В., Плісецька Є.К. 

 

ТЕОРЕТИЧНІ ЗНАЧЕННЯ КОМПЛЕКСНИХ ЕНЕРГІЙ ШТАРКІВСЬКИХ  РЕ-

ЗОНАНСІВ В АТОМІ ЛІТІЮ В РАМКАХ ОПЕРАТОРНОЇ ТЕОРІЇ ЗБУРЕНЬ 

 

Резюме. Обчислені значення комплексних енергій штарківських резонансів в 

атомі літію (багатоелектронних атомна система) в постійному електричному полі на 

основі модифікованої операторної теорії збурень для багатоелектронних атомних сис-

тем. Теоретичний підхід включає фізично обґрунтоване наближення перекручених 

хвиль в рамках формально точної квантово-механічної процедури. Енергії і ширини 

штарківських резонансів в спектрі атома літію обчислюються і порівнюються з резуль-

татами розрахунків в рамках методу комплексного оптичного потенціалу, узагальнено-

го методу обертання координат з використанням В-сплайнового алгоритму і даними 

прямого обчислення власних значень комплексного рівняння Шредінгера. 

Ключові слова: багатоелектронний атом, електричне поле, релятивістська опера-

торна теорія збурень оператора, збуджені стани. 
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