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THEORETICAL COMPLEX ENERGIES OF STARK RESONANCES IN LITHIUM
BY OPERATOR PERTURBATION THEORY APPROACH

The theoretical complex energies of the Stark resonances in the lithium atom (non-hydrogenic atomic sys-
tem) in a DC electric are calculated within the operator form of the modified perturbation theory for the non-H
atomic systems. The method includes the physically reasonable distorted-waves approximation in the frame of
the formally exact quantum-mechanical procedure. The calculated Stark resonances energies and widths in the
lithium atom are calculated and compared with results of calculations on the basis of the method of complex
eigenvalue Schrodinger equation by Themelis-Nicolaides, the complex absorbing potential method by Sahoo-Ho
and the B-spline-based coordinate rotation method approach by Hui-Yan Meng et al.

1. Introduction
The Stark effect is one of the best known
problems in quantum mechanics, however at
the same time one of the most difficult in a
case of the strong field one [1-8]. In the last
years it attracts a great interest especially
outside the weak-field region that is stimulat-
ed by a whole range of interesting phenome-
na to be studied such as the effects of poten-
tial barriers (shape resonances), new kinds of
resonances above threshold etc [11-42], the
DC strong field effect in the heavy atomic
systems etc. The great relevance of the Stark
resonances characteristics of the multielec-
tron atoms is usually provided by standard
requirements in spectroscopic information of
a number of physical applications, which in-
clude atomic and molecular optics and spec-
troscopy, quantum electronics, laser physics,
quantum computing, the construction of Ki-
netic models of new laser schemes for short-
range, physics and chemistry laboratory, as-
trophysical plasmas, astrophysics and astron-
omy etc. An external electric field shifts and
broadens the bound state levels of an atomic
system. The standard quantum-mechanical
procedure relates the complex eigenenergies
(EE) E=E, +ir/2 and complex eigenfunc-

tions (EF) to the shape resonances. The field
effects drastically increase upon going from
one excited level to another. The highest lev-

68

els overlap forming a “new continuum” with
lowered boundary. The computational diffi-
culties (for example, such as the well-known
Dyson phenomenon) inherent to the standard
guantum mechanical methods are well
known. The well-known Wentzel-Kramers-
Brillouin (WKB) approximation overcomes
these difficulties for the states lying far from
the “ new continuum” boundary. Some modi-
fications of the WKB method (see review in
Ref. [58]) are introduced in Stebbings and
Dunning, Kondratovich and Ostrovsky, Po-
pov et al; Ivanov-Letokhov ( e.g. citations in
refs. [1-42]) have fulfilled the first estima-
tions of the effectiviness of the selective ion-
ization of the Rydberg atom using a DC
electric and laser fields within the quasiclas-
sical model.

Different computational procedures are
used in the Pade and then Borel summation
of the divergent Rayleigh-Schrodinger per-
turbation theory (PT) series (Franceschini et
al 1985, Popov et al 1990) and in the suffi-
ciently exact numerical solution of the dif-
ference equations following from expansion
of the wave function over finite basis
(Benassi ans Grecchi 1980, Maquet et al
1983, Kolosov 1987, Telnov 1989, Anokhin-
Ivanov 1994), complex-coordinate method,
quantum defect approximation etc [20-39].
Hehenberger, McIntosh and E. Brindas have
applied the Weyl’s theory to the Stark effect
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in the hydrogen atom. They have shown that
one of the interesting features of Weyl’s the-
ory is that it requires a complex parameter
and complex solutions to the differential
equations making it a powerful tool for the
treatment of resonance states. Brdndas and
Froelich have shown that a complex scale
transformation of the time—dependent Schro-
dinger equation leads to a symmetric EE val-
ue problem containing both bound states and
resonance (complex) EE values as solutions.
It is worth to note that application of the
complex coordinate method to a resonance
problem has been justified in [20-33].
Themelis and Nicolaides [2-4] adopted an
ab initio theory to compute the complex en-
ergy of multielectron atomic states and ap-
plied it to computing the energies and widths
of the lithium Stark resonances for weak and
strong fields. Their approach is based on the
state-specific  construction of a non-
Hermitian matrix according to the form of
the decaying-state EF which emerges from
the complex eigenvalue Schrodinger equa-
tion (CESE) theory. Jianguo Rao et al and
Hui-Yan Meng et al [1] have elaborated the
B-spline-based coordinate rotation method
plus the model potential approach and ap-
plied it to investigate the complex energies of
low-lying resonances of the hydrogen and
lithium atoms in an electric field. Sahoo and
Ho [5] carried out the calculation the Stark
resonances energies and widths in the lithium
atom on the base of the complex absorbing
potential (CAP) method. It should be noted
that the authors use a model potential to rep-
resent the interaction between the inner core
electrons with the outside valence electron.
In fact, these methods are based on the sin-
gle-active-electron (SAE) approximation. In
Refs.[56-58] it had been presented a con-
sistent uniform quantum approach to the so-
lution of the non-stationary state problems
including the DC (Direct Current) strong-
field Stark effect and also scattering problem.
It is based on the operator form of the pertur-
bation theory (OPT) for the Schrodinger
equation. A model potential to represent the
interaction between the inner core electrons
with the outside valence electron is also used

in application of the OPT method to alkali
atoms Stark resonances.

In this work we present an advanced cal-
culational approach to computing the Stark
resonances energies and widths for the non-
hydrogenic (non-H) atomic systems in a DC
electric field. Our method is based on the
modified OPT method and includes the phys-
ically reasonable distorted-waves approxima-
tion in the frame of the formally exact quan-
tum-mechanical procedure. The Stark reso-
nances energies and widths are calculated
for the 4f lithium state and compared with
the data of calculations on the basis of the
alternative sophisticated approaches such as
the method of complex eigenvalue Schro-
dinger equation by Themelis-Nicolaides, the
complex absorbing potential method by Sa-
hoo-Ho and the B-spline-based coordinate
rotation method by Hui-Yan Meng et
al [1-5].

2. Operator perturbation theory for
multielectron atoms in an electric field

As the principal ideas of the approach
have been presented in Ref. [17,18], here we
are limited to some key elements. As usually,
we start from the Dirac Hamiltonian (in rela-
tivistic units):

H=ap+p-oZlr, +Ja ez, 1)

Here a field strength intensity ¢ is expressed
in the relativistic units (grei= o estun; o is
the fine structure constant). One could see
that a relativistic wave function in the Hilbert
space is a bi-spinor. In order to further
diagonalize the Hamiltonian (1), we need to
choose the correct basis of relativistic
functions, in particular, by choosing the
following functions as in Ref, [17-20]. The
corresponding matrix elements of the total
Hamiltonian will be no-zeroth only between
the states with the same M;. In fact this mo-
ment is a single limitation of the whole ap-
proach. Transformation of co-ordinates in the
Pauli Hamiltonian (in comparison with the
Schrodinger equation Hamiltonian it contents
additional potential term of a magnetic dipole
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in an external field) can be performed by the
standard way. However, procedure in this
case is significantly simplified. They can be
expressed through the set of one-dimensional
integrals, described in details in Refs. [17-
24]. To simplify the calculational procedure,
the uniform electric field ¢ should be sub-
stitute by the function (c.g. [17,22]:

4

'+t

5(t):i<9{(t—r) 4 +r} ()

with sufficiently large 7 (z=1.5t,). The moti-
vation of a choice of the £(t) and some phys-
ical features of electron motion are presented
in Refs. [17-20]. Here we only underline that
the function &(t) practically coincides with
the constant ¢ in the inner barrier motion re-
gion, i.e. t<t,and disappears at t>t,. It is
important that the final results do not depend
on the parameter z. It is carefully checked in
the numerical calculation.

As usually (see [17-24]), the scattering
states energy spectrum now spreads over the
range (-ez/2,+), compared with (o, + )
in the uniform field. In contrast to the case of
a free atom in scattering states in the pres-
ence of the uniform electric field remain
quantified at any energy E, i.e. only definite
values of g, are possible. The latter are de-
termined by the confinement condition for
the motion along the 7-axis.

The same is true in our case, but only for
the following interval:

E - —Eer,+lgr .
2 2

Ultimately, such a procedure provides con-
struction of realistic functions of the bound
and scattering states. In a certain sense, this
completely corresponds to the advantages of
the distorted-wave approximation known in
scattering theory [18].

The total Hamiltonian does not possess
the bound stationary states. According to
Ref. [17-22], one has to define the zero order
Hamiltonian Ho, so that its spectrum repro-
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duces qualitatively that of the initial one. To
calculate the width I" of the concrete qua-
sistationary state in the lowest PT order one
needs only two zeroth—order EF of Hy: bound
state function w_, and scattering state func-

tion w_ . There can be solved a more general

problem: a construction of the bound state
function along with its complete orthogonal
complementary of scattering functions W

with
(1o
c|——&r,+0|.
2

The imaginary part of state energy (the reso-
nance width) in the lowest PT order is deter-
mined by the standard way:

IME =T/2 = 7<% [H| %> (3)

with the total Hamiltonian H .
The state functions w_, and y_ are as-

sumed to be normalized to 1 and by the
s(k—k’) condition, accordingly. The matrix
elements (e |HWe, ) entering the high- order

PT corrections can be determined in the same
way. It is important to underline that These
corrections can be expressed through the set
of one-dimensional integrals, described in
details in Refs. [17-20].

Further the ROPT scheme is combined
with the RMBPT in spherical coordinates for
a free atom. The details of this procedure can
be found in the references [22-24]. The
RMBPT formalism is constructed by the fol-
lowing way]. An atomic multielectron sys-
tem is usually described by the relativistic
Dirac Hamiltonian (the atomic units are
used) as follows:

H=> {acp, - S’ Z/r}+

+ Y (i o] r)A-aa),

i>]

(4)

where Z is a charge of nucleus, ¢ , o are the
Dirac matrices, aj is the transition frequen-
cy, ¢ — the velocity of light. The interelectron
interaction potential (second term in (4))
takes into account the retarding effect and
magnetic interaction in the lowest order on



parameter of the fine structure constant. In
the PT zeroth approximation it is used ab
initio mean-field potential:

VR (r) = V2, (N +V, (N +V.(r|a)], (5)

with the standard Coulomb (or some model
potential analog), exchange Kohn-Sham Vy
and correlation Vc potentials (look details in
Refs. [19,20]). An effective approach to ac-
counting the multi-electron polarization con-
tributions is described earlier and based on
using the effective two-QP polarizable opera-
tor, which is included into the PT first order
matrix elements.

In order to calculate the decay (transition)
probabilities and widths an effective relativ-
istic energy approach (version [5,6,40-43]) is
used. In particular, a width of the state, con-
nected with an autoionization decay, is de-
termined by a coupling with the continuum
states and calculated as square of the matrix
element [19]:

Vv

BB BaBa=v(2 1+1)(2 +1)(2 ja+1)(2 j;+1)
n+i2+i3+ig+mp+my X

(-1)
hoJoa)h . a
g( ) m—-my g){m—-m, u
XQ, (n1|1 hnoly g, j4n3|3j3) (6)

Here Q, =Q'+Q?", where Q2", and Q2 cor-

respond to the Coulomb and Breit parts of
the interelectron potential and express
through Slater-like radial integrals and stand-
ard angle coefficients. Other details can be
found in Refs. [5,6,40-43].

The most complicated problem of the
relativistic PT computing the complex mul-
tielectron elements spectra is in an accurate,
precise accounting for the multi-electron ex-
change-correlation effects (including polari-
zation and screening effects, a continuum
pressure etc), which can be treated as the ef-
fects of the PT second and higher orders. The
detailed description of the polarization dia-

grams and the corresponding analytical ex-
pressions for matrix elements of the polariza-
tion QPs interaction (through the polarizable
core) potential is presented in Refs. [5,6,40-
52].

3. Results and Conclusions

Here we present the results of computing the
complex energy eigenvalues representing the
shifted and broadened 4s state of lithium at-
om as a function of electric field strength.
Meng et al [1] have presented the similar re-
sults using an advanced B-spline based coor-
dinate rotation (B-CR) approach plus the
model potential method. Themelis and Nico-
laides [4] adopted ab initio theory to compute
the complex energy of multielectron states
for atom in an electric field. Their approach
is based on the state-specific construction of
a non-Hermitian matrix according to the
form of the decaying-state eigenfunction
which emerges from the CESE theory. Sahoo
and Ho [5] performed the calculation of the
Stark resonances energies and widths on the
basis of a complex absorbing potential (CAP)
method.

In Table 1 we present our data on the EE
representing the shifted and broadened 4s
state of lithium atom as a function of electric
field strength (in a.u.). For comparison the
analogous results, obtained on the basis of
the CAP, CESE, B-CR methods [1-5] as well
as semiclassical (SC) estimates , are listed
too.  Analysis of the results shows that our
data on the Stark resonances parameters are
in a physically reasonable agreement with
theoretical data obtained by other, in particu-
lar, CESE and B-CR methods.

However, the results for the 4f lithium
state width differ more significantly from
each other. For example, the CAP calculation
for the width of the 4f state gives systemati-
cally less values than obtained by the CESE,
B-CR and our methods.

Our resonance width values are higher As
it was indicated in Ref. [4], one of the ad-
vantages of the B-CR method is possibility to
apply in the case of increasing field strengths
without a significant computational effort

71



growth, however, the convergence of the
width T to obtain reliable complex eigenval-

ues should be carefully carried out.

Table 1. Complex eigenvalues (in atomic
units: a.u.) representing the shifted and
broadened 4f state of lithium atom as a
function of the field strength & (in 10
a.u.), calculated by different methods (see

text)
Li | B-CR B-CR CAP CAP
4f [1] [1] [5] [5]
& -E, /2 -E; I'/2
2.0 |2.8962[—2]| 2.36[—8] [2.896]—2]| 1.62[-7]
2.5 (2.9303[-2]|3.170[-4]]2.834[-2]| 1.01[-4]
3.0 |3.1036[—2](9.363[—4][2.796]—2]| 1.76]—4]
4.0 |3.4574[-2](2.385[—3][2.657[-2]| 7.05[—4]
4.5 3.6162[—2]|3.038[—3] - -
5.0 |3.8008[—2](3.767[—3][2.576]—2]| 1.51[-3]
6.0 [4.1282[-2]/5.929[-3] - -
7.0 |4.4043[-2]/8.095[3] - -
8.0 |4.6559[-2]|1.020[-2] - -
10 [5.1122[-2][1.424[-2]] - -
12 15.5320[—2]|1.805[—2] - -
Li This This |CESE [4]| SC [4]
& -E, /2 -E, /2
2.0 |2.8962[-2](3.401[—8](3.445[-8](L.67[-10]
2.5 (2.9295[-2](3.172[-4]]3.172[-4]({1.17[-6 ]
3.0 [3.1028[—2]|9.423[-4]9.482[—-4](3.38[-4 ]
4.0 |3.4565[—2](2.386[—3]|2.386[—3]| 0.2654
4.5 3.6153[-2](3.042[—3]|3.049[-3] -
5.0 [3.7998[—-2]/3.806[—3]|3.839[ 3] -
6.0 [4.1273[-2]/5.974[-3]/6.011[-3] -
7.0 |4.4035[-2]/8.133[—3]8.169[—3] -
8.0 |4.6550[—2](1.024[-2](1.027[-2] -
10 |5.1113[-2]|1.426[—-2][1.427[-2] -
12 |5.5312[-2]|1.807[-2](1.809[—2] -

One of the advantages of the modified

OPT method is that an increasing a field
strength does not lead to an increase of com-
putational effort and there is no a conver-
gence problem. To ensure rapid PT conver-
gence, a physically reasonable spectrum (EE
and EF) was chosen as the zero order, simi-
lar to the 'distorted waves' method. Indeed,
the convergence tests confirmed this fact.
The OPT approach provides not only reso-
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nance state function definition but also the
construction of the complex EE state func-
tion along with its complete orthogonal com-
plementary of the scattering functions.

In Refs. [51-61] the operator PT method
ideology has been used to consider a problem
of resonances in the heavy ions collisions and
AC Stark effect as well as the actual prob-
lems of a cooperative combined electron-
gamma-nuclear spectroscopy. In any case
development of advanced computational
methods to Stark resonances in atoms is of a
great importance for multiple physical appli-
cations [51-61].
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Kuznetsova A.A., Glushkov A.V., Plisetskaya E.K.

THEORETICAL COMPLEX ENERGIES OF STARK RESONANCES IN LITHIUM
BY OPERATOR PERTURBATION THEORY APPROACH

Summary. The theoretical complex energies of the Stark resonances in the lithium at-
om (non-hydrogenic atomic system) in a DC electric are calculated within the operator form
of the modified perturbation theory of the Schrodinger equation for the non-H atomic sys-
tems. The method includes the physically reasonable distorted-waves approximation in the
frame of the formally exact quantum-mechanical procedure. The Stark resonances energies
and widths in the lithium atom spectrum are calculated and compared with results of calcula-
tions on the basis of the complex absorbing potential method, the B-spline-based coordinate
rotation method approach and direct computing complex Schrédinger equation eigenvalues.

Keywords: multielectron atom, electric field, relativistic operator perturbation theory,
excited states.
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Kysneyosa A.A., I'nywkoe A.B., [lnuceykas E K.

TEOPETUUYECKHE 3HAYEHUSA KOMILJIEKCHBIX SJHEPTUH IITAPKOBCKUX
PE3OHAHCOB B ATOME JINTHUS B PAMKAX OITEPATOPHOI TEOPUH
BO3MYIIEHUI

Pe3rome. BprunciieHbl 3HaYEHUsI KOMIUIEKCHBIX JHEPIMi IITAPKOBCKUX PE30HAHCOB B
aToMe JIUTHs (MHOTO3JIEKTPOHHAs! aTOMHAsl CUCTEMA) B IIOCTOSSHHOM  3JIEKTPUYECKOM T0JIe Ha
OCHOBE MOJU(DUIIMPOBAHHON OMEpaTOPHOM TEOPHHM BO3MYLIEHHH AJII MHOTOXJIEKTPOHHBIX
aTOMHBIX cUCTeM. TeopeTHuecKuil Moaxo ] BKIOYAaeT GU3NUeCKH 000CHOBAHHOE MPUOIIMKe-
HHUE MCKAXEHHBIX BOJH B paMKax (pOpMajlbHO TOYHON KBAaHTOBO-MEXAaHUYECKOH MPOLEaypHI.
OHepruv M UIMPUHBI IITAPKOBCKUX PE30HAHCOB B CHEKTPE aTOMa JIUTUS BBIYMCIAIOTCS U
CPaBHUBAIOTCS C pe3ylbTaTaMU PACUETOB B paMKaxX METOJa KOMIUIEKCHOTO ONTHYECKOIO IO-
TeHIIMajaa, 0000IIEHHOr0 METO/Ia BpallleHUs] KOOPAMHAT ¢ MCIoJIb30BaHUEM B crtaiiHoBOro
ITOpUTMA U TaHHBIMU MPSIMOTO BBIYMCIEHUS COOCTBEHHBIX 3HAYEHUH KOMIUIEKCHOTO ypaB-
HeHus [lIpenunrepa.

KuroueBrble cjioBa: MHOIO2JIEKTPOHHBIE aTOM, JIEKTPUUECKOE T0JIE, PEIATUBUCTCKAS
orepaTopHasi TeOpHUs BO3MYILEHU onepaTopa, Bo30Y>KIACHHbBIE COCTOSHUS
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PACS 31.15.A-
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TEOPETUYHI 3HAYEHHSA KOMILJIEKCHUX EHEPT'IH IITAPKIBCbKUX PE-
30HAHCIB B ATOMI JIITIIO B PAMKAX OIIEPATOPHOI TEOPII 35YPEHD

Pe3rome. OOunciieHi 3HAYEHHS KOMIUIEKCHUX EHEpPriii IITapKiBCBKUX PE30HAHCIB B
aTomi JiTito (0araToeileKTPOHHUX aTOMHA CHUCTEMa) B MOCTIHHOMY €JIEKTPUYHOMY TOJI Ha
OCHOBI MO (]iKOBaHOI omepaTOpHOI Teopii 30ypeHb NI 0araTOeIeKTPOHHUX aTOMHHX CHC-
teM. Teopernmunuil miaxix BriIodae ¢i3WYHO OOIPYHTOBaHE HAOIMIKEHHS IMEPEKPYyUEHHUX
XBWIb B paMKax (OpMajabHO TOYHOI KBAaHTOBO-MEXaHIYHOI mpouenypu. Exeprii i mmpuan
MITAPKIBCHKUX PE30HAHCIB B CIIEKTP1 aTOMAa JIITiI0 OOYHCIIOIOTHCS 1 MOPIBHIOIOTHCS 3 PE3Yib-
TaTaMH PO3PaxXyHKIiB B paMKaX METOAY KOMIUIEKCHOTO ONTHYHOTO MOTEHIlially, y3arajabHeHO-
ro MeToAy oOepTaHHsS KOOPAMHAT 3 BUKOPHCTaHHSM B-CIIaifHOBOTO alropuTMmy i JaHUMHU
IpSMOTO OOYKCIICHHS BIACHUX 3HAUYCHb KOMIUIEKCHOTO piBHsAHHSA [lpeninrepa.

Kiro4oBi cj10Ba: 6araToeeKTpOHHUI aTOM, €IIEKTPUYHE I0JIe, PEISTHBICTCHKA orepa-
TOpHA Teopis 30ypeHb onepaTopa, 30y/PKeH1 CTaHu.
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