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ADVANCED COMPUTING TOPOLOGICAL AND DYNAMICAL INVARIANTS
OF RELATIVISTIC BACKWARD-WAVE TUBE TIME SERIES IN CHAOTIC
AND HYPERCHAOTIC REGIMES

The advanced results of computing the dynamical and topological invariants (correlation dimensions val-
ues, embedding, Kaplan-York dimensions, Lyapunov’s exponents, Kolmogorov entropy etc) of the dynamics
time series of the relativistic backward-wave tube with accounting for dissipation and space charge field and
other effects are presented for chaotic and hyperchaotic regimes. It is solved a system of equations for unidimen-
sional relativistic electron phase and field unidimensional complex amplitude. The data obtained make more
exact earlier presented preliminary data for dynamical and topological invariants of the relativistic backward-
wave tube dynamics in chaotic regimes and allow to describe a scenario of transition to chaos in temporal dy-

namics.

1. Introduction

Powerful generators of chaotic oscilla-
tions of microwave range of interest for ra-
dar, plasma heating in fusion devices, mod-
ern systems of information transmission us-
ing dynamic chaos and other applications.
Among the most studied of vacuum electron-
ic devices with complex dynamics are back-
ward-wave tubes (BWT) , for which the pos-
sibility of generating chaotic oscillations has
been theoretically and experimentally found
[1-20]. The BWT is an electronic device for
generating electromagnetic vibrations of the
superhigh frequencies range. Authors [6]
formally considered the possible chaos sce-
nario in a single relativistic BWT. Authors
[4,5] have numerically studied dynamics of a
non-relativistic BWT, in particular, phase
portraits, statistical quantifiers for a weak
chaos arising via period-doubling cascade of
self-modulation and the same characteristics
of two non-relativistic backward-wave tubes.
The authors of [4-7] have solved the equa-
tions of nonstationary nonlinear theory for
the O-type BWT without account of the spa-
tial charge, relativistic effects, energy losses
etc. It has been shown that the finite-
dimension strange attractor is responsible for
chaotic regimes in the BWT. The multiple
studies [1-13], increasing the beam current in
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the system implemented complex pattern of
alternation of regular and chaotic regimes of
generation, completes the transition to a
highly irregular wideband chaotic oscilla-
tions with sufficiently uniform continuous
spectrum.

In this work we have performed an ad-
vanced numerical analysis and modelling and
presented some results of computing the dy-
namical and topological invariants (correla-
tion dimensions values, embedding, Kaplan-
York dimensions, Lyapunov’s exponents,
Kolmogorov entropy etc) of the dynamics
time series of the relativistic backward-wave
tube with accounting for dissipation and
space charge field and other effects are pre-
sented for chaotic and hyperchaotic regimes.
The system of equations for unidimensional
relativistic electron phase and field unidi-
mensional complex amplitude is numerically
solved using the Runge-Cutta method. The
data presented make more exact the prelimi-
nary data for dynamical and topological in-
variants of the relativistic backward-wave
tube dynamics in chaotic regimes and allow
to describe a scenario of transition to chaos
in temporal dynamics.

2. Relativistic model and some results
As the key ideas of our technique for non-
linear analysis of chaotic systems have been in



details presented in refs. [9-28], here we pay
attention only on the kew and some new ele-
ments. Below we follow to the version of a
standard non-stationary theory [9], however,
despite the above cited papers we take into ac-
count a number of effects, namely, influence of
space charge, dissipation, the waves reflec-
tions at the ends of the system and others (a
modification of model of Refs.[5-13]).

The standard relativistic dynamics is de-
scribed system of equations for unidimensional
relativistic electron phase 6(¢,t.0,) (which

moves in the interaction space with phase &
(&<[0; 2n]) and has a coordinate ¢ at time
moment t) and field unidimensional complex
amplitude F(C,r)zé/(ZBOUCZ) as [11]:
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with the corresponding boundary and initial
conditions. The dynamical system studied
has several controlling parameters which are
characteristic for distributed relativistic elec-
tron-waved self-vibrational systems: i) elec-
tric length of an interaction space N; ii) bi-
furcation parameter L=2zCN/y, (here C-

is the known Piers parameter) ; iii) relativ-
istic factor, which is determined as:

Vo= (1- ﬁoz)_l'/z- (2)

It should be also noted that an influence of
reflections leads to the fact that bifurcational
parameter L begins to be dependent on the

phase ¢ Of the reflection parameter (see
discussion regarding it in [7,8]).

3. Chaos-dynamic approach to analysis of
time series

The basic idea of the construction of our ap-
proach to prediction of chaotic properties of
complex systems is in the use of the tradi-
tional concept of a compact geometric att
(CGA) in which evolves the measurement
data, plus the neural networks (NNW) algo-
rithm implementation [14-38].

Really, one should consider some scalar
measurements s(n) = s(tp + NAt) = s(n), where
to Is the start time, At is the time step, and n is
the number of the measurements. The main
task is to reconstruct phase space using as
well as possible information contained in
s(n). To do it, the method of using time-delay
coordinates by Packard et al [28] can be
used. The direct using lagged variables
s(n+t) (here t is some integer to be defined)
results in a coordinate system where a struc-
ture of orbits in phase space can be captured.
A set of time lags is used to create a vector
in d dimensions, y(n)= [s(n), s(n+ 1),
s(n + 21), .., s(n +(d-1)1)], the required coor-
dinates are provided. Here the dimension d is
the embedding dimension, de. To determine
the proper time lag at the beginning one
should use the known method of the linear
autocorrelation function (ACF). The alterna-
tive additional approach is provided by the
average mutual information (AMI) method as
an approach with so called nonlinear concept
of independence.

The further next step is to determine the
embedding dimension, dg, and correspond-
ingly to reconstruct a Euclidean space R
large enough so that the set of points da can
be unfolded without ambiguity. The dimen-
sion, dg, must be greater, or at least equal,
than a dimension of attractor, da, i.e. dg > da.
To reconstruct the attractor dimension and to
study the signatures of chaos in a time series,
one could use such methods as the correla-
tion integral algorithm (CIA) by Grassberger
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and Procaccia [32] or the false nearest neigh-
bours (FNN) method by Kennel et al [27.
The principal question of studying any com-
plex chaotic system is to build the corre-
sponding prediction model and define how
predictable is a chaotic system. The new el-
ement of our approach is using the NNW al-
gorithm in forecasting nonlinear dynamics of
chaotic systems [7,14,15].

The fundamental parameters to be com-
puted are the Kolmogorov entropy (and cor-
respondingly the predictability measure as it
can be estimated by the Kolmogorov entro-
py), the Lyapunov’s exponents (LE), the
Kaplan-Yorke dimension (KYD) etc. The LE
are usually defined as asymptotic average
rates and they are related to the eigenvalues
of the linearized dynamics across the attrac-
tor. Naturally, the knowledge of the whole
LE allows to determine other important in-
variants such as the Kolmogorov entropy and
the attractor's dimension. The Kolmogorov
entropy is determined by the sum of the posi-
tive LE.

The estimate of the dimension of the at-
tractor is provided by the Kaplan and Yorke
conjecture:

i
d = j+zf1i/|/11+1|’
i1

where j is such that Zj:ﬂ_ o and jf;/li <0, and

i=1

the LE are taken in descending order.

In Fig. 1 we present the flowchart of the
combined chaos-geometric and NNW com-
putational approach to nonlinear analysis and
prediction of dynamics of any system
[1,11,14-48]. All calculations are carried out
with using the PC Codes “Geomath”, “Su-
peratom”, “Quantum Chaos” (e.g. [1,16-
26,39-48]).
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I. General analysis of the dynamical
problem, processing dynamical variable
series for studied complex system (pre-
liminary general analysis of dynamics,
evolutionary differential equations treat-

ing,...)
U

Il.  Chaos-geometric method: assess-
ment of the presence of chaos:
1. The Gottwald-Melbourne test:
K — 1 —chaos;
2. Fourier decompositions, irregular
nature of change — chaos;
3. Spectral analysis, Energy spectra
statistics, the Wigner distribution, the
spectrum of power, "Spectral rigidity";

I1l. The geometry of phase space.
Fractal Geometry:
4. Computation time delay t using
ACF or AMI,
5. Determining embedding dimension dg
by the CIA method or FNN points;
6. Calculation multi-fractal spectra. Wave-
let analysis;

J

IV.  Prediction model:
7. Computing global LE: A,; KYD d, av-
erage predictability measure Prmax;
8. Determining the number of FNN points
for the best prediction results;
9. Methods of nonlinear prediction: nonlin-
ear parameterized function; NNW; opti-
mized trajectories (propagators) algorithms,

Figure 1. Flowchart of the combined chaos-
geometric approach and NNW to nonlinear analysis
and prediction of chaotic dynamics of the complex
systems (devices)

4. Tllustrative results and conclusions

In Figure 2 we present the numerical
temporal dependence of the output signal
amplitude of the relativistic backward-wave
tube for parameter L=6.1 (b) (see other de-
tails, e.g. [7]).
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Figure 2. Numerical temporal dependence of
the output signal amplitude of the relativistic BWT for
L=6.1.

In Table 1 we present our data on the cor-
relation dimension d,, the embedding dimen-
sion determined based on the algorithm of
false nearest neighboring points (dy) with
percentage of false neighbors (%) calculated
for different values of time lag t. The values
of the time lag are also listed in this table for
the both regimes as chaotic as hyperchaotic
one.

Table 1.

Correlation dimension d,, the dimension of

the attachment determined based on the algo-

rithm of false nearest neighboring points (dy)

with percentage of false neighbors (%) calcu-
lated for different values of time lag t

Table 2.

The Lyapunov’s exponents for the backward-
wave tube time series in the chaotic (L=4.2)
and hyperchaotic regimes (L=6.1): A1—A4 In
descending order and K is the Kolmogorov

Chaos (1) Hyperchaos (1)

T dy (dn) T do (dn)

60 | 3.62 5 67 | 7.23 10
(5.6) (13)

6 3.13 4 10 | 6.44 8
(1.1) (2.2)

8 3.11 4 12 | 6.42 8
(1.2) (2.2)

In Table 2 we list the results of computing
the Lyapunov’s exponents, the, Kolmogorov
entropy Kene. FoOr the studied series there are
positive and negative values of the Lyapun-
ov’s exponents. Naturally, an availability of
the positive values of the Lyapunov’s expo-
nents is a characteristic feature of the chaotic
dynamics of the studied systems. It shoyld
be noted that the latter is an example of dis-
tributed multiparametric system that provides
the known difficulties under studying of such
systems.

entropy
Regime| 2, Ao A3 Aa K
Chaos 0.261]0.0001 1-0.0004 | —0.528| 0.26
Hyper 0.514| 0.228 |0.0000 |—0.0002| 0.74
chaos
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Summary. The advanced results of computing the dynamical and topological invariants
(correlation dimensions values, embedding, Kaplan-York dimensions, Lyapunov’s expo-
nents, Kolmogorov entropy etc) of the dynamics time series of the relativistic backward-
wave tube with accounting for dissipation and space charge field and other effects are pre-
sented for chaotic and hyperchaotic regimes. It is solved a system of equations for unidi-
mensional relativistic electron phase and field unidimensional complex amplitude. The data
obtained make more exact earlier presented preliminary data for dynamical and topological
invariants of the relativistic backward-wave tube dynamics in chaotic regimes and allow to
describe a scenario of transition to chaos in temporal dynamics.
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XAOTHYECKAS JUHAMHUKA PEJIATUBUCTCKOM JAMITBI OBPATHOM
BOJIHBI C YYETOM BJIMAHMUA IHOJIA IIPOCTPAHCTBEHHOI'O 3APAJIA U
JUCCHUITAIIMU: HOBBIE DOPEKTbHI

Pesrome. IIpencraBieHsl yTOUHEHHBIC JAHHBIC BBIUYNCICHUS JUHAMUYECKUX U TOIIOJIOTH-
YECKMX WHBAapHUAHTOB (3HAYEHUS KOPPEILMOHHOW pa3MEpHOCTH, Pa3MEPHOCTH BIIOKEHMUS,
Karnana-Hopka, nokasarenn JIsmyHoBa, sHTponus KoIMoroposa u p) sl BPeMEHHEIX psi-
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XAOTUYHA TUHAMIKA PEJATUBICTCHKOI JIAMIIA 3BEPHEHOI XBUJII
3 YPAXYBAHHSIM BILIUBY NOJISI MPOCTOPOBOI'O 3APSINY TA TUCHIIA-
HII: HOBI E@EKTH

Pe3iome. [IpescraBieni yrouyHeHi AaHi OOUMCIIEHHS TUHAMIYHHUX 1 TOMOJIOTIYHUX 1HBA-
piaHTIB (3HAYEHHs KOPEJALIIHOI pO3MipHOCTI, po3MipHOCTi BKIaneHHs, Karnana-Fopka, mo-
Ka3HUKM JlamyHoBa, eHTporis Kommoroposa Ta iH) 1715 4aCOBUX PAIIB, IO XapaKTEPU3YIOTh
JTUHAMIKY peIsTUBICTCHKOI JIaMIT 3BEPHEHOT XBUJIl 3 YpaxyBaHHAM €(eKTIB AucHMalii, mpoc-
TOPOBOT'O 3apsAy 1 iH. B XaOTUYHOMY 1 TilepXaoTUYHOMY pexxuMax. OTprMaHi pillleHHs cuc-
TEMU PIBHSAHb JJI1 OJJHOBUMIPHOI PENSATUBICTCHKOI a3y eeKTpOHA 1 OAHOBUMIPHOI KOMILIE-
KcHOT aMIutiTyiu nojsi. OTpuMaHi AaHi YTOUHIOIOTh paHille MpeiCTaBlIeH] AaHl A AMHAMIY-
HUX 1 TOMOJIOTIYHUX 1HBAPIAHTIB JUHAMIKU PENISATUBICTCHKOI JaMIM 3BOPOTHOI XBWJII B Xao-
TUYHOMY PEXHMI 1 TO3BOJISIOTH KIJIbKICHO OXapaKTepU3yBaTH CLiEHapii epexoay 10 Xaocy y
YacoBil JUHAMIII.

Ki11040Bi c10Ba: pensTHBICTChKA JIaMIHM 3BOPOTHOI XBMJIi, XaOTUYHA JWHAMiKa, Hei-
HIHI METON
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