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NUMERICAL STUDYING ENERGY PARAMETERS OF MULTIELECTRON
ATOM IN A MAGNETIC FIELD: HELIUM

There are presented the results of calculating the energies of the helium atom energy in a homogeneous magnet-
ic field on the basis of the new numerical quantum-mechanical approach. The approach is based on the numerical
difference solution of the Schrédinger equation, the model potential method and the operator perturbation theory
formalism. The obtained results on energy of the helium atom in dependence upon the magnetic field strength are
compared with available theoretical results, obtained on the basis of alternative numerical Hartree-Fock and diago-

nalization methods.

1. Introduction

The fundamentals of the quantum theory of
the Zeeman effect are described in detail in
well-known monographs and in courses on
qguantum mechanics and theoretical spectros-
copy. At present time, interest in these effects
shifted to the field of applied research (e.g. [1-
28]). An important problem is studying the
energy characteristics of multielectron atoms
in a strong and superstrong magnetic field. At
the same time, it was found that many of the
results of the theory are either of little use for
specific calculations, or even incomplete until
recently. Further development of the theory is
mainly associated with studies of atomic spec-
tra in a sufficiently strong field B and for high-
ly excited states with n >> 1. As indicated in
the introduction, interest in these problems is
associated with a wide range of applications,
including: absorption spectra excitons in a
magnetic field, the structure of atoms in super-
strong magnetic fields on the surface of neu-
tron stars, the splitting and broadening of
atomic spectral lines in electric and magnetic
fields of plasma, the structure of radio lines
emitted by excited atoms in the interstellar
medium, etc.

Among modern methods for describing
atomic spectroscopy in a magnetic field, a se-
ries of papers [4-18] should be distinguished,
where perturbation theory methods, various
schemes, and algorithms have been developed
based on the numerical solution of the Schro-
dinger equation in the Hartree—Fock and other
approximations. Based on them, it was possi-
ble to obtain a lot of useful numerical data re-

garding the energies of various states of a
number of many-electron atoms at various
magnetic field intensities. The imposition of a
magnetic field on an atomic system leads to
an additional restriction of the electron mo-
tion across the field, and with a further in-
crease in the field strength - to a sharp de-
crease in the transverse motion of the elec-
tron and, as a consequence, to the transfor-
mation of the three-dimensional potential
well of the atom into a one-dimensional one.
The consequence of this can be a strong
change in the energy spectrum of the atom.
For the simplest spinless one-electron (hy-
drogen) atom, the perturbation Hamiltonian
V, caused by the interaction of the orbital
momentum | of the electron with the field B,
has the form V = —z;IB.To determine the

energy eigenvalues, i.e., diagonalization of the
perturbation V, it suffices to choose the wave
functions corresponding to a certain projection
| onto the direction B. Usually, as such func-
tions, we choose spherical wave functions cor-
responding to certain values of the total mo-
ment 1 =1 (I + 1) and its projection l, = Am-

For a hydrogen atom, the Zeeman sublevels
corresponding to a certain m remain degener-
ate in the quantum number I. This specificity
of the Coulomb degeneracy is also manifested
in the fact that as the diagonalizing V wave
functions, one can choose parabolic wave
functions Ypon, with the Oz axis along the

field B. These states, by virtue of the relation

np+ny+|m=n—1 for a given m, remain de-

generate in the values of nj,n, corresponding
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to their equal sump, , .. Thus, the Zeeman

component of the hydrogen level is character-
ized not by one, but, generally speaking, by
several wave functions.

In this paper we shortly present the results
of calculating the energies of the helium atom
energy in a homogeneous magnetic field on
the basis of the new numerical quantum-
mechanical approach [1,12]. The approach is
based on the numerical difference solution of
the Schrodinger equation, the model potential
method and the operator perturbation theory
formalism.

2. Theoretical approach

According to the Ref [10], the Hamiltonian
of he helium atom in a magnetic field B differs
from the operator of the hydrogen atom by the
presence of the Coulomb interaction operator,
which naturally aggravates the problem of
separation of variables in the Schrodinger
equation. Introducing a cylindrical coordinate
system (p, ¢,z), with the axis Oz || B and tak-
ing into account that the dependence of the
wave function on the rotation angle ¢ around

the z axis is trivial:

¥~ ™M? y(p,2) (1)

one should write the Schrodinger equation for
the one-electron function of an atomic system
(atomic units are used here e=h=m=1) as:

FLL M) =0 @)

y

where V. (r) is the potential that describes the
effect of all other electrons on the given one.
Naturally, it is absent for the hydrogen atom.
As the potential V¢, we use the Green-Miller
like potential (c.g.[2]), which approximates
the Hartree potential quite accurately.

The required parameters, as a rule, are se-
lected from the condition of the best fitting of
the experimental values of the energy levels of
free atoms (c.g. [2]).
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To take into account the exchange correc-
tions, the exchange potential was taken in the
simplest Slater approximation and added to
potential (3) [19].

The two-dimensional equation (2) is natu-
rally not solved analytically in a general form.
The terms appearing in it: the potential of the
Coulomb interaction,  which  contains
r=(p2 +Z2)1/2’p0tent|a| \VJ [(pz +22)1/2]

prevents the separation of variables. One could
rewrite the Schrodinger equation as follows:

H y(p.))=Ew(p.2) @)

H =-1/2(8%18p* +1/ pdldp +
+0%102° —m? [ p*)V(p,2),

V(p,2)=—(p* +2°)""* +(N,-1)-

Q(p* +2*) " +1/8y* p* +ym/ 2,
Q)
The potential 1/8y2 2 limits the movement

in the direction perpendicular to the field di-
rection. Similarly, in the regiony >> 1, the

motion of an electron across a magnetic field
is determined by the size of its cyclotron orbit,
A= (hic/eM)”?and along the field by a modi-

fied Coulomb interaction, which takes into ac-
count the non-Coulomb character of the poten-
tial field in which an electron moves in a
many-electron atom [18].

Note that calculations of multielectron
atomic systems with introduced potentials are
quite well known in the literature (see [2,18-
201); moreover, computational schemes based
on them have been tested several times and
tested for a number of atoms in the free state.
The Green-Miller like potential (c.g.[2]), was
successfully used in calculating the energies
and forces of atomic oscillators of the 1st peri-
od of the periodic table (see review in [21]).

For solution of the Schrdodinger equation
with hamiltonian equations (7) we constructed
the finite differences scheme which is in some
aspects similar to method [2]. An infinite re-
gion is exchanged by a rectangular region:
0<p<L,, 0<z<L,. It has sufficiently large

size; inside it a rectangular uniform grid with



steps h,, h was constructed. The external
boundary condition, as usually, is:

(O¥/on), =0.

The knowledge of the asymptotic behaviour
of wave function in the infinity allows to get
numeral estimates forz ,L_. A wave function

has an asymptotic of the kind as: exp[-(-
2E)"?r], where (-E) is the ionization energy
from stationary state to lowest Landau level.
Then L is estimated as L~9(-2E)™2. The more
exact estimate is found empirically. The three-
point symmetric differences scheme is used for
second derivative on z. The derivatives on p
are approximated by (2m+1)-point symmetric
differences scheme with the use of the La-
grange interpolation formula differentiation.
To calculate the values of the width G for res-
onances in atomic spectra in a magnetic field
one can use the modified operator perturbation
theory method (see details in Ref.[12,13])..
Other calculation details can be found in Refs.
[2, 19-21].

3. Hlustration results and conclusion

As illustration, below we present the data
on energies of the electronic excited and
ground state of the helium atom in dependence
upon the magnetic field strength (parameter )
and compared with available theoretical re-
sults, obtained on the basis of alternative
methods.

Parameter y varies within: y»=B/B0=0.00-10,
where By =m2e’c/h3Z3.

In Table 1 there are listed the energies of
the ground state of the helium atom in depend-
ence upon the parameter y. For the helium at-
om there are available the results of calcula-
tions for the ground state within other theoreti-
cal methods. In particular, the Hartree-Fock
(HF) calculation results are in the Refs. [6,7].

As the ground state analysis shows, in
whole our data are corresponding to the alter-
native HF results, however, indeed, they lie a
little lower for a weak field regime and more
substantially lower in the intermediate regime
of the magnetic parameter.

Table 1
The energies (in atomic units) of the ground
state of the helium atom as a function of the
magnetic field parameter y

Method | y=0.5 | y=1 y=2 y=5
[15] - -2,400 - -
[12} |-2,700 | -3,027 | -3,520| -4,624
[13] |-2,616 | -2,960 | -3,502| -4,617
Our |-2,700 | -3,027 | -3,520| -4,624

Method | y=10 | y=20 | y=50 | y=100
[12] |-5,860 | -7,450 | -10,288 -13,343
[13] |-5,829 | -7,428 | -10,264| -13,077
Our |-5,860 | -7,450 | -10,288| -13,343

Method | y=200 | y=500 | y=1000| y=10000
[12] |-16,602]-22,471| -28,342] -56,623
[13] |-16,579|-22,467| -28,032 -55,151
Our |-16,602]-22,471| -28,342| -56,623

The difference between the listed data can be
explained by the partial account of electron
correlation corrections, which is absent in the
HF calculation.
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NUMERICAL STUDYING ENERGY PARAMETERS OF MULTIELECTRON
ATOM IN A MAGNETIC FIELD: HELIUM

Summary. There are presented the results of calculating the energies of the helium atom en-
ergy in a homogeneous magnetic field on the basis of the new numerical quantum-mechanical
approach. The approach is based on the numerical difference solution of the Schrédinger equa-
tion, the model potential method and the operator perturbation theory formalism. The obtained
results on energy of the helium atom in dependence upon the magnetic field strength are com-
pared with available theoretical results, obtained on the basis of alternative numerical Hartree-
Fock and diagonalization methods.
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YUCJIEHHOE UCCIEAOBAHUME DOHEPTETUYECKUX ITAPAMETPOB
MHOT O3JIEKTPOHHOT'O ATOMA B MATHUTHOM IOJIE: T'EJIUHA

Pesrome. IIpencrasiensl pe3yapTaThl pacueTa DJHEPIUU aToMa Iejiis B OJHOPOJHOM MarHuT-
HOM I10JI€ Ha OCHOBE HOBOT'O YHCJICHHOIO KBAaHTOBO-MEXaHN4eCKoro noaxona. Ilonxon ocHoBan
Ha YHCIEHHOM KOHEYHO--a3HOCTHOM peuleHuu ypaBHeHus lllpenunrepa, MeTone MOIEIbHOTO
NoTeHLKaNia U GpopMaliu3Me ONEepaTopHON TeopuHu Bo3MylleHUil. [lomyuyeHHble pe3ynbTaThl 1o
DHEPIrUM aTOMa Tellvs B 3aBUCHUMOCTU OT HANPSKEHHOCTU MATHUTHOIO IOJIS CPaBHUBAKOTCS C
W3BECTHBIMU TEOPETUYECKUMU PE3yJIbTaTaMHU, IOJYYEHHbIMM Ha OCHOBE aJIbTEPHATUBHBIX UM C-
JIEHHBIX MeTON0B XapTpu-Poka U AMaroHaaIn3aluH.

KuiroueBsble ciioBa: aTOMHasi CUCTEMA, MAarHUTHOE I10JI€, KBAHTOBO-MEXAHUYECKUI METO/T
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YUCEJIBHE BUBYEHHS EHEPIT'ETUYHUX ITAPAMETPIB
BAT'ATOEJEKTPOHHUX ATOMIB B MATHITHOMY IOJII: TEJIHA

Pe3iome. [IpescraBieni pe3yapTaT po3paxyHKy €HEeprii aToMa reiito B MarHiTHOMY IOJI
Ha OCHOBI HOBOT'O YHCEJIHHOTO KBAaHTOBO-MEXaHIUYHOTO Miaxony. [1iaxin 3acHoBaHUI Ha yuce-
JHHOMY CKiHYEHHO-PI3HMILIEBOMY pO3B’s3aHHI piBHAHHA lllpeminrepa, MeToai MOJEIBHOTO
noTeHIiany Ta (GopmanizMi oneparopHoi Teopii 30yperb. OTpuMaHi pe3yabTaTh MO €HEepTii
aToMa Tellilo B 3aJIeKHOCTI BiJl HAPY>KEHOCTI MAarHITHOTO IOJI MOPIBHIOIOTHCS 3 BIIOMHUMH
TEOPETUYHUMHU Pe3yJIbTaTaMH, OTPUMAHUMHU HAa OCHOBI aJIbTEPHATUBHHUX YUCEITHHUX METOJIIB
Xaptpi-Doka i alaronaizarii.

Karwu4oBi cjioBa: aToMHa cucTeMa, MarHiTHE 10JIe, KBaHTOBO-MEXaHIYHUI METO/
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