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DYNAMICAL AND TOPOLOGICAL INVARIANTS OF NONLINEAR DYNAMICS
OF THE CHAOTIC LASER DIODES WITH AN ADDITIONAL OPTICAL
INJECTION

Nonlinear chaotic dynamics of the of the chaotic laser diodes with an additional optical injection is comput-
ed within rate equations model, based on the a set of rate equations for the slave laser electric complex amplitude
and carrier density. To calculate the system dynamics in a chaotic regime the known chaos theory and non-linear
analysis methods such as a correlation integral algorithm, the Lyapunov’s exponents and Kolmogorov entropy
analysis are used. There are listed the data of computing dynamical and topological invariants such as the corre-
lation, embedding and Kaplan-Yorke dimensions, Lyapunov’s exponents, Kolmogorov entropy etc. New data on
topological and dynamical invariants are computed and firstly presented.

1. Introduction

The elements of chaotic dynamics in dif-
ferent laser systems and devices, including
semiconductor lasers, laser diodes, resonators
etc are of a great importance and interest be-
cause of their potential applications in laser
physics and quantum electronics, optical se-
cure communications and cryptography, and
many others. At the same time, the laser’s
relaxation oscillation limits the bandwidth of
chaotic light emitted from a laser diode and
similar devices with single optical injection
or feedback. This circumstance as well as a
general interest to new theoretical dynamics
phenomena make necessary the further
studying and improvement the main features
of the optical chaos communications.

. From the other side, there is a general
interest to studying the chaotic laser systems
provided a necessity of the further develop-
ment of a general theory of dynamic systems
and a chaos.

Let us remind that according to Refs. [1-
15], under the definite conditions, such sys-
tems are described by the corresponding
model, when Hamiltonians are possessing
only a few degrees of freedom. For the low-
dimensional chaotic case the corresponding
conditions of transition to deterministic chaos
in the system dynamics are quite well under-
stood at the classical level [1-4].

Under quantum treatment of the problem,
the similar systems (in particular, the diatom-
ic molecules in a resonant electromagnetic
field) are studied with using the known qua-
siclassical approach [2]. At the theoretical
level, the majority of studies, devoted to cha-
0s phenomena in molecular dynamics, is car-
ried out with the using simple tools of dy-
namical systems theory and qualitative theo-
ry of differential equations. New field of in-
vestigations of the quantum and other sys-
tems has been provided by the known pro-
gress in a development of a nonlinear analy-
sis and chaos theory methods [1-12,17-30].

In Refs. [11,27-33] the authors applied
different approaches to quantitative studying
regular and chaotic dynamics of atomic and
molecular systems interacting with a strong
electromagnetic field and laser systems.

The most popular approach to studying
nonlinear dynamics of chaotic systems in-
cludes the combined using the advanced non-
linear analysis and a chaos theory methods
such as the autocorrelation function method,
multi-fractal formalism, mutual information
approach, correlation integral analysis, false
nearest neighbour algorithm, Lyapunov ex-
ponent’s analysis, surrogate data method,
stochastic propagators method, memory and
Green’s functions approaches etc (see details
in Refs. [17-24]).
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In Ref. [1] the authors experimentally and
numerically demonstrate the route to band
width enhanced chaos in a chaotic laser diode
with an additional optical injection; they
used the own unique experimental setup,
which includes a distributed feedback (DFB)
laser with a 4 m fiber ring feedback cavity
(the slave laser) and the other solitary DFB
laser as an injection laser (the master laser) to
enlarge the bandwidth of the chaotic laser
(see detailed description in Ref. [1]). The
concrete technological characteristics are as
follows: slave laser is biased at 28.0 mA
(1.27 times threshold), and its wavelength is
stabilized at 1553.8 nm with 0.3 nm lin-
ewidth (at —20 dB) and a 35 dB side mode
suppression ratio; respectively, the laser’s
output power is 0.7 mW, and the relaxation
frequency and modulation bandwidth were
about 2 GHz and 5 GHz. The original set of
the chaotic states before optical injection is
obtained with —6.1 dB optical feedback (the
feedback injection strength with a scale of
the solitary slave laser’s power).

In this paper we present the corresponding
results of computing the characteristic dy-
namical and topological invariants of the
nonlinear dynamics of the chaotic laser diode
with an additional optical injection (all char-
acteristics are corresponding to parameters of
the Ref. [1]).

2. Chaos-geometric approach to dy-
namics of the chaotic systems

As the main ideas of the quantum-
dynamic approach to diatomic molecule in an
electromagnetic field are in details presented
in the Refs. [5-7,2], here we will restrict
yourself only by some necessary elements.

In order to perform the detailed analysis
of the chaotic regime polarization time series,
further a total dynamics of the quantum sys-
tem in an electromagnetic field and to calcu-
late the fundamental topological and dynam-
ical invariants of the system in a chaotic re-
gime we used the universal chaos-geometric
approach, presented earlier (see, c.g.,
[5-7,19-20]).
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Generally speaking, the approach includes
a set of such non-linear analysis and a chaos
theory methods as the correlation integral
approach, multi-fractal and wavelet analysis,
average mutual information, surrogate data,
Lyapunov’s exponents and Kolmogorov en-
tropy approach, spectral methods, nonlinear
prediction (predicted trajectories, neural net-
work etc) algorithms.

One of the important tasks here is to de-
termine the corresponding embedding di-
mension and to reconstruct a Euclidean space
RY large enough so that the set of points da
can be unfolded without ambiguity. In ac-
cordance with the embedding theorem, the
embedding dimension, dg, must be greater, or
at least equal, than a dimension of attractor,
da, i.e. dg > da.

Usually one should use several standard
approaches to reconstruction of the attractor
dimension (see, e.g., [17-20]). The correla-
tion integral analysis is one of the widely
used techniques to investigate the signatures
of chaos in a time series. The analysis uses
the correlation integral, C(r), to distinguish
between chaotic and stochastic systems.

To compute the correlation integral, the
algorithm of Grassberger and Procaccia is the
most commonly used approach. According to
this algorithm, the correlation integral is

C = lim s ;H(r—n Y-y, 1)

(1<i<j<N)

2)
where H is the Heaviside step function with
Hu)=1foru>0and H(u)=0foru<0,ris
the radius of sphere centered on y; or y;, and
N is the number of data measurements.

In order to perform the verification of the
results obtained by means of the correlation
integral analysis, one could use so called
known surrogate data method. This approach
makes use of the substitute data generated in
accordance to the probabilistic structure un-
derlying the original data.

The important dynamical invariants of a
chaotic system are the Lyapunov’s exponents
(see, c.g., [17-20]). These characteristics can
be defined as asymptotic average rates, they
are independent of the initial conditions, and



therefore they do comprise an invariant
measure of attractor. Saying simply, the Lya-
punov’s exponents are the parameters to de-
tect whether the system is chaotic or not.

Another important characteristics, name-
ly, the Kolmogorov entropy Ken: measures
the average rate at which information about
the state is lost with time. According to the
definition, the Kolmogorov entropy can be
determined as the sum of the positive Lya-
punov’s exponents.

The estimate of the dimension of the at-
tractor is provided by the Kaplan and York
conjecture:

J
Zx
d =j+*&—
|7»,+1| 3)
where j is such that and $*; _o,and
J ;,111 >0 ;ﬂa <0

the Lyapunov’s exponents A, are taken in
descending order.

There are a few approaches to compu-
ting the Lyapunov’s exponents. One of them
computes the whole spectrum and is based on
the Jacobi matrix of system. In this work we
use an advanced algorithm with fitted map
with higher order polynomials. To calculate
the spectrum of the Lyapunov’s exponents,
one could determine the time delay t and
embed the data in the four-dimensional
space. In this point it is very important to de-
termine the Kaplan-York dimension and
compare it with the correlation dimension,
defined by the Grassberger-Procaccia algo-
rithm].

As a rule, the calculational results of
the state-space reconstruction are highly sen-
sitive to the length of data set (i.e. it must be
sufficiently large) as well as to the time lag
and embedding dimension correctly deter-
mined.

Indeed, there are limitations on the ap-
plicability of chaos theory for observed (fi-
nite) dynamical variable series arising from
the basic assumptions that these series must
be infinite. A finite and small data set may
probably result in an underestimation of the
actual dimension of the process. The details

of the computational procedures and algo-
rithms can be also found in Refs. [27-46].

3. Nonlinear dynamics of the chaotic
laser diode: Some results and conclusions

Below we present the results of of computing
the dynamical and topological invariants of
the nonlinear dynamics of the chaotic laser
diode system with an additional optical injec-
tion According to [1], the dynamics of this
system can be described by a set of rate equa-
tions for the slave laser electric complex am-
plitude F and carrier density n, correspond-
ingly and is represented as follows:

dF 1+|ﬂ{g(n n)

7} +
at 1+5|F [

k—f F(t—7)-exp[-i27znt] + ﬁ F; expliAnt],
T T
@:;_L_M| F |2 +G(n)
dt qv 7, 1+6|F/J
where ks and k; denote the feedback and injec-
tion strength, the amplitude of injection laser
|F; | is equal to that of the solitary slave laser,
and An=n;—ns is the detuning between the
injection and the slave lasers. The feedback
delay t=20ns is set in the experimental setup
[1]. As the input data for the solving the rate
equations system the numerical values of the
parameters have been used as follows (see
more details in Ref. [1]): transparency carrier
density nO:O.455><1O6 m >, threshold current
inr =22 mA, differential gain g=1.414x107
um®ns™ | the carrier lifetime t=2.5 ns, pho-
ton lifetime tp,=1.17ps, round-trip time in la-
ser intracavity 1;=7.38 ps, the linewidth en-
hancement factor $=5.0, gain saturation pa-
rameter 5=5x10° um’and active layer vol-
ume V=324m?; the simulated slave laser is
biased at 1.7iy, with 5.2 GHz modulation
bandwidth.

According to data [1], under k;=0, a growth
of the parameter k; results in a period-
doubling bifurcation route to chaos, followed
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by a reversed route out of chaos. More exat-
ly, a chaos is realized in the region about
0.04-0.16 of k; and bandwidths are about
4.0-6.2 GHz. The rate equations systems has
been numerically solved and the correspond-
ing time series for amplitude and density are
obtained. The concrete step is an analysis of
the corresponding time series with the
N=-10* and At=2-10ns. It is very important
to declare that the dynamics of the chaotic
laser diode system with an additional optical
injection has the elements of a deterministic
chaos (the strange attractor). In Table 1 we
present the computational values of the cor-
relation dimension d,, the Kaplan-York at-
tractor dimension (d.), the Lyapunov’s expo-
nents (A;), Kolmogorov entropy (Keny), the
Gottwald-Melbourne parameter.

Table 1
Correlation dimension dy, Lyapunov’s expo-
nents (A, i=1,2), Kaplan-York attractor di-

mension (d,), Kolmogorov entropy (Kent),
Gottwald-Melbourne parameter Kgw

d2 7\,1 7\.2
2.94 |0.358 | 0.096

dL Kentr KGW
2.80 |10.454 | 0.94

To conclude, the values of the dynamical
and topological invariants (the correlation,
Kaplan-York dimensions, the Lyapunov’s
exponents etc) for the dynamics of the chaot-
ic laser diode system with an additional opti-
cal injection are computed. In particular, the
first two Lyapunov’s exponents are positive.
These data indicate on emerging dynamical
chaos elements in the laser diode system dy-
namics.
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al optical injection is computed within rate equations model, based on the a set of rate equa-
tions for the slave laser electric complex amplitude and carrier density. To calculate the sys-
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JUHAMUYECKHUE U TONOJOI'MYECKUE UHBAPUAHTDI HEJII/IHEI/IHOI/I
JAUHAMUKHA XAOTUYECKHUX JIASEPHBIX TUO/JI0B C JOIOJHUTEJbHOM
ONTUYECKOW MHBEKIIUEN

Pe3rome. HenuHeiinas XxaoTuueckas JMHAMHUKA Xa0TUYECKUX JIA3E€PHBIX AMOJIOB € JIOMOJ-
HUTEJIbHOM ONTUYECKON MH)KEKIIMEH PACCUMTHIBAETCA B PaMKaxX MOJEIU CKOPOCTHBIX ypaB-
HEHMH, B YAaCTHOCTHU, MOJIEJIM, OCHOBAHHOM HA CHUCTEME CKOPOCTHBIX YPAaBHEHHM ISl KOM-
IJIEKCHOM DJIEKTPUYECKOW aMIUIUTY/bI JIa3epa U IUIOTHOCTH. JlJ11 MOAEIupoBaHusl TUHAMUKHU
B Xa0TUYECKOM PEKHUME HCIOJIb3YIOTCS M3BECTHBIE METO/Ibl HEJIMHEHHOTO aHAJIN3a U TEOPHUHU
Xaoca, B T.4., METOJI KOPPEJSIIMOHHOIO MHTETpaia, aHaJln3 Ha OCHOBE MoKasarenen JlamyHo-
Ba, sHTponuu Konmmoroposa u np. [IpeacraBnens! 1aHHbIE BBIYUCICHUS TUHAMUUYECKUX U TO-
HOJIOTMYECKUX MHBAPMAHTOB, B T.4., Pa3MEPHOCTEN BIOXKEHMs, KOppeIaMoHHoH, Kamnana-
Nopka, nokazareneit JIsmyHnosa, ap.

KirwueBblie cjioBa: xaoTudeckas JUHAMHKA, JIA3€PHBIE AUOJbI, THMHAMUYECKUE U TOMO-
JIOTUYECKHE UHBAPUAHTBI
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JTAHAMIYHI I TOITOJIOTTYHI IHBAPIAHTH HEJIHIHHOI JMHAMUKH XAO-
TUYHUX JIASEPHUX JIOAIB 3 JOJATKOBOIO OIITUYHOIO IH’KEKIIIEIO

Pe3rome. Heminilina xaoTH4yHa JUHAMIKA XaOTHUHHAX J1a3epHUX I1OAIB 3 JOAATKOBOIO OII-
THYHOT 1HXXEKI[IEIO PO3paxoBYETHCS B paMKax MO/IeJTi MBUAKICHUX PIBHSHbD, 30Kpema, MoJen,
3aCHOBAHOI HA CHCTEMI I_HBI/II[KICHI/IX plBHS[HB JUTSE KOMILJIEKCHOT €NIeKTPUYHOT aMany;u/I na-
3epa 1 rycTUHU HociiB. [ aHai3y AMHAMIKH CUCTEMHU B XaOTHYHOMY PEXHMi BUKOPUCTaHI
METOJIM HEJIIHIMHOrO aHalli3y Ta Teopii Xaocy, y T.4., METOJI KOpEJSILiitHOro 1HTerpaia, aHami3
Ha OCHOBI Moka3HuKiB JlsmyHoBa, enTpomnii Konmoroposa T.i. Hamgani mani oOuucneHHs qu-
HAaMIYHUX 1 TOIOJIOTIYHHMX IHBApIaHTIB: PO3MIPHOCTEN KOpeNANiliHoi, BKIaaeHHs, Kannana-
Hopka, moka3HukiB JIAmyHOBa, Ta iHIITUX.
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