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SIMULATION CHAOTIC DYNAMICS OF RELATIVISTIC
BACKWARD-WAVE OSCILLATOR WITH USING CHAOS
THEORY AND QUANTUM NEURAL NETWORKS

Nonlinear simulation and forecasting chaotic evolutionary dynamics of such complex system as
relativistic backward-wave oscillator is treated using the new combined method, based on the chaos
theory algorithms, concept of geometric attractors, and algorithms for quantum neural network
simulation. It has been performed modelling the dynamics of multilayer photon echo neural network
for the case of noisy input sequence. It has been performed analysis, modelling and processing the
temporal dependence of the output amplitude for the backward-wave oscillator, described by system
of the nonstationary nonlinear theory equations for the amplitude of electromagnetic field and motion
of a beam. The data on the Lyapunov’s exponents, Kolmogorov entropy, correlation coefficient
between the actual and neural networks prognostic rows, referred to a temporal dependence of the
output signal amplitude of the nonrelativistic (relativistic) backward-wave oscillator are listed. The
combining the advanced algorithms of the modern chaos theory, concept of a compact geometric
attractors and one of the effective neural network algorithms, or, in a more general using an effective
model of artificial intelligence etc, could provide very adequate and quantitatively correct description
of temporal evolutionary dynamics of most complicated systems, in particular, in the field of modern

ultrahigh-frequency electronics

1. Introduction.

It is well known that the multiple physical,
chemical, biological, technical, communi-
cation, economical, geophysical and other
systems (devices) demonstrate the typical
complex chaotic behaviour. In many important
situations typical dynamics of these systems is
a world of strong nonlinearity. Naturally, there
1S a quite considerable number of works,
devoted to an analysis, modelling and
prediction evolutionary dynamics of different
complex systems from the viewpoint of theory
of dynamical systems and chaos, fractal sets of
physics and other systems [1-11]. In a series of
papers [10-20] the authors have attempted to
apply some of these methods in a variety of
the physical, geophysical, hydrodynamic
problems. In connection with this, there is an
extremely important task on development of
new, more effective approaches to the
nonlinear modelling and prediction of chaotic
processes in different complex systems (e.g.[1-
22]). Especial interest attracts research of
regular and chaotic dynamics of nonlinear
processes in various classes of devices of the
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so-called  relativistic  ultrahigh-frequency
electronics (see, e.g. [1-8]). Earlier we have
developed an effective approach to analysis,
modelling and forecasting chaotic evolutionary
dynamics of complex systems , which is based
on the based on the chaos theory algorithms,
concept of geometric attractors, and algorithms
for quantum neural network simulation [17-
20]. We are developing a new approach to
analyze complex system dynamics based on
the chaos theory methods and neural network
algorithms [21-27]. The basic idea of the
construction of the cited approach to
prediction of chaotic processes in complex
systems is in the use of the traditional concept
of a compact geometric attractor in which
evolves the fundamental dynamic
characteristics, plus the implementation of
neural network algorithms. The existing so far
in the theory of chaos prediction models are
based on the concept of an attractor, and are
described in a number of papers (e.g. [17-24]).
For example, very useful review of the
subfield that has attracted great interest in the
last years, namely, the application of various
approaches from complex network theory in



the context of nonlinear time series analysis,
has been presented in ref. [21,26] (see refs.
therein). The time series mining focuses more
on indexing, clustering, classification,
segmentation, discovery, and forecasting [21].
According to [21], there has been a
considerable amount of rapid developments of
data mining tools initiated by the advent of big
data and cloud computing reflecting the
increasing size and complexity of available
datasets. It should be underlined that hitherto
however, there has been practically no
multiple overlap between the nonlinear time
series analysis and complex neural network
methods (e.g. [13-15]).

In this paper we present the results of the
nonlinear simulation and forecasting chaotic
evolutionary dynamics of such complex
system as relativistic backward-wave oscillator
[5-7] using earlier developed new combined
method [22-27], based on the chaos theory
algorithms, concept of geometric attractors,
and algorithms for quantum neural network
simulation.

2. Mathematical approach

As the main fundamental ideas of the our
combined approach, based on the chaos theory
algorithms, concept of geometric attractors,
and algorithms for quantum neural network
simulation [17-20], here we will concern only
the principally important items of this
studying. As usually, let us remind that from a
mathematical point of view, it is a fact that in
the phase space of the system an orbit
continuously rolled on itself due to the action
of dissipative forces and the nonlinear part of
the dynamics, so it is possible to stay in the
neighbourhood of any point of the orbit y (n)
other points of the orbit y" (n), r = 1,2,..., N3,
which come in the neighbourhood y (1) in a
completely different times than n.

According to ref. [22-24,27], in terms of
the modern theory of neural systems, and
neuro-informatics (e.g. [12,15]), the process of
modelling the evolution of the system can be
generalized to describe some evolutionary
dynamic neuro-equations (miemo-dynamic
equations). Considering the neural network
with a certain number of neurons, as usual, we
can introduce the operators S; synaptic neuron
to neuron u; u;, while the corresponding
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synaptic matrix is reduced to a numerical
matrix strength of synaptic connections:
W = || wjj | |. The operator is described by the
standard activation neuro-equation
determining the evolution of a neural network
in time:
N
s :Sign(Zwy.sj -0), (1)
Jj=1
where 1<i<N. Naturally it easily to understand
that a state of the neuron (the chaos-geometric
interpretation of the forces of synaptic
interactions, etc.) can be represented by
currents in the phase space of the system and
its the topological structure is obviously
determined by the number and position of
attractors. To determine the asymptotic
behavior of the system it becomes crucial an
information aspect of the problem, namely, the
fact of being the initial state to the basin of
attraction of a particular attractor. The domain
of attraction of attractors are separated by
separatrices or certain surfaces in the phase
space. Their structure, of course, is quite
complex, but mimics the chaotic properties of
the studied object. Then, as usual, the next step
1S a natural construction parameterized
nonlinear function F (x, @), which transforms:
yin = y(n+1)=F(y(n),a), (2)

and then to use the different (including neural
network) criteria for determining the
parameters a (see below). Although, according
to a classical theorem by Kolmogorov-Arnold
-Moser, the dynamics evolves in a
multidimensional space, the size and the
structure of which is predetermined by the
initial conditions, this, however, does not
indicate a functional choice of model elements
in full compliance with the source of random
data. One of the most common forms of the
local model is the model of the Schreiber type
[3] (see also [17-20]).

The easiest way to implement this program
is in considering the original local
neighbourhood, enter the model(s) of the
process occurring in the neighbourhood, at the
neighbourhood and by combining together
these local models, designing on a global
nonlinear model. The latter describes most of
the structure of the attractor. As shown



Schreiber [3], the most common form of the
local model is very simple:

+Za”’s( (j-1)t) @)

n+ An

where An is the time period for which a

forecast. The coefficients a(f’, may be
determined by a least-squares procedure,
involving only points s(k) within a small
neighbourhood around the reference point.
Thus, the coefficients will vary throughout
phase space. The fit procedure amounts to
solving (ds+ 1) linear equations for the
(di+1) unknowns. When fitting the
parameters @, several problems are
encountered that seem purely technical in the
first place but are related to the nonlinear
properties of the system. If the system is low-
dimensional, the data that can be used for
fitting will locally not span all the available
dimensions but only a subspace, typically.
Therefore, the linear system of equations to be
solved for the fit will be ill conditioned.
However, in the presence of noise the
equations are not formally ill-conditioned but
still the part of the solution that relates the
noise directions to the future point is
meaningless. Other details of modelling
techniques are described, for example, in refs.
[22-26].

The new element of our approach is using
the NNW algorithm in forecasting nonlinear
dynamics of chaotic systems [9,10]. In terms
of the neuro-informatics and neural networks
theory the process of modelling the evolution
of the system can be generalized to describe
some evolutionary dynamic neuro-equations.
Imitating the further evolution of a system
within ~ NNW  simulation  with  the
corresponding elements of the self-study, self-
adaptation, etc., it becomes possible to
significantly improve the prediction of its
evolutionary dynamics. The fundamental
parameters to be computed are the
Kolmogorov entropy (and correspondingly the
predictability measure as it can be estimated
by the Kolmogorov entropy), the LE, the KYD
etc. The LE are usually defined as asymptotic
average rates and they are related to the
eigenvalues of the linearized dynamics across
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the attractor. Naturally, the knowledge of the
whole LE allows to determine other important
invariants such as the Kolmogorov entropy
and the attractor's dimension. The Kolmogorov
entropy is determined by the sum of the
positive LE. The estimate of the dimension of
the attractor is provided by the Kaplan and

J+Z1 AJQA,, Vv
j+1

where j is such that Z A,>0 and Z A,<0, and

i=1 i=1
the LE are taken in descending order.

Yorke  conjecture

3. Standard dynamical model of a
backward-wave oscillator and neural
networks modelling.

Nonlinear dynamics of the system (the
backward-wave oscillator) is usually described
by system of the nonstationary nonlinear
theory equations for the evolution in time and
space for the amplitude of the electromagnetic
field and the motion of the beam (single model
BWT) (e.g.[7,8]):

Lo Lo
T b1
0 4)
0* )
9 = —ZL?Re Fe'®=
oE?

with the corresponding boundary and initial
conditions:

004
9a|§=o=a, =01

% (5)
F|§=i=0, Fl1=0=F (E‘r 0)1

Here 6( &, 1,0() 1s a phase of the electron,

which runs in a space of interaction with
phase 0 in a field, F(&,t) dimensionless
complex amplitude of  the wave
E(x,t) — Re|E(x, i) expliwal — iFox) |’ &
=BoCx — the dimensionless coordinate, L

=Bo/C=21CN- the dimensionless length of the
interaction space, / is a length of a system, N-



is a number of slow waves, covering over the

length of system, ¢ V1Ko /(AU) is the
known Pierce parameter , I, is a current of
beam, U is an accelerated voltage, Ko-
resistance of link of the slowing system,

T = woC' (L wfvg) (1 + vg /o) ™!

(i.e. T —&/Vvy) is the dimensionless "retarded"
time, C is modified gain parameter (see more
details in refs. [2-8]). In refs. [5-8] there is
presented the detailed information about
numerical solution of the corresponding
system and performed an analysis of the
fundamental topological and dynamical
invariants. For numerical simulation we have
used a software package, based on the photon
echo neural network, which imitates
evolutionary dynamics of the complex system
[15]. It has the following key features: multi-
layering, possibility of introducing training,
feedback and controlled noise. There are
possible the different variants of the
connections matrix determination and binary
or continuous sigmoid response (and so on) of
the model neurons. In order to imitate a tuition
process we have carried out numerical
simulation of the neural networks for
recognizing a series of patterns (number of
layers N=5, number of images p=640; the
error function:

Pmax  kmax 2
SSE =% {. sz [t(p,k) —O(p.K)]"} >

p=1

(6)

where O(p,k) — neural networks output k for
image p and #(p,k) is the trained image p for
output x; SSE is determined from a procedure
of minimization; the output error is
RMS=sqrt(SSE/Py.); As neuronal function
there 1s wused function of the form:
f(x)=1/[1+exp(—6x]]. In our calculation
there is tested the function f(x,T)=exp[(xT)*]
too.

In order to check the possibilities of the
(neural networks package NNW-13-2003 [15])
of the multilayer neural networks, it has been
performed processing noisy input sequence.
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Fig. 2 demonstrates the results of modeling the
dynamics of multilayer neural network for the
case of noisy input sequence [24]. The input
signal was the Gaussian-like pulse with adding
a noise with intensity D. At a certain value of
the parameter D (the variation interval .0001-
0.0040) the network training process and
signal playback is optimal. The optimal value
of D is 0.00168.
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Figure 1. The results of modeling the dynamics of
multilayer neural for the case of noisy input sequence
(see text).

The farther step was in analysis, modelling and
processing the temporal dependence of the out
amplitude (solution of the system (4)-(5). For
illustration we present the results of
calculation the Lyapunov’s exponents, the
Kolmogorov entropy K. for the system,
which is described by the system (4)-(5). The
governing parameter L is equal 4.05.

Table 1. Numerical simulation data for the Lyapunov

exponents (LE: Ai1—A4) and the Kolmogorov entropy
K (L=4.05)

K
0.26

M
0.261

A
0.0001

As
—-0.0004

A4
—0.528

In table 2 we present data on the correlation
coefficient (r) between the actual and neural
networks prognostic rows, referred to the
temporal dependence of the output signal
amplitude of the backward-wave oscillator (1)
for L=4.05 (NN is number of neighbours for
pre-ahead 100 points numerical series of the
amplitude temporal dependence). The more
details can be found in ref. [6,22-24]. One can
see very closed coincidence between the actual
and predicted row values for the temporal



dependence of the output signal amplitude of
the backward-wave oscillator (tube).

Table 2. The correlation coefficient (r) between the
actual and prognostic rows, referred to the temporal
dependence of the output signal amplitude of the
backward-wave oscillator (1) for L=4.05 (see text) .

NN
r

85
0.94

225
0.96

250
0.96

Analysis of the PC experiment results
allows to make conclusion about sufficiently
high-quality processing the input signals of
very different shapes and complexity by the
applied neural network. This is concerning the
results of modelling the temporal dependence
of the output signal amplitude of the
backward-wave oscillator (1). We believe that
the combining the advanced algorithms of the
modern chaos theory, concept of a compact
geometric attractors and one of the effective
neural network algorithms, or, in a more
general using an effective model of artificial
intelligence etc, could provide very adequate,
quantitatively correct description of temporal
evolutionary dynamics of most complicated
systems, in particular, in the field of modern
ultrahigh-frequency electronics (see, e.g. [1-

&)).
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SIMULATION CHAOTIC DYNAMICS OF RELATIVISTIC BACKWARD-WAVE
OSCILLATOR WITH USING CHAOS THEORY AND QUANTUM NEURAL
NETWORKS

Summary. Nonlinear simulation and forecasting chaotic evolutionary dynamics of such
complex system as nonrelativistic (relativistic) backward-wave oscillator is treated using the new
combined method, based on the chaos theory algorithms, concept of geometric attractors, and
algorithms for quantum neural network simulation. It has been performed modeling the
dynamics of multilayer photon echo neural network for the case of noisy input sequence. It has
been performed analysis, modelling and processing the temporal dependence of the out
amplitude for the backward-wave oscillator, described by system of the nonstationary nonlinear
theory equations for the amplitude of the electromagnetic field and the motion of the beam. The
data on the Lyapunov’s exponents, Kolmogorov entropy and the correlation coefficient between
the actual and neural networks prognostic rows, referred to the temporal dependence of output
signal amplitude of the nonrelativistic (relativistic) backward-wave oscillator (tube) are listed.
The combining the advanced algorithms of the modern chaos theory, concept of a compact
geometric attractors and one of the effective neural network algorithms, or, in a more general
using an effective model of artificial intelligence etc, could provide very adequate and
quantitatively correct description of temporal evolutionary dynamics of most complicated
systems, in particular, in the field of modern ultrahigh-frequency electronics.

Key words: Keywords: non-relativistic and relativistic backward-wave oscillator (tube),
spectrum of radiation, spectroscopy, chaotic dynamics, concept of geometric attractor. quantum
neural networks
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PACS: 05.45.Pq 52.75.Va
Konopamenxo I1.0., Xeyeniyc O.1O.

MOJIEJTFOBAHHS XAOTUYHOI JMHAMIKHA PEJISITUBICTCBHKOI JIAMITA
OBEPHEHOI XBWJII 3 BAKOPUCTAHHSIM TEOPIi XAOCY TA KBAHTOBUX
HEWUPOMEPEK

Pe3tome. HeniniiiHe MopentoBaHHS Ta MPOTHO3YBAHHS XAOTHUYHOI €BONIOIINHOI AMHAMIKU
Takol CKJIQJHOI CHCTEMH, SIK JIaMIla 3BOPOTHOI XBWJII, PO3IJISJAETHCS 32 JOIOMOTOI0 HOBOTO
KOMOIHOBAaHOTO METO/Y, 3aCHOBAHOTO Ha aJrOpPUTMax Teopii XaocCy, KOHIEMIii TreOMEeTPUIHHUX
aTpaKkTOpiB Ta KBAaHTOBO HEMPOHHO-MEPEKEBUX alIropuTMax MojentoBaHHsA. [IpoBeneHo
MO/JICJIFOBAHHS JIMHAMIKM OaraTomiapoBoi (POTOHHOI HeHpoMmepeki A BHUIAIKY 3alIyMIIEHOI
BX1JTHOT TOCIiTOBHOCTI. [IpoBeneHO anaii3, MOJENIOBaHHS Ta OOpOoOKa 4YacoBOI 3aJIeKHOCTI
BUXIJIHOI AaMIUTITyd M HEPeIsITHBICTCHKOI (PEeNATUBICTCHKOI) JaMIH, IUHAMiKa SKOT
ONMCYETHCSI CHUCTEMOIO pIBHAHb HECTalllOHApHOI HENiHIMHOT Teopli [ aMIUNTYAH
€JIGKTPOMArHiTHOTO TOJsI Ta pyxy nyuka. HaBeneni JaHi nmpo mokasHuku JIAmyHoBa, EHTPOIIiO
KonmoropoBa,  koedimieHT  Kopensauii MDK — (QakTHUHUM 1 HEMPOHHO-MEPEKEBUMU
IPOTHOCTUYHUMH JaHUMH YacOBOI 3aJIEKHOCTI aMIUIITYAM BMXIJHOTO CHUTHATY PO3IIISAHYTOT
JaMIIA  3BOPOTHOI XBWII TomO. [ToeTHaHHS yIOCKOHAJIEHUX aITOPUTMIB Cy4acHOI Teopii Xaocy,
KOHIIETIil KOMIAKTHUX TE€OMETPUYHUX aTPAaKTOpiB 1 OXHOro 3 e(eKTUBHUX HEHPOHHO-
MEpPEKEBUX aTOPUTMIB, a00, y OLIbII 3aralbHOMY CEHCl, BUKOpPHCTaHHS €(EeKTHBHOI MoJenl
HITYYHOTO 1HTEJEKTY TOILO, MOXe 3a0€3MeUUTH Ay>Ke aleKBaTHHM 1 KUIbKICHO KOPEKTHHUH onuc
4acoBOi €BOJIOLINHOT JUHAMIKY HaWCKIAAHIMNX (DI3UYHUX CHUCTEM, 30KpeMa, y chepi cydacHol
Ha/IBUCOKOYACTOTHOI €JICKTPOHIKH.

KurouoBi cjioBa: HepensTUBICTChKA Ta PENSATUBICTCHKA JlaMIa 3BOPOTHOI XBMJIl, CIIEKTP
BUIIPOMIHIOBAaHHS, CIIEKTPOCKOIIsl, XaOTHYHA JUHAMIiKa, KOHIICIIis T€OMETPUYHOTO aTpaKTopy,
KBAHTOB1 HEHPOHHI Mepexi
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