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SIMULATION CHAOTIC DYNAMICS OF RELATIVISTIC
BACKWARD-WAVE OSCILLATOR WITH USING CHAOS

THEORY AND QUANTUM NEURAL NETWORKS

Nonlinear simulation and forecasting chaotic evolutionary dynamics of such complex system as
relativistic backward-wave oscillator is treated using the new combined method, based on the chaos
theory  algorithms,  concept  of  geometric  attractors,  and  algorithms  for  quantum  neural  network
simulation. It has been performed modelling the dynamics of multilayer photon echo neural network
for the case of  noisy input sequence. It has been performed  analysis, modelling and processing the
temporal dependence of the output amplitude for the backward-wave oscillator, described by system
of the nonstationary nonlinear theory equations for the amplitude of electromagnetic field and motion
of  a  beam.  The  data  on  the  Lyapunov’s  exponents,  Kolmogorov entropy,  correlation  coefficient
between the actual and neural networks prognostic rows, referred to a  temporal dependence of the
output signal amplitude of the nonrelativistic (relativistic)  backward-wave oscillator are listed. The
combining the advanced algorithms of the modern chaos theory,  concept  of a  compact geometric
attractors and one of the effective neural network algorithms, or, in a more general using an effective
model of artificial intelligence etc, could provide very adequate and quantitatively correct description
of temporal evolutionary dynamics of most complicated systems, in particular, in the field of modern
ultrahigh-frequency electronics

1. Introduction.

It is well known that the multiple physical,
chemical,  biological,  technical,  communi-
cation,  economical,  geophysical  and  other
systems  (devices)  demonstrate  the  typical
complex chaotic behaviour. In many important
situations typical dynamics of these systems is
a world of strong nonlinearity. Naturally, there
is  a  quite  considerable  number  of  works,
devoted  to  an  analysis,  modelling  and
prediction evolutionary dynamics of different
complex systems from the viewpoint of theory
of dynamical systems and chaos, fractal sets of
physics and other systems [1-11]. In a series of
papers [10-20] the authors have attempted to
apply some of these methods in  a variety of
the  physical,  geophysical,  hydrodynamic
problems. In connection with this, there is an
extremely  important  task  on  development  of
new,  more  effective  approaches  to  the
nonlinear modelling and prediction of chaotic
processes in different complex systems (e.g.[1-
22]).  Especial  interest  attracts  research  of
regular  and  chaotic  dynamics  of  nonlinear
processes in various classes of devices of the

so-called  relativistic  ultrahigh-frequency
electronics (see, e.g. [1-8]).  Earlier  we have
developed  an  effective  approach  to  analysis,
modelling and forecasting chaotic evolutionary
dynamics of complex systems , which is based
on the  based on the chaos theory algorithms,
concept of geometric attractors, and algorithms
for  quantum  neural  network  simulation  [17-
20].  We  are  developing  a  new  approach  to
analyze  complex  system  dynamics  based  on
the chaos theory methods and neural network
algorithms  [21-27].  The  basic  idea  of  the
construction  of  the  cited  approach  to
prediction  of  chaotic  processes  in  complex
systems is in the use of the traditional concept
of  a  compact  geometric  attractor  in  which
evolves  the  fundamental  dynamic
characteristics,  plus  the  implementation  of
neural network algorithms. The existing so far
in  the theory of chaos prediction  models  are
based on the concept of an attractor,  and are
described in a number of papers (e.g. [17-24]).
For  example,  very  useful  review  of  the
subfield that has attracted great interest in the
last  years,  namely,  the application of various
approaches  from complex  network  theory  in
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the context  of nonlinear  time series analysis,
has  been  presented  in  ref.  [21,26]  (see  refs.
therein). The time series mining focuses more
on  indexing,  clustering,  classification,
segmentation, discovery, and forecasting [21].
According  to  [21],  there  has  been  a
considerable amount of rapid developments of
data mining tools initiated by the advent of big
data  and  cloud  computing  reflecting  the
increasing  size  and  complexity  of  available
datasets. It should be underlined that hitherto
however,  there  has  been  practically  no
multiple  overlap  between  the  nonlinear  time
series  analysis  and  complex  neural  network
methods (e.g. [13-15]). 

In this paper we present the results of the
nonlinear  simulation  and  forecasting  chaotic
evolutionary  dynamics  of  such  complex
system as relativistic backward-wave oscillator
[5-7]  using  earlier  developed  new  combined
method  [22-27],  based  on  the  chaos  theory
algorithms,  concept  of  geometric  attractors,
and  algorithms  for  quantum  neural  network
simulation.

2. Mathematical approach

As the main fundamental ideas of the our
combined approach, based on the chaos theory
algorithms,  concept  of  geometric  attractors,
and  algorithms  for  quantum  neural  network
simulation [17-20], here we will concern only
the  principally  important  items  of  this
studying. As usually, let us remind that from a
mathematical point of view, it is a fact that in
the  phase  space  of  the  system  an  orbit
continuously rolled on itself due to the action
of dissipative forces and the nonlinear part of
the dynamics,  so it  is possible to stay in the
neighbourhood of any point of the orbit  y (n)
other points of the orbit  yr (n), r = 1,2,..., NB,
which come in the neighbourhood  y (n) in a
completely different times than n. 

According to  ref.  [22-24,27],  in  terms  of
the  modern  theory  of  neural  systems,  and
neuro-informatics (e.g. [12,15]), the process of
modelling the evolution of the system can be
generalized  to  describe  some  evolutionary
dynamic  neuro-equations  (miemo-dynamic
equations).  Considering  the  neural  network
with a certain number of neurons, as usual, we
can introduce the operators Sij synaptic neuron
to  neuron  ui uj,  while  the  corresponding

synaptic  matrix  is  reduced  to  a  numerical
matrix strength of synaptic connections: 
W = | | wij | |. The operator is described by the
standard  activation  neuro-equation
determining the evolution of a neural network
in time:

si
'=sign                         (1)

where 1<i<N. Naturally it easily to understand
that a state of the neuron (the chaos-geometric
interpretation  of  the  forces  of  synaptic
interactions,  etc.)  can  be  represented  by
currents in the phase space of the system and
its  the  topological  structure  is  obviously
determined  by  the  number  and  position  of
attractors.  To  determine  the  asymptotic
behavior of the system it  becomes crucial  an
information aspect of the problem, namely, the
fact  of  being the initial  state  to the basin of
attraction of a particular attractor.  The domain
of  attraction  of  attractors  are  separated  by
separatrices  or  certain  surfaces  in  the  phase
space.  Their  structure,  of  course,  is  quite
complex, but mimics the chaotic properties of
the studied object. Then, as usual, the next step
is  a  natural  construction  parameterized
nonlinear function F (x, a), which transforms:  

     y(n   y(n + 1) = F(y(n), a),       (2)

and then to use the different (including neural
network)  criteria  for  determining  the
parameters a (see below). Although, according
to a classical theorem by Kolmogorov-Arnold
-Moser,  the  dynamics  evolves  in  a
multidimensional  space,  the  size  and  the
structure  of  which  is  predetermined  by  the
initial  conditions,  this,  however,  does  not
indicate a functional choice of model elements
in full compliance with the source of random
data.  One of the most common forms of the
local model is the model of the Schreiber type
[3] (see also [17-20]).

The easiest way to implement this program
is  in  considering  the  original  local
neighbourhood,  enter  the  model(s)  of  the
process occurring in the neighbourhood, at the
neighbourhood  and  by  combining  together
these  local  models,  designing  on  a  global
nonlinear model. The latter describes most of
the  structure  of  the  attractor.  As  shown
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Schreiber  [3],  the most common form of the
local model is very simple:

s (n+ Δn)=a0
(n)+∑

j=1

d A

a j
(n) s (n− ( j− 1)τ )     (3)

where  n  is  the  time  period  for  which  a
forecast.  The  coefficients  a j

(k ),  may  be
determined  by  a  least-squares  procedure,
involving  only  points  s(k) within  a  small
neighbourhood  around  the  reference  point.
Thus,  the  coefficients  will  vary  throughout
phase  space.  The  fit  procedure  amounts  to
solving  (dA + 1)  linear  equations  for  the
(dA + 1)  unknowns.  When  fitting  the
parameters  a,  several  problems  are
encountered that seem purely technical in the
first  place  but  are  related  to  the  nonlinear
properties of the system. If the system is low-
dimensional,  the  data  that  can  be  used  for
fitting  will  locally  not  span all  the  available
dimensions  but  only  a  subspace,  typically.
Therefore, the linear system of equations to be
solved  for  the  fit  will  be  ill  conditioned.
However,  in  the  presence  of  noise  the
equations are not formally ill-conditioned but
still  the  part  of  the  solution  that  relates  the
noise  directions  to  the  future  point  is
meaningless.  Other  details  of  modelling
techniques are described, for example, in refs.
[22-26].

The new element of our approach is using
the  NNW algorithm in  forecasting  nonlinear
dynamics of chaotic systems [9,10]. In terms
of the neuro-informatics and neural networks
theory the process of modelling the evolution
of the system can be generalized to describe
some  evolutionary  dynamic  neuro-equations.
Imitating  the  further  evolution  of  a  system
within  NNW  simulation  with  the
corresponding elements of the self-study, self-
adaptation,  etc.,  it  becomes  possible  to
significantly  improve  the  prediction  of  its
evolutionary  dynamics.  The  fundamental
parameters  to  be  computed  are  the
Kolmogorov entropy (and correspondingly the
predictability  measure as it  can be estimated
by the Kolmogorov entropy), the LE, the KYD
etc. The LE are usually defined as asymptotic
average  rates  and  they  are  related  to  the
eigenvalues of the linearized dynamics across

the attractor.  Naturally, the knowledge of the
whole LE allows to determine other important
invariants  such  as  the  Kolmogorov  entropy
and the attractor's dimension. The Kolmogorov
entropy  is  determined  by  the  sum  of  the
positive LE. The estimate of the dimension of
the  attractor  is  provided  by  the  Kaplan  and

Yorke  conjecture  d L= j+∑
i=1

j

λi /❑λ j+1 ∨ ,

where j is such that ∑
i=1

j

λi>0 and ∑
i=1

j+1

λi<0 , and

the LE are taken in descending order. 

3. Standard dynamical model of a 
backward-wave oscillator and neural 
networks modelling. 

Nonlinear  dynamics  of  the  system  (the
backward-wave oscillator) is usually described
by  system  of  the  nonstationary  nonlinear
theory equations for the evolution in time and
space for the amplitude of the electromagnetic
field and the motion of the beam (single model
BWT) (e.g.[7,8]):

          (4)

    

with  the  corresponding  boundary  and  initial
conditions:

          (5)

Here  θ(  ξ ,  ,θ0)  is  a  phase  of  the  electron,

which  runs   in  a  space  of  interaction  with
phase  θ0  in  a  field,  F(ξ ,)   dimensionless

complex  amplitude  of  the  wave
,   ξ

=0Cx –  the  dimensionless  coordinate,  L
=0lC=2CN- the dimensionless length of the
interaction space, l is a length of a system, N-
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is a number of slow waves, covering over the

length  of  system,  is  the
known  Pierce  parameter  ,  I0 is  a  current  of
beam,  U is  an  accelerated  voltage,  K0-
resistance   of link of the slowing system,

(i.e.  ττ −ξ / ν0) is the dimensionless "retarded"
time, C is modified gain parameter (see more
details  in  refs.  [2-8]).   In refs.  [5-8] there is
presented  the  detailed  information  about
numerical  solution  of  the  corresponding
system  and  performed  an  analysis  of  the
fundamental  topological  and  dynamical
invariants. For numerical simulation we have
used a  software package, based on the photon
echo  neural  network,  which  imitates
evolutionary dynamics of the complex system
[15].  It has the following key features: multi-
layering,  possibility  of  introducing  training,
feedback  and  controlled  noise.  There  are
possible  the  different  variants  of  the
connections  matrix  determination  and  binary
or continuous sigmoid response (and so on) of
the model neurons. In order to imitate a tuition
process  we  have  carried  out  numerical
simulation  of  the  neural  networks  for
recognizing  a  series  of  patterns  (number  of
layers   N=5,  number  of  images  р=640;  the
error function:

 (6)

where  O(p,k)  – neural  networks output  k for
image  p and  t(p,k) is the trained image  р for
output  к;  SSE is determined from a procedure
of  minimization;  the  output  error  is
RMS=sqrt(SSE/Pmax);  As  neuronal  function
there  is  used  function  of  the  form:
f ( x )=1/[1+exp (−δx ) ].  In  our  calculation
there is tested the function  f(x,T)=exp[(xT)4]
too. 

In  order  to  check  the  possibilities  of  the
(neural networks package NNW-13-2003 [15])
of the multilayer neural networks, it has been
performed  processing  noisy  input  sequence.

Fig. 2 demonstrates the results of modeling the
dynamics of multilayer neural network for the
case of noisy input sequence [24]. The input
signal was the Gaussian-like pulse with adding
a noise with intensity D. At a certain value of
the parameter D (the variation interval .0001-
0.0040)  the  network  training  process  and
signal playback is optimal. The optimal value
of D is 0.00168.

Figure  1.  The  results  of  modeling  the  dynamics  of
multilayer neural  for the case of  noisy input sequence
(see text).

The farther step was in analysis, modelling and
processing the temporal dependence of the out
amplitude (solution of the system (4)-(5).  For
illustration  we  present  the  results  of
calculation  the  Lyapunov’s  exponents,  the
Kolmogorov  entropy  Kentr  for  the  system,
which is described by the system (4)-(5).  The
governing parameter L is equal 4.05.   

Table 1.  Numerical simulation data for the Lyapunov

exponents (LE:  14) and  the Kolmogorov entropy
K (L=4.05) 

1 2 3 4 K
0.261 0.0001 0.0004 0.528 0.26

In table 2 we present data on the correlation
coefficient  (r)  between the  actual  and neural
networks  prognostic  rows,  referred  to  the
temporal  dependence  of  the  output  signal
amplitude of the backward-wave oscillator (1)
for L=4.05 (NN is number of neighbours for
pre-ahead 100 points  numerical  series  of the
amplitude  temporal  dependence).  The  more
details can be found in ref. [6,22-24]. One can
see very closed coincidence between the actual
and  predicted  row  values  for  the  temporal
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dependence of the output signal amplitude of
the  backward-wave oscillator (tube). 

Table  2.  The  correlation  coefficient  (r)  between  the
actual  and  prognostic  rows,  referred  to  the  temporal
dependence  of  the  output  signal  amplitude  of  the
backward-wave oscillator (1) for L=4.05 (see text) .

NN 85 225 250
r 0.94 0.96 0.96

Analysis  of  the  PC  experiment  results
allows to  make conclusion  about  sufficiently
high-quality  processing  the  input  signals  of
very  different  shapes  and complexity  by  the
applied neural network. This is concerning the
results of modelling the temporal dependence
of  the  output  signal  amplitude  of  the
backward-wave oscillator (1). We believe that
the combining the advanced algorithms of the
modern  chaos  theory,  concept  of  a  compact
geometric  attractors  and one of  the  effective
neural  network  algorithms,  or,  in  a  more
general  using an effective  model  of artificial
intelligence etc, could provide very adequate,
quantitatively  correct  description  of  temporal
evolutionary  dynamics  of  most  complicated
systems, in particular,  in the field of modern
ultrahigh-frequency  electronics  (see,  e.g.  [1-
8]).
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Summary.  Nonlinear  simulation  and  forecasting  chaotic  evolutionary  dynamics  of  such
complex system as nonrelativistic (relativistic) backward-wave oscillator is treated using the new
combined method, based on the chaos theory algorithms, concept of geometric attractors, and
algorithms  for  quantum  neural  network  simulation. It  has  been  performed  modeling  the
dynamics of multilayer photon echo neural network for the case of noisy input sequence. It has
been  performed  analysis,  modelling  and  processing  the  temporal  dependence  of  the  out
amplitude for the backward-wave oscillator, described by system of the nonstationary nonlinear
theory equations for the amplitude of the electromagnetic field and the motion of the beam. The
data on the Lyapunov’s exponents, Kolmogorov entropy and the correlation coefficient between
the actual and neural networks prognostic rows, referred to the temporal dependence of output
signal amplitude of the nonrelativistic (relativistic)  backward-wave oscillator (tube) are listed.
The combining the advanced algorithms of  the  modern chaos theory,  concept  of  a  compact
geometric attractors and one of the effective neural network algorithms, or, in a more general
using  an  effective  model  of  artificial  intelligence  etc,  could  provide  very  adequate  and
quantitatively  correct  description  of  temporal  evolutionary  dynamics  of  most  complicated
systems, in particular, in the field of modern ultrahigh-frequency electronics.
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МОДЕЛЮВАННЯ ХАОТИЧНОЇ ДИНАМІКИ РЕЛЯТИВІСТСЬКОЇ ЛАМПИ
ОБЕРНЕНОЇ ХВИЛІ З ВИКОРИСТАННЯМ ТЕОРІЇ ХАОСУ ТА  КВАНТОВИХ

НЕЙРОМЕРЕЖ

Резюме. Нелінійне  моделювання  та  прогнозування  хаотичної  еволюційної  динаміки
такої  складної  системи,  як  лампа  зворотної  хвилі,  розглядається  за  допомогою нового
комбінованого методу, заснованого на алгоритмах теорії хаосу, концепції геометричних
атракторів  та  квантово  нейронно-мережевих  алгоритмах  моделювання.  Проведено
моделювання  динаміки  багатошарової  фотонної  нейромережі  для  випадку  зашумленої
вхідної  послідовності.  Проведено  аналіз,  моделювання  та  обробка  часової  залежності
вихідної  амплітуди  для  нерелятивістської  (релятивістської)  лампи,  динаміка  якої
описується  системою  рівнянь  нестаціонарної  нелінійної  теорії  для  амплітуди
електромагнітного поля та руху пучка. Наведені дані про показники Ляпунова, ентропію
Колмогорова,  коефіцієнт  кореляції  між  фактичним  і  нейронно-мережевими
прогностичними  даними  часової  залежності  амплітуди  вихідного  сигналу  розглянутої
лампи  зворотної хвилі тощо. Поєднання удосконалених алгоритмів сучасної теорії хаосу,
концепції  компактних  геометричних  атракторів  і  одного  з  ефективних  нейронно-
мережевих алгоритмів,  або, у більш загальному сенсі,  використання ефективної  моделі
штучного інтелекту тощо, може забезпечити дуже адекватний і кількісно коректний опис
часової еволюційної динаміки найскладніших фізичних систем, зокрема, у сфері сучасної
надвисокочастотної електроніки.

Ключові слова:  нерелятивістська та релятивістська лампа зворотної хвилі, спектр
випромінювання, спектроскопія, хаотична динаміка, концепція геометричного атрактору,
квантові нейронні мережі
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